
Using Graph Decompositions to
Verify Concurrent Recursive Programs

K Narayan Kumar

Chennai Mathematical Institute, India.

IMS, Singapore, September 2016

Concurrent Recursive Programs

Variables range over finite domains

Functions can be recursive

Multi-threaded or
Distributed

Modeling Recursion

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

a

b

c

a,c

b

Recursive Programs are
Pushdown Systems

Modeling Recursion …
func f1

{while <true>
{call f1 OR

a OR
exit;}
return;}

func f2
{while <true>
{call f2 OR

a OR
exit;}
return;}

func f3
{while <true>
{call f3 OR

a OR
exit;}

return;}
a

b

c

a,c

b

Multi-threaded Programs are

Multi-Pushdown Systems

Concurrent Communicating Programs

Queue 1

Queue 2

Queue 5

Queue 6

Process 1 Process 2 Process 3

Queue 4

Queue 3

Queues to model
communication channels

Unordered Channels

Queue 2

Process 1 Process 2

Bags to model unordered

communication channels

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

System: Concurrent Processes with Data-Structures

System: An Example

onoff
c1!ac1!b

c2!ac2!b

c1?ac1?b

c3!ac3!b

p

q2

r

q1
c1 c3

c2 c4

Behaviours as Graphs

Message Sequence Charts

Graphs for Sequential Systems
q

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Nested Words

Alur, Madhusudan, 2009

Graphs for Multi-threaded Systems

q

Multiply Nested Words

Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

A linear order (or path) for each process
Edges labeled with data structures

p

q

Concurrent Behaviour with Matching (CBM)

a a b c d

b a c d c

d1

d3

d4

d3 d2

A linear order (or path) for each process
Edges labeled with data structures

p

q

Communication edges form a matching
Edge labelled d relates the writer and reader of d
Edges follow the discipline of the data structure

LIFO/FIFO/Bag

Specification over CBMs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y

| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

MSO: Monadic Second Order Logic

Specification over CBMs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y

| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

MSO: Monadic Second Order Logic

Does it obey the latest order?

Behaviours as Graphs…

Does it obey the latest order?

Behaviours as Graphs…

Obey the latest order

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

FO

r

p

Obey the latest order

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

FO

r

p

Obey the latest order

not expressible

in MSO over Linear Traces

Verification problems

Emptiness or Reachability

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Verification problems

Emptiness or Reachability

Satisfiability φ: Is there a CBM that satisfies φ?

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logicundecidable in general

Under-approximate Verification

C: class of
behaviors

Satisfiability problem:

Is φ satisfiable in C?

φ: Specification

Under-approximate Verification

C: class of
behaviors

Model checking problem: S ⊨C φ

Do all behaviors from C accepted
by S satisfy φ?

S: System

φ: Specification

Decidable Under-approximate Verification

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al]

…

Decidable Under-approximate Verification

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al]

…

Reduction to MSO/
Automata over trees.

Bounded-phase to Tree-width

Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan
University of Illinois at Urbana-Champaign, USA

madhu@illinois.edu

Gennaro Parlato
LIAFA, CNRS and University of Paris Diderot, France.

gennaro@liafa.jussieu.fr

Abstract
We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-state graph automata (without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as well as proving
new decidability results.

Categories and Subject Descriptors F.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction
Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem. Clas-
sic models like pushdown automata utilizing a stack have a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated for model-checking systems. Software models can be
captured using automata with auxiliary storage, as stacks can
model the control recursion in programs while queues model FIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models using predicate abstraction [7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

However, the various identified decidable restrictions on these
automata are, for the most part, awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restricted to
the first non-empty stack is decidable! [8]. Yet, relaxing these
definitions to more natural ones seems to either destroy decidability
or their power. It is hence natural to ask: why do these automata
have decidable emptiness problems? Is there a common underlying
principle that explains their decidability?

