Using Graph Decompositions to
Verity Concurrent Recursive Programs

K Narayan Kumar

Chennai Mathematical Institute, India.

IMS, Singapore, September 2016

Concurrent Recursive Programs

Multi-threaded or
Distributed

Variables range over finite domains

Functions can be recursive

Modeling Recursion

func f1
{while <true>
{call f£f1 OR

a OR
exit;}
return; }

Modeling Recursion ...

func f£2
{while <true>
{call £f2 OR
a OR
exit;}
return; }

Multi-threaded Programs arc

Multi-Pushdown Systems

Clo —
ncurrent Communicating Programs

ssssssss

e
—
-—

——

Queue
Queue
\ Queues to model
/ ° °
= communication channels
o —S——GC--

Z—?%’—-'

Unordered Channels

ssssssss
55555555

Bags to model unordered

communication channels

System: Concurrent Processes with Data-Structures

* Processes

e Data structures
* Stacks: recursive programs, multithreaded
* Queues: communication (FIFO)
* Bags: communication (unordered)

System: An Example

c.'b C.la

c,'b c,la

C2))

Behaviours as Graphs

.
@
@

o €5) C
<
<—
[

of 1)
o\ [R/T
O (%)
Y -

Graphs for Sequential Systems

@4 .

e N W)

lallabtbtaal t{1||Jlb

o
—=
v
o
—=
P
—
o
o
e
—=
v
e
o
e
(@)
v
—=
—>
o
e
e
o
—=
U
—=
(@)
U

Graphs for Multi-threaded Systems

Concurrent Behaviour with Matching (CBM)

d,

=
e

a

Al

d,

d,

Concurrent Behaviour with Matching (CBM)

* A linear order (or path) for each process
* Edges labeled with data structures

Concurrent Behaviour with Matching (CBM)

* A linear order (or path) for each process
* Edges labeled with data structures
¥ Communication edges form a matching
* Edge labelled d relates the writer and reader of d

* Edges follow the discipline of the data structure
* LIFO/FIFO/Bag

Specification over CBMs

MSO: Monadic Second Order Logic

@ ::= false

a(z) | pa) |z <ylaz>ly|z—y

reX|pVel|p|=

T | S

X @

Specification over CBMs

MSO: Monadic Second Order Logic

@ ::= false

a(z) [p(z) |z <ylzpy|z—y

reX|pVel|p|=

T | S

X @

Behaviours as Graphs...

;
latest order:

C
oes it obey th

R

.
@
@

o €5) C
<
<—
[

of 1)
o\ [R/T
O (%)
Y -

Behaviours as Graphs...

5
(dﬁ(.
. obey the Jatest ©

R

"<>::' @%))) -))
f}

of 1)
o\ [R/T
O (%)
Y -

Obey the latest order

Vz (r(z) Aon(z)) = Jy (p(y) Ny < 2
FO AVz(z<zAplz)f=2

Adx(z — yAon(x)))

p —e .l. 'l‘ : .l.l. °

Obey the latest order

Verification problems

* Emptiness or Reachability

* Satisfiability ¢: Is there a CBM that satisfies ¢?

* Model Checking: S = ¢

* Temporal logics
* Propositional dynamic logics

* Monadic second order logic

Verification problems

* Emptiness or Reachability

* Satisfiability ¢: Is there a CBM that satisfies ¢?

* Model Checking: S =

* Temporal logics

Under-approximate Verification
Satisfiability problem:

C: class

behavio ecification

Is ¢ satisfiable in C?

Under-approximate Verification
Model checking problem: § Ec (I)

C: class

behaviors ecification

Do all behaviors from C accepted

by S satisty ¢?

Decidable Under-approximate Verification

* Bounded data structures

* Existentially bounded {Genest et al.}

* Acyclic Architectures {La Torre et al., Heufiner et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al .}, ...
* Bounded phase {LaTorre et al.}

* Bounded scope {LaTorre et al.}

* Priority ordering {Atig et al}

* LN

Decidable Under-approximate Verification

* Bounded data structures
* Existentially bounded {Genest et al.}
* Acyclic Architectures {La Torre et al., Heufiner et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al .}, ...

