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•  Communication networks & routing 

•  Neural networks & connectivism 

•  Stochastic models of complex systems 

•  Social networks and concept mining 

•  Computation, semantics, economics of networks 

•  Networks of connectors & buffers represented as graphs 
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A Variety of Networks 
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    Graphs Are Everywhere 

§  Use of diagrams / graphs is pervasive to Computer Science 
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Networks 

Networks  
§  hypergraphs with labels, structure and observation 

interface 
§  labels/buffer content may change with executions 
§  structure usually changes only via explicit 

reconfiguration operations 
 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	   4	  



Networks 

Networks 
§  Petri nets 
§  linear time-invariant dynamical systems 
§  (soft) constraint satisfaction problems 
§  Bayesian networks 
§  electric circuits 
§  computational fields 
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Petri Nets 

Carl Petri, PhD thesis, 1962  –  The(4) dining philosophers  
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Petri Nets 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	   7	  

Roberto Gorrieri 
Process Algebras for Petri Nets: The Alphabetization of Distributed Systems 
Springer, to appear 



Linear Time-Invariant Dynamical Systems 

J. C. Willems. The behavioral approach to 
open and interconnected systems: Modeling 
by tearing, zooming, and linking. Control 
Systems Magazine, 27:46–99, 2007. 
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signal flow diagrams 



(Soft) Constraint Satisfaction 
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(Soft) Constraint Satisfaction 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	   10	  



Bayesian Networks 
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Electric Circuits 
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§  An equivalent power system feeding a 300 km transmission line. The line 
is compensated by a shunt inductor at its receiving end. A circuit breaker 
allows energizing and de-energizing of the line. 



Computational Fields 

Lafuente,Loreti, Montanari, A 
Fixpoint-based Calculus for 
Graph-shaped Computational 
Fields, Coordination 2015. 

 

A rescue problem: associate 
each victim to its closest 
rescuer. 

Victims are red, rescuers black 

 

Fields are expressed via a soft 
mu calculus, with arcs labelled 
with monotone functions. 
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Computational Fields 

Each rescuer has found the 
shortest path to its closest victim 
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Computational Fields 

Each victim has chosen the 
closest rescuer 
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From algebraic to graph-based syntax 
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§  Start with a given class of graphs 
§  Define an equational signature,  

§  operators correspond to operations on graphs 
§  axioms describe their properties 

§  Prove once and for all soundness and completeness of the 
axioms with respect to the interpretation on graphs, as well as 
surjectivity 

§  Next, you can safely use the algebra as an alternative, more 
handy syntax for the graphs  

From graphs to graph algebras 
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First part: Milner Flowgraphs 

Networks are connected via shared global names/channels 

•  Milner flowgraph algebra for process calculi 

•  networks of constraints 

•  network tree decomposition for dynamic programming via scope extension 
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Second Part: PROPs and String Diagrams 

Product permutation categories: symmetric monoidal categories 
 

Networks are connected via series parallel composition 
 

§  bigraphs 

•  connector algebras for Petri nets with boundaries 

•  signal flow graphs 
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Third Part: From Structured Graphs to Categories 

From structured states to 
•  structured rewrite rules 

•  structured transition systems (graphs) 
•  structured models of computation (categories) 

 

Examples 

•  Petri nets are monoids 

•  rewriting logic 
•  tiles 
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Roadmap 

Milner flowgraphs 
•  flowgraph algebra for process calculi 

•  networks of constraints 
•  tree decomposition for dynamic programming 

PROPs and string diagrams 

•  bigraphs 

•  connector algebras for Petri nets with boundaries 

•  signal flow graphs 
From structured graphs to categories 

•  Petri nets 

•  rewriting logic 

•  tiles 
Conclusions 
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§ THE END 
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General Description of Network Systems 
 
Part 1: Milner Flowgraphs 
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Roadmap 

Milner flowgraphs 
•  flowgraph algebra for process calculi 

•  networks of constraints 
•  tree decomposition for dynamic programming 

•  networks are connected via shared global names/channels 
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Roadmap 

Milner flowgraphs 
•  flowgraph algebra for process calculi 

•  networks of constraints 
•  tree decomposition for dynamic programming 
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Flow Graphs and Flow Algebras 

Robin Milner, Flow Graphs and Flow Algebras, JACM 1979 
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Flow Graphs and Flow Algebras 

Robin Milner, Flow Graphs and Flow Algebras, JACM 1979 
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flow algebra equivalence 
corresponds to 
flow graph isomorphism 



Denotational Semantics 
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§  George Milne, Robin Milner, Concurrent Processes 
and Their Syntax, JACM 1979 

•  Tony Hoare, Communicating Sequential Processes, 
CACM 1978 

•  è Interpreting the algebra in a semantic domain 



Roadmap 

Milner flowgraphs 
•  flowgraph algebra for process calculi 

•  networks of constraints 
•  tree decomposition for dynamic programming 
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Networks of (soft) Constraints 
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§  Networks of Constraints, 1971 
§  nodes are variables 
§  (hyper) arcs are predicates 
§  hidden nodes are existentially quantified 
§  local propagation makes constraints stronger 

§  Soft constraints, 1997 
§  constraint satisfaction returns a value in a semiring 
§  fuzzy, optimization variants 

§  Semiring definition of constraint composition 
§  Constraints themselves are values of a functional semiring 
§  c: (V→D)→S 
§  (c1 x c2)η = c1η x c2η 



Roadmap 

Milner flowgraphs 
•  flowgraph algebra for process calculi 

•  networks of constraints 
•  tree decomposition for dynamic programming 
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Back to (Almost) Milner 
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of restricted variables and of freshness requirements in the
case of parametric occurrences of the same subproblem and
of recursion (e.g. for Datalog).

