
Run-Time Analysis of
Probabilistic Programs

Joost-Pieter Katoen 

joint work with: Benjamin Kaminski,
Christoph Matheja, and Federico Olmedo

IFIP WG2.2 Meeting Singapore, September 2016

Pr[nobody disturbs] ≥
(
1
2

)3
repeat

c := coin flip(0.5)
until (c=heads)

Probabilistic Program

Average
Runtime

Probabilistic Programs — Basics

What is a probabilistic program?

“Ordinary”
Program

Probabilistic
 Choice

+
randomly choose a process with which communicate

select a random prime in interval [1, n2]
flip a (fair/biased) coin;

imperative

functional

logical

…

In this work

2

Program behaviour (input-output relation + runtime) is determined by the
outcome of its probabilistic choices.

Program output is a probability distribution: v1 with probability p1, v2 with probability p2, etc

Program runtime is a random variable: t1 with probability p1, t2 with probability p2, etc

Probabilistic Programs — Example

3

Program Runtime

3 5 7 9 11

1/2

1/4

1/8

1/16

1/32

Run–Time

P
r
o
b
a
b
i
l
i
t
y

Average Runtime:
3 · 1

2 + 5 · 1
4 + · · ·+ (2n+1) · 1

2n + · · · = 5

Program Output
Distribution

1 2 3 4 5

1/2

1/4

1/8

1/16

1/32

Output

P
ro
b
ab

il
it
y

Probabilistic program
that simulates a
geometric distribution

C
geo

: n := 0;
repeat

n := n+ 1;
c := coin flip(0.5)

until (c=heads);
return n

Randomisation Allows Speeding Up Algorithms

4

QS(A) ,
if (|A| 1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

Quicksort:

Worst case complexity:
O(n2) comparisons

rQS(A) ,
if (|A| 1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

Randomised Quicksort:

Worst case complexity:
O(n log(n)) expected comparisons

Run-Time Analysis of Probabilistic Programs is Intricate

5

Positive almost sure termination is not closed under sequential composition:

(Positive) almost-sure termination is “more undecidable” than ordinary termination

C1 and C2 both terminate in finite expected time, while C1;C2 does not.

Probabilistic programs may admit infinite runs, but finite expected run-time

C
geo

: n := 0;
repeat

n := n+1; c := coin flip(0.5)
until (c=heads)

C1 : x

:= 1;
repeat

c

:= coin flip(0.5); x := 2x;
until (c=heads)

C2 : repeat

x

:= x�1;
until (x0)

This talk

Soundness of the calculus w.r.t. an operational program semantics

wp-Calculus for bounding the expected runtime of probabilistic programs

Consistency w.r.t. Nielson's logic for bounding runtime of ordinary programs

6

Runtime analysis of random walk and the coupon collector’s problem

Probabilistic Programming Language

7

C ::= empty empty program

| skip e↵ectless operation

| halt immediate termination

| x :⇡ µ probabilistic assignment

| C ; C sequential composition

| {C}2 {C} non–deterministic choice

| if (⌘) {C} else {C} probabilistic conditional

| while (⌘) {C} probabilistic while loop

if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else

�
if

�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true}

else {succ :⇡ false}

Truncated geometric distribution:

h :⇡ 0; t :⇡ 30;

while (h t)

t :⇡ t+ 1;

if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{h :⇡ h+ Unif[0..10]}

else {empty}

Race between tortoise and hare:

The Expected Runtime Transformer — Basics

8

In particular,

 runtime

of C, when started in state s.
ert [C] (0) (s) 7!

Our aim:

 number of skips, assignments and guard
evaluations in the execution of C from state s

program C hC :

Tz }| {
S ! R1

�0

hC(s) 7!

Our approach:

We use a continuation passing style through transformer

f 7! runtime of the compu-

tation following program C

ert [C] (f) 7! runtime of C, plus

the computation following C

ert[C] : T ! T

The Expected Runtime Transformer — Inductive Definition

9

P
v Pr[µ=v] · f(s[x/v])

Characteristic functional

ert [empty] (f) = f

ert [skip] (f) = 1+ f

ert [halt] (f) = 0

ert [x :⇡
P

i pi · hvii] (f) = 1+ �s

•
P

i pi · f(s[x 7! vi])

ert [C1; C2] (f) = ert [C1] (ert [C2] (f))

ert [{C1}2 {C2}] (f) = max{ert [C1] (f) , ert [C2] (f)}
ert [if (⌘) {C1} else {C2}] (f) = 1+ Pr [⌘=true] · ert [C1] (f) + Pr [⌘=false] · ert [C2] (f)

ert [while (⌘) {C}] (f) = lfp
�
F

h⌘,Ci
f

�
where

F

h⌘,Ci
f (X) = 1+ Pr [⌘=false] · f + Pr [⌘=true] · ert [C] (X)