* Bounded phase {LaTorre et al.} Reduction to MSO/

Automata over trees.

* Bounded scope {LaTorre et al.}

* Priority ordering {Atig et al}

* LN

Bounded-phase to Tree-width

@ = LMP-lics07.pdf (page 10 of 10)
i s 'E:'\ @'\ d‘n & v Ifj\' o Q. Search

Several future directions are interesting. First, the class

of multiple nested word languages with a bounded num-
ber of phases is of bounded tree-width (this is the prop-

erty that allows us to embed them in trees). It would be
interesting to characterize naturally the exact class of mul-
tiple nested words that have bounded tree-width. Secondly,
we believe that our results have applications to other areas

in verification, for instance in checking parallel programs
that communicate with each other using unbounded FIFO

queues, as multiple stacks can be used to simulate queues.

Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan

University of Illinois at Urbana-Champaign, USA
madhu@illinois.edu

)stract

- propose a generalization of results on the decidability of empti-
s for several restricted classes of sequential and distributed au-
1ata with auxiliary storage (stacks, queues) that have recently
n proved. Our generalization relies on reducing emptiness of
se automata to finite-state graph automata (without storage)
ricted to monadic second-order (MSO) definable graphs of
mmded tree-width where the oranh structure encodes the mech-

Gennaro Parlato

LIAFA, CNRS and University of Paris Diderot, France.
gennaro@liafa.jussieu.fr

However, the various identified decidable restrictions on the
automata are, for the most part, awkward in their definitions
e.g. emptiness of multi-stack pushdown automata where pust
to any stack 1s allowed at any time, but popping is restricted
the first non-empty stack is decidable! [8]. Yet, relaxing the
definitions to more natural ones seems to either destroy decidabil
or their power. It is hence natural to ask: why do these autom:
have decidable emptiness problems? Is there a common underlyi

Tree-width bounds for other Under-approximations

00 = MadhuParlato.pdf (page 2 of 28) -
Ovil Q | & h g v o = Q. Search

- Multi-stack pushdown automata with bounded context-switching: This is the class of multi-stack
automata where each computation of the automaton can be divided into k stages, where in each stage the
automaton touches only one stack (proved decidable first in [14]). We show that they can be simulated by
graph automata on graphs of tree-width O(k).

- Multi-stack pushdown automata with bounded phases: These are automata that generalize the
bounded-context-switching ones: the computations must be dividable into k phases, for a fixed k, where
in each phase the automaton can push onto any stack, but can pop only from one stack (proved decidable
recently in [11]). We show that graph automata on graphs of tree-width O(2*) can simulate them.

- Ordered multi-stack pushdown automata: The restriction here is that there a finite number of stacks
that are ordered, and at any time, the automaton can push onto any stack, but pop only from the first non-
empty stack. Note that the computation is not cut into phases, as in the above two restrictions. We show that

automata on graphs of tree-width O(n - 2") (where n is the number of stacks) can simulate them.

- Distributed queue automata on polyforest architectures: Distributed queue automata is a model
where finite-state processes at n sites work by communicating to each other using FIFO channels, modeled
as queues. It was shown recently, that when the architecture is a polyforest (i.e. the underlying undirected
graph is a forest), the emptiness problem is decidable (and for other architectures, it is undecidable) [12]. We

Why Iree-width?

Corollary to Seese’s Theorem:

If C is any MSO definable family of graphs then, for any
k, checking MSO satisfiability among graphs in C with
tree-width at most k is decidable.

Why Iree-width?

' Corollary to Seese’s Theorem:

- If C is any MSO definable family of graphs then, for any
-k, checking MSO satisfiability among graphs in C with

- tree-width at most k is decidable.