The analogy with process algebras is useful when provid-
ing a uniform language for supporting both the declarative
and the procedural parts of our approach. As already
mentioned, a first approximation of such a language is
CC-Pi [5], which combines concurrent constraint program-
ming and pi-calculus. Cc-pi is based on named constraint
semirings, which are equipped with a permutation algebra
structure. However, the restriction operator is not exploited
there for defining a hierarchical problem structure, as we
present here.

II. AN ALGEBRAIC SPECIFICATION FOR SCSPS

Let V = {x, y, . . .} a set of variables and C = {A,B, . . .}
a set of atomic constraints, equipped with an arity func-
tion ar ∶ C → N telling how many variables each con-
straint involves. We assume an empty constraint nil, with
ar(nil) = 0. The SCSP signature is given by the following
grammar

p, q ∶= p ∥ q � (x)p � A(x̃) � nil
where {x} ∪ x̃ ⊆ V and �x̃� = ar(A) (we overload the
notation x̃ to indicate both a vector and a set of variables).
Here:
● the parallel composition p ∥ q represents the problem

consisting of two subproblems p and q, possibly shar-
ing some variables;

● the restriction (x)p is p where the assignment for x

has already been determined;
● the atomic problem A(x̃) represents a problem that

only involves the constraint A over variables x̃;
● nil represents the empty problem.

We assume restriction has precedence over parallel com-
position. The variable x is said to be bound in (x)p. The
free variables of p, fv(p), are those variables that have an
occurrence in p that is not inside a subterm of p of the form(x)q.

We consider syntax up to the following structural con-
gruence

p ∥ q = q ∥ p (p ∥ q) ∥ r = p ∥ (q ∥ r)
p ∥ nil = p (AX∥)

(x)(y)p = (y)(x)p (x)nil = nil (AX(x))

(x)p = (y)p[x� y] y ∉ fv(p) (AX
↵

)
(x)(p ∥ q) = (x)p ∥ q x ∉ fv(q) (AXSE)

where [x � y] replaces each occurrence of y with x.
The operator ∥ forms a commutative monoid, meaning that
problems in parallel can be solved in any order (AX∥).
Restrictions can be ↵-converted (AX

↵

), i.e. names of
assigned variables are irrelevant. Axioms (AX(x)) say that
they can also be swapped, i.e. assignments can happen in
any order, and removed, whenever restricted variables do
not appear in their scope.

The most important axiom is (AXSE): the intuition is
that, instead of assigning x when solving the whole p ∥ q,
the assignment can happen earlier, when solving p, if q

does not involve x. SCSP specifications without (AXSE)
are called hierarchical, because the order in which variables
are assigned w.r.t. subproblems cannot be changed.

We include permutations in the signature, that are oper-
ations representing bijective functions over variables. The
importance of permutations for representing signatures with
variables and variable binding has long been recognized.
We write p⇡ for the formal application of a permutation ⇡

to p. Permutations must respect the following axioms

p id = p (p⇡′)⇡ = p(⇡ ○ ⇡′) (AX
⇡

)

Moreover, they must distribute over all other operators,
explicitly

A(x1, . . . , xn

)⇡ = A(⇡(x1), . . . ,⇡(xn

))
nil⇡ = nil (p ∥ q)⇡ = p⇡ ∥ q⇡((x)p)⇡ = (x)p⇡ (AXp

⇡

)

where ⇡ always acts in a capture-avoiding way.
(Hierarchical) SCSP terms (or just terms), representing

a SCSP problem, are freely generated by the (hierarchical)
SCSP specification. Every non-hierarchical term has a
normal form, with all restrictions at the top level

(x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An

(x̃
n

)) ,

which can be obtained via structural congruence. A term
in normal form is intuitively closer to a typical SCSP: x̃

specifies which variables should be assigned, and the term
in its scope represents constraints and their connections.
Non-hierarchical terms also admit canonical forms, dual to
normal forms: every restriction (x) is as close as possible
to the atomic problems where x occurs. They are produced
by the repeated application of (AXSE) from left to right.
Notice that a term p may have more than one canonical
form, each of them being a hierarchical term. Choosing a
particular hierarchical term for a given SCSP corresponds
to identifying a solution of the secondary optimization
problem.

III. A MODEL OF OPTIMIZATION PROBLEMS

We want to apply the theory introduced so far to rep-
resent and solve optimization problems. Suppose we have
n constraints A1, . . . ,An

whose variables can be assigned
values in D, and we want to minimize a function of the
form �

1≤i≤n
A

i

(x̃
i

) (1)

where each A

i

(x̃
i

)∶D�x̃i� → R∞, for i = 1, . . . , n, gives a
cost to each variable assignment for the constraint A

i

; an
infinite cost represents a forbidden assignment.