We propose, in this paper, a general criterion that uniformly
explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated by graph
automata working on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability of satisfiability of monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph au-
tomata on MSO-definable graphs of bounded tree-width are decid-
able. Graph automata [24] are finite-state automata (without auxil-
iary storage) that accept or reject graphs using tilings of the graph
using states, where the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptiness of graph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributed automata
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized as graph automata working on single
or multiple directed paths augmented with special edges to capture
the mechanism of the storage. Intuitively, a symbol that gets stored
in a stack/queue and later gets retrieved can be simulated by a
graph automaton working on a graph where there is a special edge
between the point where the symbol gets stored to the point where
it gets retrieved. A graph automaton can retrieve the symbol at the
retrieval point by using an appropriate tiling of this special edge.

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that it allows
us to examine the complexity of storage using the structure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph automata
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-switching:
This is the class of multi-stack automata where each computa-

tion of the automaton can be divided into k stages, where in each
stage the automaton touches only one stack (proved decidable first
in [22]). We show that they can be simulated by graph automata on
graphs of tree-width O(k).

Tree-width bounds for other Under-approximations

Why Tree-width?

Corollary to Seese’s Theorem:
If C is any MSO definable family of graphs then, for any
k, checking MSO satisfiability among graphs in C with
tree-width at most k is decidable.

Why Tree-width?

Corollary to Seese’s Theorem:
If C is any MSO definable family of graphs then, for any
k, checking MSO satisfiability among graphs in C with
tree-width at most k is decidable.

 Interpretation over trees.

encyclopedia of mathematics and its applications

Graph Structure and
Monadic Second-Order Logic

A Language-Theoretic Approach

BRUNO COURCELLE

Université de Bordeaux

JOOST ENGELFRIET

Universiteit Leiden

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

a

b b

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

c

b

a

b b

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

c

b

Disjoint union

a

b b

Co-graphs: An example

Family of graphs generated by the following algebra:

 G ::= a ϵ ∑ | G ⊕ G | G ⊗ G

a

Single vertex
labelled a

c

b

Disjoint union

a

b b

c

b

Disjoint union and
connect all pairs

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Vertices of the graph
correspond to leaves
of the expression tree.

Co-graphs to Trees
Every co-graph has an expression generating it.

a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Vertices of the graph
correspond to leaves
of the expression tree.

Edges are introduced by ⊗ nodes between leaves in its
two subtrees

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

Interpretation on Trees
a

b b

c

b
((b ⊕ b) ⊗ a) ⊗ (b ⊗ c)

⊗

⊗ ⊗

⊕ b ca

bb

Graph Tree

There is a vertex x There is a leaf x

There is a set of vertices X There is a set of leaves X

a(x) a(x)

E(x,y) There is path from x to y
whose highest node is a ⊗

 MSO Theory of Co-graphs is decidable

Advantages of the algebraic approach

Advantages of the algebraic approach

* Are all paths co-graphs?
* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?
* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗ or ⊕
* What labels the root?

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

1 3

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

1 3

No vertex with degree 3!

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

2 2

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

2 2

No 2 x 2 perfect matching!

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

* Membership checking

Advantages of the algebraic approach

* Are all paths co-graphs?

⊗

* What labels the root?

The path of length 3 is not a co-graph

* Membership checking

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

The class is clearly MSO definable.

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Is the MSO theory of C decidable?

The class is clearly MSO definable.

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

⊗

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

⊗

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

⊗

⊗

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

⊗

⊗

⊕

⊕

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Size one graphs in C are co-graphs.

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Size one graphs in C are co-graphs.

Case 1: If the graph is not connected then we
inductively construct expressions for each part.

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Size one graphs in C are co-graphs.

Case 1: If the graph is not connected then we
inductively construct expressions for each part.

Case 2: If the graph is connected. ⊗ at the top.

Using the Co-graph Algebra
Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Size one graphs in C are co-graphs.

Case 1: If the graph is not connected then we
inductively construct expressions for each part.

Case 2: If the graph is connected. ⊗ at the top.

Divide it into two parts so that the complete
bipartite graph on the division is a subgraph

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

Using the Co-graph Algebra

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.

Using the Co-graph Algebra

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.
v be the closest vertex that is not a neighbour

Using the Co-graph Algebra

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.
v be the closest vertex that is not a neighbour

 Then

u vp

Using the Co-graph Algebra

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.
v be the closest vertex that is not a neighbour

 Then

u vp

N(u) ⊇ N(p) and so v in N(p).