Interpretation over trees.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Graph Structure and
Monadic Second-Order Logic
A Language-Theoretic Approach

Encychopodia of Mat hematics and b Apgdicathom 138

GRAPH STRUCTURE
AND MONADIC

SECOND-ORDER
BRUNO COURCELLE LOGIC

A Language-Theoretic Approach

Universite de Bordeaux

JOOST ENGELFRIET

Universiteit Leiden

Co-graphs: An example

* Family of graphs generated by the following algebra:

G:= 2a€e2 1 GG IGRG

Co-graphs: An example

* Family of graphs generated by the following algebra:

G:= 2a€e2 1 GG IGRG

Single vertex

labelled a

Co-graphs: An example

* Family of graphs generated by the following algebra:

G:= 2a€e2 1 GG IGRG

' B

Single vertex

labelled a

Co-graphs: An example

* Family of graphs generated by the following algebra:

G:= 2a€e2 1 GG IGRG

N e

Single vertex
labelled a Disjoint union

Co-graphs: An example

* Family of graphs generated by the following algebra:

G:= 2a€e2 1 GG IGRG

.« A NS

Single vertex

Disjoint union and
labelled a Disjoint union connect all pairs

Co-graphs to Irees

Every co-graph has an expression generating it.

‘\/‘ (OB L J
F ®
®/ \®
ar

b/ \b

Co-graphs to Irees

Every co-graph has an expression generating it.

‘\/‘ GOD®D® b

e
Vertices of the graph X <)

correspond to leaves / \ / \
® a b ¢

of the expression tree. / \
b=

Co-graphs to Irees

Every co-graph has an expression generating it.

(b®b)®a)®((b®c)

Vertices of the graph
correspond to leaves
of the expression tree.

Edges are introduced by ® nodes between leaves in its
two subtrees

Interpretation on Irees

(b®H)®2)® b

&
®/ \®

Graph Tree
@/ \a b/ \C

There is a vertex x There is a leaf x / \

There is a set of vertices X | There is a set of leaves X b b

a(x) a(x)

There is path from x toy

E(x,y) whose highest node is a ®

Interpretation on Irees

b@bH)®2)®b®

Graph Hice / \ / \
There is a vertex x There is a leaf x @ d b C
There is a set of vertices X | There is a set of leaves X b/ \h

a(x) a(x)

. =
E(x,y) Tlfere is pat

Advantages of the algebraic approach

Advantages of the algebraic approach

* Membership checking
* Are all paths co-graphs?

Advantages of the algebraic approach

* Membership checking
* Are all paths co-graphs?

0 0 @

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?
X or @

0 0 @

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?
X

0 0 @

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

OO0 0 O 1 3

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

0 0 @ : 3

No vertex with degree 3!

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

0 0 @

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

OO0 0 O 2 2

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

0 0 @ >

No 2 x 2 perfect matching!

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

0 0 @

Advantages ot the algebraic approach

* Membership checking
* Are all paths co-graphs?

* What labels the root?

/®\

0 0 @

The path of length 3 is not a co-graph

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

e

The class is clearly MSO definable.

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

e

The class is clearly MSO definable.

Is the MSO theory of C decidable?

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

e

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

-31 o

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }
® /.
?/ \‘ e

E L

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }
® /.
F \‘ e

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

A
.
O

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

A
AN
{ O
A

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Using the Co-graph Algebra
Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Size one graphs in C are co-graphs.

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Size one graphs in C are co-graphs.

Case 1: If the graph is not connected then we
inductively construct expressions for each part.

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Size one graphs in C are co-graphs.

Case 1: If the graph is not connected then we
inductively construct expressions for each part.

Case 2: If the graph is connected. ® at the top.

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) CN(v) or N(w)CN() }

Size one graphs in C are co-graphs.

Case 1: If the graph is not connected then we
inductively construct expressions for each part.

Case 2: If the graph is connected. ® at the top.

Divide it into two parts so that the complete

bipartite graph on the division is a subgraph

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Case 2: If the graph is connected. ® at the top.

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Case 2: If the graph is connected. ® at the top.

@ be a maximal degree vertex.

