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Collective Systems

We are surrounded by examples of collective systems:
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed as
being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective behaviour.
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Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of the
individual entities.

And the behaviour of the individuals will be influenced by the state of the
overall system.
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Collective Adaptive Systems

CAS are often embedded in our environment and need to operate without
centralised control or direction.

Moreover when conditions within the system change it may not be feasible
to have human intervention to adjust behaviour appropriately.

Thus systems must be able to autonomously adapt.
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Challenges for modelling CAS

Works on Process Algebra provide a solid basic framework for modelling
CAS but there remain a number of challenges:

Richer forms of interaction

Capturing adaptivity

The influence of environment on behaviour
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Modelling and analysis of CAS

Our goal is to develop a coherent, integrated set of linguistic primitives,
methods and tools to build systems that can operate in open-ended,
unpredictable environments.

In this talk:

1 attribute based communication for modelling interactions in CAS;

2 Carma: a language for modelling CAS;

3 a simple example.
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Attribute-based communication

Abd Alrahman et al.1 presented a general theory for attribute based
communication:

AbC, a calculus for attribute-based communication;

encoding of classical interaction patterns via attribute based
communications;

a behavioural theory for AbC.

This work is focussed on qualitative aspects of CAS. In this talk we will
focus on quantitative aspects.

1Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. “On the Power of
Attribute-Based Communication”. In: FORTE 2016, Proceedings. Ed. by Elvira Albert
and Ivan Lanese. Vol. 9688. Lecture Notes in Computer Science. Springer, 2016,
pp. 1–18.
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Interaction patterns in CAS

Typically, CAS exhibit two kinds of interaction pattern:

1 Spreading: one agent spreads relevant information to a given group
of other agents

2 Collecting: one agent changes its behaviour according to data
collected from one agent belonging to a given group of agents.

Spreading: 1-to-many Collecting: 1-to-1
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Interaction primitives for CAS

The following interaction primitives, all based on attribute oriented
communication, can be considered for CAS:

Broadcast output: a message is sent to all the components
satisfying a predicate π;

Broadcast input: a process is willing to receive a broadcast message
from a component satisfying a predicate π;

Unicast output: a message is sent to one of the components
satisfying a predicate π;

Unicast input: a process is willing to receive a message from a
component satisfying a predicate π.
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Carma: a process specification language for CAS

To support design of CAS we introduced Carma2 (Collective Adaptive
Resource-sharing Markovian Agents). This is a process specification
language which handles:

1 The behaviours of agents and their interactions;

2 The global knowledge of the system and that of its agents;

3 The environment where agents operate. . .

taking into account open ended-ness and adaptation;
taking into account resources, locations and visibility/reachability
issues.

In Carma the execution of an action takes an exponentially distributed
time; the rate of each action is determined by the environment.

2Michele Loreti and Jane Hillston. “Modelling and Analysis of Collective Adaptive
Systems with CARMA and its Tools”. In: SFM 2016. Vol. 9700. Lecture Notes in
Computer Science. Springer, 2016, pp. 83–119.
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CAS: Carma perspective

Collective

Environment Attributes
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CARMA

A Carma system consists of

a collective (N). . .

. . . operating in an environment (E ).

Collective. . .

is composed by a set of components, i.e. the Markovian agents that
compete and/or cooperate to achieve a set of given tasks

models the behavioural part of a system

Environment. . .

models the rules intrinsic to the context where agents operate;

mediates and regulates agent interactions.
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Components

Agents in Carma are defined as components C of the form (P,γ)
where. . .

P is a process, representing agent behaviour;

γ is a store, modelling agent knowledge.

Process Syntax:

P,Q ::= nil | act.P | P +Q | P | Q | [π]P | kill | A

Store γ is a mapping from attribute names to values.
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Interaction primitives
Syntax

act ::= α?[π]〈−→e 〉σ Broadcast output

| α?[π](−→x )σ Broadcast input

| α [π]〈−→e 〉σ Unicast output

| α [π](−→x )σ Unicast input

α is an action type;

π is a predicate;

σ is the effect of the action on the store.
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Updating the store

After the execution of an action, a process can update the component
store:

σ denotes a function mapping each γ to a probability distribution
over possible stores.

move?[π]〈v〉{x := x +U(−1,+1)}

Remark:

Processes running in the same component can implicitly interact via
the local store;

Updates are instantaneous.
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More on synchronisation

Predicates regulating broadcast/unicast inputs can refer also to the
received values.

Example:

A value greater than 0 is expected from a component with a trust level
less than 3:

α
?[(x > 0)∧ (trust level < 3)](x)σ .P

Pattern matching can be encoded in Carma.