The problem can be represented as the following term in
normal form

p = (x̃1) . . . (x̃n

)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An

(x̃
n

))

Problem made of two 
subproblems p and q 

Assignment for x is 
determined 

Atomic subproblem of a 
single constraint A 

Empty subproblem 
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terms up-to structural congruence are (hyper)graphs with hidden nodes:  
A(X) is a graph consisting of a single hyperedge and its nodes 

+ structural congruence: commutative monoidality of  ||  ,  α-conversion, 
swapping of restrictions + axioms of permutation algebra for nominal 
structure + scope extension: 

nodes replaced by the notion of support 
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of restricted variables and of freshness requirements in the
case of parametric occurrences of the same subproblem and
of recursion (e.g. for Datalog).

The analogy with process algebras is useful when provid-
ing a uniform language for supporting both the declarative
and the procedural parts of our approach. As already
mentioned, a first approximation of such a language is
CC-Pi [5], which combines concurrent constraint program-
ming and pi-calculus. Cc-pi is based on named constraint
semirings, which are equipped with a permutation algebra
structure. However, the restriction operator is not exploited
there for defining a hierarchical problem structure, as we
present here.

II. AN ALGEBRAIC SPECIFICATION FOR SCSPS

Let V = {x, y, . . .} a set of variables and C = {A,B, . . .}
a set of atomic constraints, equipped with an arity func-
tion ar ∶ C → N telling how many variables each con-
straint involves. We assume an empty constraint nil, with
ar(nil) = 0. The SCSP signature is given by the following
grammar

p, q ∶= p ∥ q � (x)p � A(x̃) � nil
where {x} ∪ x̃ ⊆ V and �x̃� = ar(A) (we overload the
notation x̃ to indicate both a vector and a set of variables).
Here:
● the parallel composition p ∥ q represents the problem

consisting of two subproblems p and q, possibly shar-
ing some variables;

● the restriction (x)p is p where the assignment for x

has already been determined;
● the atomic problem A(x̃) represents a problem that

only involves the constraint A over variables x̃;
● nil represents the empty problem.

We assume restriction has precedence over parallel com-
position. The variable x is said to be bound in (x)p. The
free variables of p, fv(p), are those variables that have an
occurrence in p that is not inside a subterm of p of the form(x)q.

We consider syntax up to the following structural con-
gruence

p ∥ q = q ∥ p (p ∥ q) ∥ r = p ∥ (q ∥ r)
p ∥ nil = p (AX∥)

(x)(y)p = (y)(x)p (x)nil = nil (AX(x))

(x)p = (y)p[x� y] y ∉ fv(p) (AX
↵

)
(x)(p ∥ q) = (x)p ∥ q x ∉ fv(q) (AXSE)

where [x � y] replaces each occurrence of y with x.
The operator ∥ forms a commutative monoid, meaning that
problems in parallel can be solved in any order (AX∥).
Restrictions can be ↵-converted (AX

↵

), i.e. names of
assigned variables are irrelevant. Axioms (AX(x)) say that
they can also be swapped, i.e. assignments can happen in
any order, and removed, whenever restricted variables do
not appear in their scope.

The most important axiom is (AXSE): the intuition is
that, instead of assigning x when solving the whole p ∥ q,
the assignment can happen earlier, when solving p, if q

does not involve x. SCSP specifications without (AXSE)
are called hierarchical, because the order in which variables
are assigned w.r.t. subproblems cannot be changed.

We include permutations in the signature, that are oper-
ations representing bijective functions over variables. The
importance of permutations for representing signatures with
variables and variable binding has long been recognized.
We write p⇡ for the formal application of a permutation ⇡

to p. Permutations must respect the following axioms

p id = p (p⇡′)⇡ = p(⇡ ○ ⇡′) (AX
⇡

)

Moreover, they must distribute over all other operators,
explicitly

A(x1, . . . , xn

)⇡ = A(⇡(x1), . . . ,⇡(xn

))
nil⇡ = nil (p ∥ q)⇡ = p⇡ ∥ q⇡((x)p)⇡ = (x)p⇡ (AXp

⇡

)

where ⇡ always acts in a capture-avoiding way.
(Hierarchical) SCSP terms (or just terms), representing

a SCSP problem, are freely generated by the (hierarchical)
SCSP specification. Every non-hierarchical term has a
normal form, with all restrictions at the top level

(x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An

(x̃
n

)) ,

which can be obtained via structural congruence. A term
in normal form is intuitively closer to a typical SCSP: x̃

specifies which variables should be assigned, and the term
in its scope represents constraints and their connections.
Non-hierarchical terms also admit canonical forms, dual to
normal forms: every restriction (x) is as close as possible
to the atomic problems where x occurs. They are produced
by the repeated application of (AXSE) from left to right.
Notice that a term p may have more than one canonical
form, each of them being a hierarchical term. Choosing a
particular hierarchical term for a given SCSP corresponds
to identifying a solution of the secondary optimization
problem.

III. A MODEL OF OPTIMIZATION PROBLEMS

We want to apply the theory introduced so far to rep-
resent and solve optimization problems. Suppose we have
n constraints A1, . . . ,An

whose variables can be assigned
values in D, and we want to minimize a function of the
form �

1≤i≤n
A

i

(x̃
i

) (1)

where each A

i

(x̃
i

)∶D�x̃i� → R∞, for i = 1, . . . , n, gives a
cost to each variable assignment for the constraint A

i

; an
infinite cost represents a forbidden assignment.