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Case 2: If the graph is connected. ® at the top.

@ be a maximal degree vertex.

© be the closest vertex that is not a neighbour

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Case 2: If the graph is connected. ® at the top.

@ be a maximal degree vertex.

© be the closest vertex that is not a neighbour
Then

00O

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Case 2: If the graph is connected. ® at the top.

@ be a maximal degree vertex.

© be the closest vertex that is not a neighbour
Then

o0 0
N 2 N(p) and so v in N(p).

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) EN(v) or Nv)CN() }

Case 2: If the graph is connected. ® at the top.

@ be a maximal degree vertex.

© be the closest vertex that is not a neighbour
Then

B O /\

N() 2 N(p) and so v in N(p). G - {u

u is a neighbour of every vertex in G

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) CN(v) or N(w)CN() }

Case 2: If the graph is connected. ® at the top.

N 2 N(p) and so v in N(p).

u is a neighbour of every vertex in G

Using the Co-graph Algebra

Let C ={ G [{u,v} is an edge then N(u) CN(v) or N(w)CN() }

Case 2: If the graph is connected. ® at the top.

N 2 N(p) and so v in N(p).

u is a neighbour of every vertex in G

Advantages of the algebraic approach

* The tree interpretation is quite transparent.

* Helps in establishing membership/containment in class.

Advantages ot the algebraic approach

* The tree interpretation is quite transparent.

* Helps in establishing membership/containment in class.

* Fewer operators might help.

* For quasi-threshold graphs, our search was guided
by the limited set of operations available.

Split-width

* A way to decompose graphs to obtain a tree interpretation.
* Specifically designed for CBMs

¥ CBMs have bounded degree

' Let C be MSO definable class of CBMs
TFAE

1. C has a decidable MSO theory

2. C can be interpreted in binary trees
3. C has bounded tree-width

' 4. C has bounded clique-width

5. C has bounded split-width

Split-width Operations

The Cut Operation:

Pick a set of process edges and delete them.

=

Split-width Operations

The Cut Operation:

Pick a set of process edges and delete them.

R

Split-width Operations

The Cut Operation:

Pick a set of process edges and delete them.

Split-width Operations

The Cut Operation:

Pick a set of process edges and delete them.

*e—0—0—0—0

. s0—@g—0— @

Split-width Operations

The Cut Operation:

Pick a set of process edges and delete them.

Lopiris
2=

_)’

_)’

Split-width Operations

The Cut Operation:

Pick a set of process edges and delete them.

Split-width Operations

The Split Operation:
Separate out two disconnected parts into 2 splittCBMs

Split-width Operations

The Split Operation:
Separate out two disconnected parts into 2 splittCBMs

Split-width Operations

The Split Operation:
Separate out two disconnected parts into 2 splittCBMs

Split-width Operations

The Split Operation:
Separate out two disconnected parts into 2 splittCBMs

T'he Basic Split CBMs

An Internal event:

A Communication edge:

.

= =

a—>=Q—>pHh—>=C—>(]

b—%c

\/

SPLIT DECOMPOSITION OF CBMs |

| SPLIT DECOMPOSITION OF CBMs |

!
i

SPLIT DECOMPOSITION OF CBMs |

| sPLIT DECOMPOSITION OF CBMs |

.

b—%C—>d

s

a

SPLIT DECOMPOSITION OF CBMs |

bFes cIeRd

e

SPLIT DECOMPOSITION OF CBMs |

SPLIT DECOMPOSITION OF CBMs |

T —

E—

SPLIT DECOMPOSITION OF CBMs |

T —

E—

4)

P a—>aQ—>Hh—>=Cc—>(

— %
0 bR

C
| J
4 I
D a—>Q=->»h—=Cc—>(d

M/ %
1 bt e gk

- J

SPLIT TREE
OF THE FULL DECOMPOSITION

P a—>aQ—>Hh—>=Cc—>(

- %
1 bR
|

~)
_>d C

J

4 N

p a—=0=->b—=Cc—>(eS |
S] | e

Split-width

* The width of a decomposition is the maximum number of
holes in any split-CBM in the decomposition.