Using the Co-graph Algebra

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.
v be the closest vertex that is not a neighbour

 Then

u vp

N(u) ⊇ N(p) and so v in N(p).

u is a neighbour of every vertex in G

⊗

u G - {u}

Using the Co-graph Algebra

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.
v be the closest vertex that is not a neighbour

 Then

u vp

N(u) ⊇ N(p) and so v in N(p).

u is a neighbour of every vertex in G

⊗

u G - {u}

Using the Co-graph Algebra

Every graph in C is a co-graph. MSO theory of

C is decidable

Let C = { G | {u,v} is an edge then N(u) ⊆N(v) or N(v)⊆N(u) }

Case 2: If the graph is connected. ⊗ at the top.

u be a maximal degree vertex.
v be the closest vertex that is not a neighbour

 Then

u vp

N(u) ⊇ N(p) and so v in N(p).

u is a neighbour of every vertex in G

⊗

u G - {u}

Using the Co-graph Algebra

MSO theory of quasi-threshold graphs is

decidable.

Advantages of the algebraic approach

* The tree interpretation is quite transparent.

* Helps in establishing membership/containment in class.

Advantages of the algebraic approach

* The tree interpretation is quite transparent.

* Helps in establishing membership/containment in class.

* Fewer operators might help.

* For quasi-threshold graphs, our search was guided
 by the limited set of operations available.

Split-width
A way to decompose graphs to obtain a tree interpretation.

Specifically designed for CBMs

CBMs have bounded degree

Let C be MSO definable class of CBMs
TFAE
1. C has a decidable MSO theory
2. C can be interpreted in binary trees
3. C has bounded tree-width
4. C has bounded clique-width
5. C has bounded split-width

Split-width Operations
The Cut Operation:

Pick a set of process edges and delete them.

Split-width Operations
The Cut Operation:

Pick a set of process edges and delete them.

Split-width Operations
The Cut Operation:

Split CBM with 3 holes

Pick a set of process edges and delete them.

Split-width Operations
The Cut Operation:

Pick a set of process edges and delete them.

Split-width Operations
The Cut Operation:

Pick a set of process edges and delete them.

Split-width Operations
The Cut Operation:

Pick a set of process edges and delete them.

Split CBM with 4 holes

Split-width Operations
The Split Operation:

Separate out two disconnected parts into 2 split-CBMs

Split-width Operations
The Split Operation:

Separate out two disconnected parts into 2 split-CBMs

Split-width Operations
The Split Operation:

Separate out two disconnected parts into 2 split-CBMs

Split-width Operations
The Split Operation:

Separate out two disconnected parts into 2 split-CBMs

The Basic Split CBMs
An Internal event:

A Communication edge:

a a b c d

b a c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

a a

b c d c

a a b c d

b a c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

SPLIT DECOMPOSITION OF CBMs

b c d

a

b dc

a

SPLIT DECOMPOSITION OF CBMs

b dc

a

SPLIT DECOMPOSITION OF CBMs

b dc

a

SPLIT DECOMPOSITION OF CBMs

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1
SPLIT TREE

OF THE FULL DECOMPOSITION

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1
SPLIT TREE

OF THE FULL DECOMPOSITION

3 holes

3 holes 2 holes

2 holes

1 hole

1 hole 1 hole

Split-width
The width of a decomposition is the maximum number of
holes in any split-CBM in the decomposition.

Split-width of a CBM is the minimum of the widths of its
decompositions.

Split-width
The width of a decomposition is the maximum number of
holes in any split-CBM in the decomposition.

Split-width of a CBM is the minimum of the widths of its
decompositions.

a a b c d

b a c d c

A CBM with split-width = 3

Split-width
The width of a decomposition is the maximum number of
holes in any split-CBM in the decomposition.

Split-width of a CBM is the minimum of the widths of its
decompositions.

a a b c d

b a c d c

A CBM with split-width = 3

Split-width of a set of CBMs is the maximum of their split-
widths

Split-width of nested words
The class of nested words has split-width bounded by 2

Split-width of nested words
The class of nested words has split-width bounded by 2

Split-width of nested words
The class of nested words has split-width bounded by 2

2 holes

A Basic Split

Split-width of nested words
The class of nested words has split-width bounded by 2

Split-width of nested words
The class of nested words has split-width bounded by 2

Split-width of nested words
The class of nested words has split-width bounded by 2

1 hole

Split-width of nested words
The class of nested words has split-width bounded by 2

Bounded-context Runs

Bounded-context Runs

Bounded-context Runs

Bounded-context Runs

Bounded-context Runs

A k context CBM has split-width k+1

Existentially k bounded MSCs

There is a linearisation where no channel contains more than k
values at any point along the linearization.