The problem can be represented as the following term in
normal form

p = (x̃1) . . . (x̃n

)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An

(x̃
n

))
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 Structural Recursion on Terms 

n  dynamic programming is structural recursion on terms 
§  graph operations => interpreted on discrete and continuous domains 

§  evaluation should not depend on the particular term, only on the graph 

§  many important practical applications  

n  evaluation of (x)p(X) depends on parameters X 
§  typically exponential in |X| 

§  total complexity is defined as the complexity of the worst restriction subterm 

n  complexity depends on which term in the equivalence class 

n  choosing the best term 
§  secondary optimization problem of dynamic programming 

§  NP complete 
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Secondary Optimization Problem 
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Normal form (x1)(x2)(x3)(A(x1,x2)||B(x2,x3))   complexity 3 

Canonical forms (x2)((x1)(A(x1,x2)||(x3)(B(x2,x3)))   complexity 2 
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of restricted variables and of freshness requirements in the
case of parametric occurrences of the same subproblem and
of recursion (e.g. for Datalog).

The analogy with process algebras is useful when provid-
ing a uniform language for supporting both the declarative
and the procedural parts of our approach. As already
mentioned, a first approximation of such a language is
CC-Pi [5], which combines concurrent constraint program-
ming and pi-calculus. Cc-pi is based on named constraint
semirings, which are equipped with a permutation algebra
structure. However, the restriction operator is not exploited
there for defining a hierarchical problem structure, as we
present here.

II. AN ALGEBRAIC SPECIFICATION FOR SCSPS

Let V = {x, y, . . .} a set of variables and C = {A,B, . . .}
a set of atomic constraints, equipped with an arity func-
tion ar ∶ C → N telling how many variables each con-
straint involves. We assume an empty constraint nil, with
ar(nil) = 0. The SCSP signature is given by the following
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notation x̃ to indicate both a vector and a set of variables).
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● the restriction (x)p is p where the assignment for x

has already been determined;
● the atomic problem A(x̃) represents a problem that

only involves the constraint A over variables x̃;
● nil represents the empty problem.

We assume restriction has precedence over parallel com-
position. The variable x is said to be bound in (x)p. The
free variables of p, fv(p), are those variables that have an
occurrence in p that is not inside a subterm of p of the form(x)q.
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↵

)
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where [x � y] replaces each occurrence of y with x.
The operator ∥ forms a commutative monoid, meaning that
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Restrictions can be ↵-converted (AX

↵

), i.e. names of
assigned variables are irrelevant. Axioms (AX(x)) say that
they can also be swapped, i.e. assignments can happen in
any order, and removed, whenever restricted variables do
not appear in their scope.

The most important axiom is (AXSE): the intuition is
that, instead of assigning x when solving the whole p ∥ q,
the assignment can happen earlier, when solving p, if q

does not involve x. SCSP specifications without (AXSE)
are called hierarchical, because the order in which variables
are assigned w.r.t. subproblems cannot be changed.

We include permutations in the signature, that are oper-
ations representing bijective functions over variables. The
importance of permutations for representing signatures with
variables and variable binding has long been recognized.
We write p⇡ for the formal application of a permutation ⇡

to p. Permutations must respect the following axioms

p id = p (p⇡′)⇡ = p(⇡ ○ ⇡′) (AX
⇡

)

Moreover, they must distribute over all other operators,
explicitly

A(x1, . . . , xn

)⇡ = A(⇡(x1), . . . ,⇡(xn

))
nil⇡ = nil (p ∥ q)⇡ = p⇡ ∥ q⇡((x)p)⇡ = (x)p⇡ (AXp

⇡

)

where ⇡ always acts in a capture-avoiding way.
(Hierarchical) SCSP terms (or just terms), representing

a SCSP problem, are freely generated by the (hierarchical)
SCSP specification. Every non-hierarchical term has a
normal form, with all restrictions at the top level

(x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An

(x̃
n

)) ,

which can be obtained via structural congruence. A term
in normal form is intuitively closer to a typical SCSP: x̃

specifies which variables should be assigned, and the term
in its scope represents constraints and their connections.
Non-hierarchical terms also admit canonical forms, dual to
normal forms: every restriction (x) is as close as possible
to the atomic problems where x occurs. They are produced
by the repeated application of (AXSE) from left to right.
Notice that a term p may have more than one canonical
form, each of them being a hierarchical term. Choosing a
particular hierarchical term for a given SCSP corresponds
to identifying a solution of the secondary optimization
problem.

III. A MODEL OF OPTIMIZATION PROBLEMS

We want to apply the theory introduced so far to rep-
resent and solve optimization problems. Suppose we have
n constraints A1, . . . ,An

whose variables can be assigned
values in D, and we want to minimize a function of the
form �

1≤i≤n
A

i

(x̃
i

) (1)

where each A

i

(x̃
i

)∶D�x̃i� → R∞, for i = 1, . . . , n, gives a
cost to each variable assignment for the constraint A

i

; an
infinite cost represents a forbidden assignment.

The problem can be represented as the following term in
normal form

p = (x̃1) . . . (x̃n

)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An

(x̃
n

))

Scope extension is key axiom allows us to choose the 
order of variable elimination 

Apply from left to right => assign variables as soon as you can 
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Canonical forms are local optima of SOP 

Reduced wrt  
scope extension 

Restrictions outside 



35 Seite 

An Example of Evaluation 

Ugo Montanari - IFIP WG2.2, Singapore, September 12-160916 

Connectivity of a social network 

•  Links with independent failure probability.  