* Split-width of a CBM is the minimum of the widths of its
decompositions.

Split-width

* The width of a decomposition is the maximum number of
holes in any split-CBM in the decomposition.

* Split-width of a CBM is the minimum of the widths of its
decompositions.

i ~width =3

a—>Q—>Hh—=C—>(t

% A CBM with sl *

hb—>=a—>Cc—> C

_/V

Split-width

* The width of a decomposition is the maximum number of
holes in any split-CBM in the decomposition.

* Split-width of a CBM is the minimum of the widths of its
decompositions.

oA _width =5

a—>Q—>Hh—=C—>(t

% A CBM with sl ‘
hb—>=a—>Cc—> C

_/V

Split-width of a set of CBMs is the maximum of their split-
widths

Split-width of nested words

* The class of nested words has split-width bounded by 2

.. 3

Split-width of nested words

* The class of nested words has split-width bounded by 2

.. 3

Split-width of nested words

* The class of nested words has split-width bounded by 2

A Basic Split

- ...

,, holes

—

Split-width of nested words

* The class of nested words has split-width bounded by 2

E .

Split-width of nested words

* The class of nested words has split-width bounded by 2

Split-width of nested words

* The class of nested words has split-width bounded by 2

E > .

{ hole
=

Split-width of nested words

* The class of nested words has split-width bounded by 2

o—>0——>0—0

. .

Bounded-context Runs

e — —) ———

Bounded-context Runs

e — —) ———

Bounded-context Runs

\
)

Bounded-context Runs

/ H/\
e

Bounded-context Runs

,/ H/\

/ e \\
——>0—>0
A k context CBM has split-width k+1

Existentially k bounded MSCs

There is a linearisation where no channel contains more than k
values at any point along the linearization.

Existentially k bounded MSCs

There is a linearisation where no channel contains more than k
values at any point along the linearization.

LLLLL L,

Existentially k bounded MSCs

There is a linearisation where no channel contains more than k
values at any point along the linearization.

LLLLL L,

An existentially 1 bounded behaviour.

Existentially k bounded MSCs

Existentially k bounded MSCs

a 2-bounded sequentialisation

 — ———

Existentially k bounded MSCs

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

2 Z = 7
@)

—
1 4 6 8

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

2 Z = 7
@)

—
1 4 6 8

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

2 Z 5 7
O

—
1 4 6 8

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

2 3 5 7
e
1 4 6 8

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

* Expand to have k+1 events and repeat this process.

Existentially k bounded MSCs

* Cut process edges from the first k+1 events in the k bounded
sequentialisation.

* Remove message edges, internal events that can be.

¥ Expand to have k+1 events and repeat this process.

A k existentially bounded MSC/CBM has split-

width k+1

Bounded Scope Behaviours

e

> —F —) > >

* Between any call and the corresponding return there are
at most k COl’ltCXt‘SWitChCS LaTorreNapoli’II

Bounded Scope Behaviours

a § scope bounded cbm

S~

> —F —) > >

* Between any call and the corresponding return there are
at most k COl’ltCXt‘SWitChCS LaTorreNapoli’II

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

Cut this call-return pair. Remove.

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

Cut this call-return pair. Remove.

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

The called context is left with a hole.

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

No green nesting edge crosses the hole

The called context is left with a hole.

Bounded Scope Behaviours

* Between any call and the corresponding return there are
at most k context-switches

The called context is left with a hole.

Bounded Scope Behaviours

Maintaining invariantly that

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context ...
we will show that we can remove one more edge.

*

*

Bounded Scope Behaviours

*

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context

*

Bounded Scope Behaviours

*

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context

*

Target is before the hole (if any) in that context.

Bounded Scope Behaviours

*

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context

*

Target is before the hole. Between the target and hole
is a nested word.