Existentially k bounded MSCs

There is a linearisation where no channel contains more than k
values at any point along the linearization.

Existentially k bounded MSCs

There is a linearisation where no channel contains more than k
values at any point along the linearization.

An existentially 1 bounded behaviour.

Existentially k bounded MSCs

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

a 2-bounded sequentialisation

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

1

2 3 5

4 6

7

8 9

10 11

12 13

14

Cut process edges from the first k+1 events in the k bounded
sequentialisation.
Remove message edges, internal events that can be.
Expand to have k+1 events and repeat this process.

A k existentially bounded MSC/CBM has split-
width k+1

Bounded Scope Behaviours

Between any call and the corresponding return there are
 at most k context-switches LaTorreNapoli’11

Bounded Scope Behaviours

Between any call and the corresponding return there are
 at most k context-switches

a 5 scope bounded cbm

LaTorreNapoli’11

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

Cut this call-return pair. Remove.

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

Cut this call-return pair. Remove.

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

The called context is left with a hole.

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

The called context is left with a hole.

No green nesting edge crosses the hole

Bounded Scope Behaviours
Between any call and the corresponding return there are

 at most k context-switches

1 2 3 k

The called context is left with a hole.

Bounded Scope Behaviours

j j+1 j+2 j+k

Maintaining invariantly that
* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context …
 we will show that we can remove one more edge.

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

Target is before the hole (if any) in that context.

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

Target is before the hole. Between the target and hole
is a nested word.

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

Cut and remove nested word to expand the hole

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

Cut and remove nested word to expand the hole

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

If there is a hole: Cut and remove the nesting edge
 maintaining the invariant

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

If there is a hole: Cut and remove the nesting edge
 maintaining the invariant

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

If there is a hole: Cut and remove the nesting edge
 maintaining the invariant

Bounded Scope Behaviours

j j+1 j+2 j+k

* we have at most 1 hole each in the first k contexts
* no green edge crosses a hole in a green context

If there is a hole: Cut and remove the nesting edge
 maintaining the invariant

Existentially Bounded MSCs
The class of MSCs that are existentially k bounded
have split-width k+1
Existentially k-bounded MSCs form an MSO
definable class (GenKusMus07)

Theorem: (GenKusMus07)
1. MSO theory of existentially k bounded MSCs is

decidable.
2. MSO model checking for Message Passing Automata

w.r.t existentially k-bounded behaviours is decidable.

Bounded Scope Behaviours
The class of MNWs with scope bound k has split-
width k+1
k bounded-scope MNWs is MSO expressible.

Theorem:
1. MSO theory of k scope-bound MNWs is decidable.
2. MSO model checking for MPDS w.r.t k scope-

bounded behaviours is decidable.

Split-width: parametrized verification
C. Aiswarya, and P. Gastin 17

Problem
Complexity

bound on split-width
part of the input (in
unary)

bound on split-width
fixed

CPDS emptiness ExpTime-Complete PTime-Complete
CPDS inclusion or universality 2ExpTime ExpTime-Complete
LTL / CPDL satisfiability or model checking ExpTime-Complete
ICPDL satisfiability or model checking 2ExpTime -Complete
MSO satisfiability or model checking Non-elementary
Table 2 Summary of the complexities for bounded split-width verification.

Now, let Ï be a sentence in MSO(A, �). Using the MSO interpretation (�
valid

, �
vertex

,

(�a)aœ�

, (�p)pœProcs

, (�d)dœDS

, �æ) for k-bounded split-width, we can construct a formula Ï

k

from Ï such that for all trees t œ STk
valid

, we have t |= Ï

k if and only if cbm(t) |= Ï. By [31],
from the MSO formula Ï

k we can construct an equivalent tree automaton Ak
Ï. Therefore, the

satisfiability problem for the MSO formula Ï restricted to CBMk
split

reduces to the emptiness
problem of the tree automaton Ak

valid

fl Ak
Ï.