•  Find the probability that a set of sites are fully connected 

•  The evaluation domain are the probability distributions on all the 
partitions of sites 

35  

The complexity of this families of wheels is logarithmic 
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General Description of Network Systems 
 
Part 2: PROPs and String Diagrams 

Ugo Montanari 
Dipartimento di Informatica, University of Pisa 
 

IFIP WG2.2, Singapore, September 12-16, 2016 



Roadmap 

PROPs and string diagrams 
•  bigraphs 

•  connector algebras for Petri nets with boundaries 
•  signal flow graphs 

networks are connected via series parallel composition 

the basic structure: symmetric monoidal categories 
•  sequential and parallel composition, permutation of wires 

•  additional connectors with axioms  

•  string diagrams, wire-and-box diagrams 

•  axiomatization = string diagram isomorphism 
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Roadmap 

PROPs and string diagrams 
•  bigraphs 

•  connector algebras for Petri nets with boundaries 
•  signal flow graphs 
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GS-‐‑monoidal  theory  over  ∑	

f є ∑v,w 
f : v →w є  GS(∑)	

(generators)	
s : v → w , t : v’ → w’  

s ⊗ t : v ⊗ v’ →w ⊗ w’ 
(tensor)	

v є S * 
idv : v → v 

(identities)	 s : v → w , t : w → u  
s ;t : v → u 

(composition)	

v є S * 
!v : v → ε 

(dischargers)	

40 

v є S * 
∇v : v → v ⊗ v 

(duplicators)	v,w є S * 
ρv,w : v ⊗ w → w ⊗ v 

(permutations)	

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	  

axiomatization of cartesian categories á la Lawvere  
without naturality axioms for duplicator and discharger 



GS-‐‑monoidal  theory  over  ∑  -‐‑  Axioms	
Ø   Arrows  and  pairing  operator  form  a  monoid:	

•  s ⊗ (t ⊗ r) = (s ⊗ t) ⊗ r •  s ⊗ idε = idε ⊗ s = s 
Ø   Categorical  axioms:	

•  s ; (t ; r) = (s ; t) ; r •  s ; idw = idv ; s = s 
Ø   Functoriality  axiom:	

•  (s ⊗ t)  ; (s’ ⊗ t’) = (s ; s’) ⊗ (t ; t’) 
Ø   Monoidality  axioms:	

•  idv ⊗w = idv ⊗ idw 

•  ∇v ⊗w = (∇v ⊗ ∇w ) ; (idv ⊗ ρv,w ⊗ idw) 

•  !v ⊗w = !v ⊗ !w 

•  ∇ε = !ε = ρε ,ε = idε 

Ø   Coherence  axioms:	
•  ∇v ; (idv ⊗ ∇v ) = ∇v ; (∇v ⊗ idv ) 

•  ∇v ; (idv ⊗  !v ) = idv 

•  ∇v ; ρv,v = ∇v 

Ø   Naturality  axiom:	
•  (s ⊗ t) ; ρv’,w’ = ρv,w ; (t ⊗ s) 

•  ρv ⊗w,u = (idv ⊗ ρw,u ) ; (ρv,u ⊗ idw) •  ρv,w ; ρw,v = idv ⊗w  

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	  
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Bigraphs,  as  the  name  suggests,  are  composed  by  two  independent  (hyper)graphs  on  the  
same  set  of  nodes:	

Place  Graph  -‐‑  Locality	 Link  Graph  -‐‑  Connectivity	

Introducing  Constituents	

v0 
v2 

v3 

v4 

v5 v1 

e0 

e1 
e2 

0	 1	

v3 
v5 

v4 
1	

v0 

v1 
v2 

0	

v0 v1 v4 
v2 

v3 v5 
42 
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Gs-graphs vs. bigraphs 

Top view vs. side view 

Reconciling bigraphs, gs-monoidal theories and gs-graphs 7

f g

h h

⌫

p1 p2 x3 x4

x5

p6

p7

p8 p9

x10

mercoledì 1 agosto 2012 (a) A gs-graph (b) A pure bigraph

Fig. 2. Di↵erent graphical models for the same structure

connections, ic(G), and outer connection, oc(G) are u and v, respectively, can be
regarded as an arrow G : u ! v. Then we can fix atomic gs-graphs for the basic
building blocks of gs-monoidal theories and define how to compose gs-graphs in
sequence G1;G2 and in parallel G1 ⌦ G2 (see Appendix A).

Example 2. The arrow e4 from Example 1 corresponds to the gs-graph G =
{ x5 := ⌫ , p6 := f(p1, x5) , p7 := g(p2, x5, x4) , p8 := h(p7, x3) , p9 :=
h(p7, x3) , x10 := x5 , !(p8) , !(p9) }.

2.2 From signatures to bigraphs

The separation between di↵erent concerns is made more explicit in bigraphs,
which are composed by two graphs, the place graph and the link graph, defined
on the same set of nodes. In the literature two main classes of bigraphs have
been developed: the pure bigraphs [12] and the binding bigraphs [17].

In pure bigraphs a node is not allowed to declare a local name, and the nodes
communicate using only their global ports.

Definition 5 (pure signature). A pure signature consists of a set K whose
elements, called controls, specify the role of system nodes and a function ar :
K ! N that assigns an arity to each control, i.e. the number of its ports.

A place graph is essentially a forest of unordered trees, and represents the
locality of the nodes, that is where they are placed in the hierarchy.