The Expected Runtime Transformer — Elementary Properties

10

f � g =) ert [C] (f) � ert [C] (g)

ert [C] (k+ f) = k+ ert [C] (f)
provided C is halt–free

ert [C] (1) = 1
provided C is halt–free

ert [C] (f + g) � ert [C] (f) + ert [C] (g);
C is fully probabilistic

ert [C] (r · f) ⌫ min{1, r} · ert [C] (f)
ert [C] (r · f) � max{1, r} · ert [C] (f)

Monotonicity:

Propagation
of constants:

Preservation of ∞:

Sub-additivity:

Scaling:

The Expected Runtime Transformer — Application Example

11

Ctrunc : if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else

�
if

�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true}

else {succ :⇡ false}

ert [Ctrunc] (0) = 1+ 1
2 · ert [succ :⇡ true] (0)

+ 1
2 · ert [if (. . .) {succ :⇡ true} else {succ :⇡ false}] (0)

= 1+ 1
2 · 1+ 1

2 ·
⇣
1+ 1

2 · ert [succ :⇡ true] (0)+ 1
2 · ert [succ :⇡ false] (0)

⌘

= 1+ 1
2 · 1+ 1

2 ·
⇣
1+ 1

2 · 1+ 1
2 · 1

⌘
= 5

2

 The execution of takes, on average, 2.5 units of timeCtrunc∴

ert [x :⇡
P

i pi · hvii] (f) =

1+ �s

•
P

ipi · f(s[x 7! vi])

ert [if (⌘) {C1} else {C2}] (f) =

1+ Pr [⌘=true] · ert [C1] (f) + Pr [⌘=false] · ert [C2] (f)

The Expected Runtime of Loops — Proof Rules

12

F h⌘,Ci
f (I) I

ert [while (⌘) {C}] (f) I
[while]

F h⌘,Ci
f (X) = 1+ Pr [⌘=false] · f + Pr [⌘=true] · ert [C] (X)

Theorem

The above proof rules are sound and complete.

F h⌘,Ci
f (0) � I0 F h⌘,Ci

f (In) � In+1

ert [while (⌘) {C}] (f) � lim
n!1

In
[!–while�]

F h⌘,Ci
f (0) I0 F h⌘,Ci

f (In) In+1

ert [while (⌘) {C}] (f) lim
n!1

In
[!–while]

The Expected Runtime of Loops — Example

13

1+ [b 6= 1] · 0+ [b = 1] · ert
⇥
b :⇡ 1

2 ·h0i+
1
2 ·h1i

⇤
(I)

= 1+ [b = 1] ·
�
1+ 1

2 · I[b/0] + 1
2 · I[b/1]

�

= 1+ [b = 1] ·
�
1+ 1

2 · (1+ [0 = 1] · 4| {z }
=1

) + 1
2 · (1+ [1 = 1] · 4| {z }

=5

)
�

= 1+ [b = 1] · 4 = I I

1+ Pr [⌘=false] · f + Pr [⌘=true] · ert [C] (I) I

ert [while (⌘) {C}] (f) I

[while]

ert [x :⇡ µ] (f) = 1+ �s

• Eµ (�v. f(s[x/v]))C
geo

? : while (b = 1) {b :⇡ 1
2 ·h0i+

1
2 ·h1i}

To upper-bound the runtime of we apply rule [while] with continuation
and invariant I = 1+ [b = 1] · 4

f = 0C
geo

?

The expected runtime of is at most 5 from any initial state where b=1
and at most 1 from all other states.∴ C

geo

?

and conclude that ert [C
geo

?] (0) 1+ [b=1] · 4

The Expected Runtime of Loops — Bound Refinement

14

ert [while (⌘) {C}] (f) g F h⌘,Ci
f (g) g

ert [while (⌘) {C}] (f) F h⌘,Ci
f (g) g

ert [while (⌘) {C}] (f) � g F h⌘,Ci
f (g) � g

ert [while (⌘) {C}] (f) � F h⌘,Ci
f (g) � g

Operational Program Semantics — The Big Picture

15

Reward Markov
Decision Process

 (RMDP)