Bounded Scope Behaviours

*

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context

*

Cut and remove nested word to expand the hole

Bounded Scope Behaviours

*

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context

*

Cut and remove nested word to expand the hole

Bounded Scope Behaviours

*

we have at most 1 hole each in the first k contexts
no green edge crosses a hole in a green context

*

If there is a hole: Cut and remove the nesting edge
maintaining the invariant

Bounded Scope Behaviours

* we have at most 1 hole each in the first k contexts

* no green edge crosses a hole in a green context

| a®

J i J*+2 J*k

If there is a hole: Cut and remove the nesting edge
maintaining the invariant

Bounded Scope Behaviours

* we have at most 1 hole each in the first k contexts

* no green edge crosses a hole in a green context

| a®

J i J*+2 J*k

If there is a hole: Cut and remove the nesting edge
maintaining the invariant

Bounded Scope Behaviours

* we have at most 1 hole each in the first k contexts

* no green edge crosses a hole in a green context

If there is a hole: Cut and remove the nesting edge
maintaining the invariant

Existentially Bounded MSCis

* The class of MSCs that are existentially k bounded
have split-width k+1

* Existentially kbounded MSCs form an MSO
definable class (GenKusMuso7)

Theorem: (GenKusMuso7)

1. MSO theory of existentially k bounded MSC:s is
decidable.

2. MSO model checking for Message Passing Automata
wr.t existentially k-bounded behaviours is decidable.

Bounded Scope Behaviours

* The class of MNW's with scope bound k has split-
width k+1
* k bounded-scope MNWs is MSO expressible.

Theorem:

1. MSO theory of k scope-bound MNWs is decidable.
2. MSO model checking for MPDS w.r.t k scope-

bounded behaviours is decidable.

Split-width: parametrized verification

Problem

Complexity

bound on split-width
part of the input (in
unary)

bound on split-width
fixed

CPDS emptiness

ExPTIME-Complete

PTiME-Complete

CPDS inclusion or universality

2EXPTIME

ExPTIME-Complete

LTL / CPDL satisfiability or model checking

ExpPTIME-Complete

ICPDL satisfiability or model checking

2EXPTIME -Complete

MSO satisfiability or model checking

Non-elementary

Conclusion

* Use graphs to reason about behaviors of systems
distributed or sequential

* Exploit theory of graph decompositions
* ‘Iree Interpretations
* Use “algebraic decompositions”

* Tailor algebra to the setting to find natural proofs for
boundedness.

* Split-width: convenient decomposition technique
As powerful as tree-width or clique-width for CBMs
and yields optimal algorithms

Conclusions...

* Extensions
* Parameterized systems (size, topology)

GasFor’16, FOSSACS’16

* Timed systems

AksGasKri’'t6, CONCUR’16

* Higher-order PDA level 2
AisGasSaivasan'16

* Dynamic creation of processes
* Read from many

* Infinite behaviors
* KX)

Main Sources

P. Madhusudan and G. Parlato
* Tree-width of Auxiliary Storage. In POPL 2o011.

C. Aiswarya, P. Gastin, ..
* MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
* Verifying Communicating Multi-pushdown Systems via Split-width. In AT VA 2014.

Aiswarya’s PhD Thesis
* Many more classes with bounded split-width
* Many more results

C. Aiswarya, P. Gastin
* Reasoning About Distributed Systems: WYSIWYG. In FSTTCS 2014

B. Bollig, P. Gastin
* MPRI Lecture Notes on Non-sequential Theory of Distributed Systems

Main Sources

P. Madhusudan and G. Parlato
* Tree-width of Auxiliary Storage. In POPL 2o011.

C. Aiswarya, P. Gastin, ..
* MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
* Verifying Communicating Multi-pushdown Systems via Split-width. In AT VA 2014.

Aiswarya’s PhD Thesis
* Many more classes with bounded split-width
* Many more results

C. Aiswarya, P. Gastin
* Reasoning About Distributed Systems:

THANK YOU

B. Bollig, P. Gastin

* MPRI Lecture Notes on Non-sequent uted Systems