Definition 6 (place graph). Let K be a pure signature and m, n be a pair of
ordinals, then a place graph P : m ! n is a triple (VP , ctrlP , prntP ) where VP is
a finite set of nodes called the support of P (also denoted |P |), ctrlP : VP ! K
is the control map assigning a control to each node and prntP : m]VP ! VP ]n
is the parent map that describes the location of the nodes. The parent map is
acyclic in the sense that for each v 2 V prntk(v) = v implies k = 0.

Reconciling bigraphs, gs-monoidal theories and gs-graphs 7

(a) A gs-graph

z

0

x

y

f
0

h h

g

1

(b) A pure bigraph

Fig. 2. Di↵erent graphical models for the same structure

connections, ic(G), and outer connection, oc(G) are u and v, respectively, can be
regarded as an arrow G : u ! v. Then we can fix atomic gs-graphs for the basic
building blocks of gs-monoidal theories and define how to compose gs-graphs in
sequence G1;G2 and in parallel G1 ⌦ G2 (see Appendix A).

Example 2. The arrow e4 from Example 1 corresponds to the gs-graph G =
{ x5 := ⌫ , p6 := f(p1, x5) , p7 := g(p2, x5, x4) , p8 := h(p7, x3) , p9 :=
h(p7, x3) , x10 := x5 , !(p8) , !(p9) }.

2.2 From signatures to bigraphs

The separation between di↵erent concerns is made more explicit in bigraphs,
which are composed by two graphs, the place graph and the link graph, defined
on the same set of nodes. In the literature two main classes of bigraphs have
been developed: the pure bigraphs [12] and the binding bigraphs [17].

In pure bigraphs a node is not allowed to declare a local name, and the nodes
communicate using only their global ports.

Definition 5 (pure signature). A pure signature consists of a set K whose
elements, called controls, specify the role of system nodes and a function ar :
K ! N that assigns an arity to each control, i.e. the number of its ports.

A place graph is essentially a forest of unordered trees, and represents the
locality of the nodes, that is where they are placed in the hierarchy.

Definition 6 (place graph). Let K be a pure signature and m, n be a pair of
ordinals, then a place graph P : m ! n is a triple (VP , ctrlP , prntP ) where VP is
a finite set of nodes called the support of P (also denoted |P |), ctrlP : VP ! K
is the control map assigning a control to each node and prntP : m]VP ! VP ]n
is the parent map that describes the location of the nodes. The parent map is
acyclic in the sense that for each v 2 V prntk(v) = v implies k = 0.
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Gs-graphs vs. bigraphs 

•  They are almost the same: 
•  place and links graphs   vs.  ● and ○ typed nodes and wires 
•  controls   vs.   signature operations of the form K: ●○n → ● 

•  top view   vs.   side view 
•  restricted nodes   vs.   ν: ε → ○ always in the signature 

•  Main difference: the interfaces 
•  gs-graph: strings over the alphabet {●,○}* 

•  =>  assign a different name to each character in the string 
•  bigraphs: pairs made by an ordinal m and by a set of names X 

•  =>  make a list out of {0,…,m-1} ∪X 

•  Theorem:  Shuffled support-equivalent bigraphs over a pure 
signature K  are isomorphic to gs-graphs over K  with name choices. 

 
•  Lean bigraphs have no edges in the link graph attached to no node. 
•  Correspondingly, gs graphs must be equipped with the axiom   

  ν ; !○ = idε 
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Roadmap 

PROPs and string diagrams 
•  bigraphs 

•  connector algebras for Petri nets with boundaries 
•  signal flow graphs 
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A Basic Algebra of Stateless Connectors 

•  operational semantics 

•  equipped with a constraint-like denotational semantics 

•  complete axiomatization 

•  canonical representation 

•  most general combination of synchronization and nondeterminism 

•  Bruni, Lanese, Montanari TCS 2006 
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A Basic Algebra of Stateless Connectors 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	  

Configuration Configuration’ 
input 

output 
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A Basic Algebra of Stateless Connectors: Some Axioms 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	  



1-Safe Nets with Boundaries: Notation 

ordinary notation 
directed, left-to-right notation 
transitions disappear 

essentially basic connectors with one-place buffers 
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Nets with Boundaries: Composition 

Boundaries = attach points 
for transition fragments 

Composition = can combine 
multiple transitions 
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Petri Calculus: Strong Semantics 

Configuration Configuration’ 
input 

output 

one token arrives one token leaves 

Ordinary bisimilarity, when taking the string of inputs/outputs as label 

51	  Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	  

Basic stateless algebra plus 1-place buffers 



Configuration Configuration’ 
input 

output 

Both TkI2, TkO2 

Petri Calculus: Other Buffer Semantics 
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The Case of P/T Nets 

Configuration Configuration’ 
input 

output 
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Connector Algebra for Petri Nets 

•  most general combination of synchronization and nondeterminism, with buffers 

•  correspondence with BIP by Sifakis, REO by Arbab and Span(Graph) by Katis, 
Sabadini and Walters 

•  coalgebraic theory for F(X) = P(A x X) 

•  bialgebraic theory: operations preserve bisimilarity 

•  standard representatives of equivalence classes for finite Petri nets 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	   54	  



Roadmap 

PROPs and string diagrams 
•  bigraphs 

•  connector algebras for Petri nets with boundaries 
•  signal flow graphs 
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Signal Flow Graphs 

§  Foundations of control theory 

§  S. J. Mason. Feedback Theory: I. Some Properties of Signal Flow Graphs. 
Massachusetts Institute of Technology, Research Laboratory of Electronics, 
1953. 