Michele Loreti (UniFi) Modelling and analysis of CAS IFIP WG 2.2 18 / 34
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Examples of interactions. . .

Broadcast synchronisation:

( stop?[bl < 5%]〈v〉σ1.P ,{role = “master”}) ‖
( stop?[role = “master”](x)σ2 .Q1 ,{bl = 4%}) ‖

( stop?[role = “super”](x)σ3.Q2 ,{bl = 2%}) ‖
( stop?[>](x)σ4.Q3 ,{bl = 2%})

⇓

(P,σ1({role = “master”})) ‖
(Q1[v/x ],σ2({bl = 4%})) ‖

(stop?[role = “super”](x)σ3.Q2,{bl = 2%}) ‖
(Q3[v/x ],σ4({bl = 2%}))
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Modelling the environment

Interactions between components can be affected by the environment:

a wall can inhibit wireless interactions;

two components are too distant to interact;

. . .

The environment. . .

is used to model the intrinsic rules that govern the physical context;

consists of a pair (γ,ρ):

a global store γ, that models the overall state of the system;
an evolution rule ρ that regulates component interactions (receiving
probabilities, action rates,. . . ).
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The evolution rule

It is assumed that all actions in Carma take some time complete and
that this duration is governed by an exponential distribution.

However the action descriptions do not include any information about the
timing (unlike many other stochastic process algebras).

We also do not assume perfect communication, i.e. there may be a
probability that an interaction will fail to complete even between
components with appropriately match attributes.

The environment manages these aspects of system behaviour, and others
in the evolution rule.
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The evolution rule ρ

ρ is a function, dependent on current time, the global store and the
current state of the collective, returns a tuple of functions
ε = 〈µp,µw ,µr ,µu〉 known as the evaluation context

µp(γs ,γr ,α): the probability that a component with store γr can
receive a broadcast message α from a component with store γs ;

µw (γs ,γr ,α): the weight to be used to compute the probability that a
component with store γr can receive a unicast message α from a
component with store γs ;

µr (γs ,α) computes the execution rate of action α executed at a
component with store γs ;

µu(γs ,α) determines the updates on the environment (global store
and collective) induced by the execution of action α at a component
with store γs .
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Carma Operational Semantics

The operational semantics of Carma specifications is defined in terms of
three functions that compute the possible next states of a component, a
collective and a system:

1 the function C that describes the behaviour of a single component;

2 the function Nε builds on C to describe the behaviour of collectives;

3 the function St that shows how Carma systems evolve.
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Quantitative Analysis

The semantics of carma gives rise to a Continuous Time Markov Chain
(CTMC).

This can be analysed by

by numerical analysis of the CTMC for small systems;

by stochastic simulation of the CTMC;

by fluid approximation of the CTMC under certain restrictions
(particularly on the environment).
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A running example. . .

Bike Sharing System. . .

We want to use Carma to model a bike sharing system where:

bikes are made available in a number of stations that are placed in
various areas of a city;

Users that plan to use a bike for a short trip

can pick up a bike at a suitable origin station
return it to any other station close to their planned destination.

we assume that the city is partitioned in homogeneous zones. . .

and that all the stations in the same zone can be equivalently used by
any user in that zone.
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CaSL: Component Prototypes
The BSS scenario. . .

Two kinds of components, one for each of the two groups of agents
involved in our BSS, can be considered:

parking stations;

users.

PS attributes:

zone: indicates where the
station is located;

capacity: the number of slots
installed in the station;

available: the number of
available bikes.

User attributes:

zone: current user location;

dest: user destination.
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The Carma Eclipse Plug-in

http://quanticol.sourceforge.net/
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CaSL: BSS Analysis

In this scenario the use of stations is not well balanced!
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CaSL: an alternative model for BSS

To overcome this problem we can consider a model where stations located
at the same zone do not compete but cooperate.

We consider a variant of stations that, when located at the same zone,
interact to avoid unbalanced use of resources.

Each station can use broadcast to advertise other agents about the use of
resources!
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CaSL: modified BSS model Analysis
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Concluding remarks

Collective Systems are an interesting and challenging class of systems
to design and construct.

Their role within infrastructure, such as within smart cities, make it
essential that quantitative aspects of behaviour are taken into
consideration, as well as functional correctness.

The complexity of these systems poses challenges both for model
construction and model analysis.

carma aims to address many of these challenges, supporting rich
forms of interaction, using attributes to capture explicit locations and
the environment to allow adaptivity.
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