Finally, we deduce easily that L
cbm

(S) fl CBMk
split

™ L
cbm

(Ï) if and only if for all trees t

accepted by Ak
S we have t |= Ï

k. Therefore, the model checking problem S |= Ï restricted to
CBMk

split

reduces to the emptiness problem for the tree automaton Ak
valid

fl Ak
S fl Ak

¬Ï.
We have described above uniform decision procedures for an array of verification problems.

We refer to [2, 15,16] for more details and we summarise the computational complexities of
these procedures in Table 2.

Verification procedures for other under-approximation classes. Our approach is generic in
yet another sense. Under-approximation classes which admit a bound on split-width also
may benefit from the uniform decision procedures described above, provided these classes
correspond to regular sets of split-terms.

More precisely, let Cm be an under-approximation class with Cm ™ CBMk
split

. For instance,
we have seen that existentially m-bounded CBMs have split-width at most k = m + 1 (Ex. 6)
and m-bounded phase MNWs have split-width at most k = 2m (Ex. 7). Assume that we can
construct3 a tree automaton Ak

Cm
which accepts a tree t œ STk

valid

if and only if cbm(t) œ Cm.
Then, the decision procedures can be restricted to the class Cm with a further intersection
with the tree automaton Ak

Cm
. For instance, the emptiness problem for S restricted to Cm

reduces to the emptiness problem of Ak
valid

fl Ak
Cm

fl Ak
S . The model checking problem S |= Ï

restricted to Cm reduces to the emptiness problem of Ak
valid

fl Ak
Cm

fl Ak
S fl Ak

¬Ï.
Clearly, the bound k on split-width in terms of m as well as the size of Ak

Cm
will impact

on the complexity of the decision procedures. We give below several examples.
First, nested words have split-width bounded by a constant 2, and the set of nested words

can be recognised by a trivial 1-state CPDS. Hence the complexities of various problems
follow the right-most column of Table 2. Notice that already for this simple case, the
complexities match the corresponding lower bounds for all problems.

3 One way to obtain Ak
Cm

is to provide a CPDS Sm which accepts the class Cm, then the automaton Ak
Sm

serves as Ak
Cm

. Similarly, if there is a formula Ïm in MSO(A, �) characterising the under-approximation
then the automaton Ak

Ïm
serves as Ak

Cm
.

Conclusion
Use graphs to reason about behaviors of systems
distributed or sequential

Exploit theory of graph decompositions

Tree Interpretations

Use “algebraic decompositions”

Tailor algebra to the setting to find natural proofs for
boundedness.

Split-width: convenient decomposition technique
As powerful as tree-width or clique-width for CBMs
and yields optimal algorithms

Conclusions…
Extensions

Parameterized systems (size, topology)  
GasFor’16, FOSSACS’16
Timed systems 
AksGasKri’16, CONCUR’16
Higher-order PDA level 2 
AisGasSaivasan’16
Dynamic creation of processes
Read from many
Infinite behaviors
…

C. Aiswarya, P. Gastin, ..
MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
Verifying Communicating Multi-pushdown Systems via Split-width. In ATVA 2014.

Aiswarya’s PhD Thesis
Many more classes with bounded split-width
Many more results

B. Bollig, P. Gastin
MPRI Lecture Notes on Non-sequential Theory of Distributed Systems

C. Aiswarya, P. Gastin
Reasoning About Distributed Systems: WYSIWYG. In FSTTCS 2014

Main Sources
P. Madhusudan and G. Parlato

Tree-width of Auxiliary Storage. In POPL 2011.

C. Aiswarya, P. Gastin, ..
MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
Verifying Communicating Multi-pushdown Systems via Split-width. In ATVA 2014.

Aiswarya’s PhD Thesis
Many more classes with bounded split-width
Many more results

B. Bollig, P. Gastin
MPRI Lecture Notes on Non-sequential Theory of Distributed Systems

C. Aiswarya, P. Gastin
Reasoning About Distributed Systems: WYSIWYG. In FSTTCS 2014

Main Sources
P. Madhusudan and G. Parlato

Tree-width of Auxiliary Storage. In POPL 2011.

THANK YOU