§  Coalgebraic theory for F(X) = A x X 

§  J. J. M. M. Rutten. A tutorial on coinductive stream calculus and signal flow 
graphs, TCS, 2005. 

§  PROP treatment 

§  Bonchi, Sobocinski, Zanasi, A Categorical Semantics of Signal Flow Graphs, 
CONCUR 2014; Full Abstraction for Signal Flow Graphs, POPL 2015 

§  a sound and complete graphical theory of vector subspaces over the 
field of polynomial fractions, with relational composition 

§  buffers are derivatives in the operational calculus (e.g. via Laplace 
transforms) 

§  deterministic functional vs deadlock-prone relational 
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Electric Circuits 
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Electric Circuits 
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Signal Flow Graphs
Two examples:

1
0
0

1 2

1 3
1
2
3

2

-1
31

0
0

3
4

1
2
3

Both circuits implement the generating function

1
(1� x)2 = 1x+2x

2 +3x

3 + . . .

Can we check this statically?
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Electric Circuits 
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Electric Circuits 
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Electric Circuits 
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Linear Time-Invariant (LTI) Discrete Dynamical Systems. 

§  Fong, Sobocinski, Rapisarda, A Categorical Approach to Open 
and Interconnected  Dynamical Systems, LICS 2016 
§  biinfinite streams, i.e infinite past, no requirement of initial value 0 

§  Linear Time-Invariant (LTI) discrete dynamical systems as categories 
of corelations of matrices 

§  they are (interpreted) SMT 

§  an operational semantics which fully agrees with the denotational 
semantics 

§  no axiomatization at the moment 
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§ THE END 
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General Description of Network Systems 
 
Part 3: From Structured Graphs To Categories 

Ugo Montanari 
Dipartimento di Informatica, University of Pisa 
 

IFIP WG2.2, Singapore, September 12-16, 2016 



Roadmap 

From structured graphs to categories 
•  Petri nets 

•  rewriting logic 
•  Tiles 

From structured states to 

•  structured rewrite rules 

•  structured transition systems (graphs) 
•  structured models of computation (categories) 

with left adjoints which preserve colimits 
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Roadmap 

From structured graphs to categories 
•  Petri nets 

•  rewriting logic 
•  tiles 

Ugo	  Montanari	  -‐	  IFIP	  WG2.2,	  Singapore,	  September	  12-‐160916	   66	  



Petri Nets as an Algebra 

•  Petri nets are monoids 
–  Algebra of (concurrent) computations via the lifting of the 

monoidal structure of markings to steps and computations 
•  sequential composition “;” (of computations)  
•  plus identities (idle steps) 
•  plus parallel composition ⊕ (of markings, steps and computations)  
•  plus functoriality of ⊕ (concurrency!) 
•  leads to a (strictly) symmetric strict monoidal category of 

computations 

•  Collective Token Philosophy (CTPh) 
– T(_) (commutative processes) 

•  Individual Token Philosophy (ITPh) 
– P(_) (concatenable processes) 

Ugo Montanari - IFIP WG2.2, Singapore, September 12-160916 
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Collective vs. Token View 

Best-Devillers vs. Goltz-Reisig processes 
Ugo Montanari - IFIP WG2.2, 

Singapore, September 12-160916 
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The ITPh Story, I 

PTNets DecOcc 
U(_) 

(_)+ 

D(_) F(_) 
Sassone’s chain of adjunctions 

Safe Occ PES 

Winskel’s chain of coreflections 

U(_) E(_) 

N(_) 

L(_) 

Pr(_) 

Petri* SMonCat* PreOrd 

P(N) <u↓_> 

Dom 

(_)≡ 

Ugo Montanari - IFIP WG2.2, 
Singapore, September 12-160916 
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Pre-Nets 
•  Under the CTPh, the construction T(_) is 

completely satisfactory 
– T(_) is left adjoint to the forgetful functor from CMonCat⊕ 

to Petri 
– T(_) can be conveniently expressed at the level of 

(suitable) theories (e.g. in PMEqtl) 
•  But the CTPh does not model concurrency 
•  We argue that, under the ITPh, all the difficulties 

are due to the multiset (marking) view of states 
•  Pre-nets are the natural implementation of P/T nets 

under the ITPh 
–  pre-sets and post-sets are strings, not multisets! 
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Pre-Nets 

•  Under the ITPh, the construction Z(_) is 
completely satisfactory 
– Z(_) is left adjoint to the forgetful functor from 

SMonCat⊗ to PreNets 
– Z(_) can be conveniently expressed at the level 

of (suitable) theories (e.g. in PMEqtl) 
– All the pre-nets implementations R of the same 

P/T net N have isomorphic Z(R) 
– P(N) can be recovered from (any) Z(R) 

PreNets SMonCat⊗ 
Z(_) 

G(_) 
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Other Left Adjoint Constructions 

Quite similar developments: 

•  Term rewriting (2-categories), Jose Meseguer 

•  Logic programming (double categories), Andrea 
Corradini 

•  Graphs (DPO / SPO), Paolo Baldan, Andrea 
Corradini, Leila Ribeiro 

•  Process Calculi (Tiles, monoidal double categories), 
Fabio Gadducci, Roberto Bruni 
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Roadmap 

From strucured graphs to categories 
•  Petri nets 

•  rewriting logic 
•  tiles 
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RL & 2-Computads 
•  Main Ingredients of Rewriting Logic: 

–  Signature Σ of system configurations 
–  Structural axioms E 
–  Rewrite rules over [t]E 

•  Categorically: 
–  States form a cartesian category LΣ,E –the Lawvere 

Theory associated with (Σ,E) 
•  natural number as objects 
•  substitutions as arrows 
•  composition = substitution application 

–  Proof terms form a cartesian 2-category 
•  2-Computad 

–  Rewrite rules over the arrows of C 
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Theory and Applications of RL 
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11th International Workshop on Rewriting Logic and its 
Applications 
Eindhoven, 2016 
 
20th anniversary since its first edition in Asilomar, 
California, in 1996. 



Theory and Applications of RL 
•  Foundations 

–  termination, confluence, narrowing, partial evaluation, rewriting strategies 
–  graph rewriting 
–  rewriting-based calculi and explicit substitution 

•  Rewriting as a Logical and Semantic Framework 
–  programming language semantics, concurrency models, distributed systems real-time, hybrid, 

and probabilistic systems 
•  Rewriting Languages 

–  rewriting-based declarative languages 
–  implementation techniques 
–  tools supporting rewriting languages 

•  Verification Techniques 
–  temporal, modal and reachability logics for dynamic properties of rewrite theories 
–  rewriting-based theorem proving, including (co)inductive theorem proving 

•  constraint solving and satisfiability 
•  verification and analysis of programs 

•  Applications 
–  applications in logic, mathematics and physics 
–  rewriting models of biology, chemistry, and membrane systems 
–  security specification and verification 
–  specification and verification of critical systems 
–  applications to model-based software engineering 
–  applications to engineering and planning 
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Roadmap 

From strucured graphs to categories 
•  Petri nets 

•  rewriting logic 
•  tiles 
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Tiles, Logically 
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Tiles, Categorically

●  Double Monoidal Category
–  Objects, horizontal arrows, vertical arrows and cells

–  Horizontal 1-category: objects and horizontal arrows
–  Vertical 1-category: objects and vertical arrows

–  Horizontal 2-category: vertical arrows and cells

–  Vertical 2-category: horizontal arrows and cells

●  Monoidal operation on objects, horizontal arrows, vertical arrows and 
cells

●  Any two operations of vertical, horizontal and monoidal structure 
commute, e.g.
–  vs(hs(A) = hs(vs(A))

–  (A ;h B) ;v (C ;h D) = (A ;v C) ;h (B ;v D) exchange law
–  (A ;h B) x (C ;h D) = (A x C) ;h (B x D)
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Axiomatization of Double Categories in PMEqtl
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TL & D-Computads 
•  Main Ingredients of Tile Logic: 

–  (ΣH,EH): system configurations 
–  (ΣV,EV): Observations 

– Tiles:  α: [p]EH → → → [q]EH 

•  D-Computad 
– Monoidal category of configurations H 
– Monoidal category of observations V 
– Tiles over the arrows of H and V 

[u]EV 

[v]EV 
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RL & TL 

•  In (Unconditional) RL: 
–  Rewrites α: f(x)⇒g(x) can be applied  

•  in any context C[.]:  C[α(x)]: C[f(x)] ⇒C[g(x)]  
•  with any argument p(y):  α(p(y)): f(p(y)) ⇒g(p(y))  

–  Horizontal composition is total 

•  In TL: 
–  Rewrites are synchronized via observations 

– applicable in context if C accept the effect of α  
– applicable with argument p if it provides the trigger 

–  Horizontal composition is partial 

p 
f 

g 

C α 

p f 

g 

C 
α 
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Tiles
●  Foundations

–  Double monoidal categories
–  Generalization of string diagrams
–  Abstract bisimulation semantics
–  Bisimulation as a congruence
–  Simply typed double λ-calculus & double cartesian closed 

categories
●  Applications

–  Process algebras
–  Open process algebras
–  Synchronized hyperedge replacement
–  Concurrent systems
–  Logic programming
–  Open systems
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Tile Generalization of String Diagrams

●  an example about located processes
●  Fresh locations are labeled by fresh 

location identifiers  λ
●  if two processes share the same 

location and one of them creates a 
fresh location

●  then its subprocesses will be placed 
on the new location, 

●  whereas the other process will 
remain linked to the old location.
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Roadmap 

Networks 
•  Milner flowgraph algebras 

•  Denotational process algebras 

•  (Soft) constraint networks 

•  Networks as components & connectors 
•  Petri nets 

•  Signal flow graphs 

•  Electric circuits 

•  PROPS: product permutation categories 

•  From graphs to categories 
•  Petri nets 

•  Rewriting logic 

•  Process calculi 

•  Conclusions 
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Conclusion 

§  Towards a general theory of networks: 
§  John Baez, Caltech 

§  Additional kinds of networks 
§  Electric circuits 
§  Neural networks 
§  Bayesian networks: recent work by Bart Jacobs and Fabio Zanasi 
§  Proof nets 
§  Feynman diagrams 

§  Additional views 
§  nondeterministic, concurrent, probabilistic, stochastic, quantum, combined 

§  Additional interpreted domains 
§  Cyberphysical systems 
§  Hardware and software architectures 
§  Heterogeneous systems 
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§ THE END 
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