Correspondence
Theorem

Program C

Initial state s0

 Continuation f : T

+

+

 Transformer
ert[C] : T ! T

Operational Program Semantics

16

Ctrunc : if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else

�
if

�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else {succ :⇡ false}

| {z }
C0

RMDP for program , initial state s0 and continuation fCtrunc

hsucc :⇡ true, s0i

h sink i

hC 0, s0i

hCtrunc, s0i

hsucc :⇡ false, s0i
f(s0[succ/true])

f(s0[succ/false])

1

1 1

1

0

1/2

1

1/2 1/2

1 1

1

Probability

Reward

⌅
⌅

1

1/2

h#, s0[succ 7! false]i

h#, s0[succ 7! true]i

Operational Program Semantics — Reward MDP Construction

17

Sample Construction Rules

intermediate execution point

(C remaining computation from
intermediate state s)

normal termination

(s final program state)

0 or 1

0

Interpretation RMDP RewardRMDP State

h sink i

hC, si, h#;C, si

h#, si

termination

(normal or halt)

f(s)

Pr [µ(s)=v] = p > 0

hx :⇡ µ, si ⌧�! h#, s[x/v]i ` p

[pr–assgn]

Pr [⌘(s)=true] = p > 0

hif (⌘) {C1} else {C2}, si
⌧�! hC1, si ` p

[if–true]

hwhile (⌘) {C}, si ⌧�! hif (⌘) {C ; while (⌘) {C}} else {empty}, si ` 1
[while]

Operational Program Semantics — Relation to the Transformer

18

ert[·]

Theorem (Soundness)

Let be the expected reward to reach the sink in the RMDP
associated to program C, initial state s0 and continuation f. Then

ExpRew

Mf
s0

[C](h sink i)

ert [C] (f) (s0) = ExpRew

Mf
s0

[C](h sink i) .

ExpRew

Mf
s [C](h sink i)

= Pr[⇡true] · rew(⇡true)

+ Pr[⇡false true] · rew(⇡false true)

+ Pr[⇡false false] · rew(⇡false false)

=
�
1
2 · 1 · 1

�
· (1 + 1 + f(s0[succ/true]))

+
�
1
2 · 1

2 · 1 · 1
�
· (1 + 1 + 1 + f(s0[succ/true]))

+
�
1
2 · 1

2 · 1 · 1
�
· (1 + 1 + 1 + f(s0[succ/false]))

= 5
2 + 3

4 · f(s0[succ/true]) + 1
4 · f(s0[succ/false]).

ExpRew

M0
s0

[C](h sink i) = 5
2 = ert [C] (0) (s0)∴

hsucc :⇡ true, s0i

h sink i

hC 0, s0i

hCtrunc, s0i

hsucc :⇡ false, s0i
f(s0[succ/true])

f(s0[succ/false])

1

1 1

1

0

1/2

1

1/2 1/2

1 1

11

1/2

h#, s0[succ 7! false]i

h#, s0[succ 7! true]i

Nielson’s Logic for Deterministic Programs — Basics

19

Eg. {true} while (x�0) {x := x�1} {x + x<0}

Sample proof rules

`E {Q[x/e]} x

:= e {1 + Q} [Assgn]

`E {P ^B} C1 {E + Q} `E {P ^ ¬B} C2 {E + Q}
`E {P} if (B) {C1} else {C2} {E + Q} [if]

Judgments

deterministic
program

numeric expression
over program variables

(Total Correctness) (Runtime Bound)

{P} C {E + Q} , {P} C {+ Q} +
C terminates from s in (at most a

mult. of) JEK(s) steps if s |=P

Consistency w.r.t. Nielson’s Logic

20

Theorem generalises Nielson’s logic to probabilistic programs

For any deterministic program C,

` {P} C {+ Q} =) `E {P} C {ert [C] (0) + Q} (soundness)

(completeness)

ert[·]

`E {P} C {E + Q} =) 9k • ert [C] (0) (s) = k · JEK(s)

Runtime Analysis of a Random Walk

21

Crw : x

:= 10; while (x > 0) {x :⇡ 1
/2 · hx�1i+ 1

/2 · hx+1i}

It can be shown that Crw terminates with probability one. Using our expected
runtime calculus one can show that it takes an expected infinite time to do so:

ert [Crw] (0) = 1

A particle starts at position x=10 and moves
with equal probability to the left or to the right
in each turn. The random walk stops when
the particle reaches position x=0.

What is the expected number of moves to
termination?

0 1

1/2 1/2

10
… …

Coupon Collector’s Problem

22

Coupon Collector’s Problem

23

Cccp : cp := [0, . . . , 0]; i := 1; x := N ;

while (x > 0) {
while (cp[i] 6= 0) {i :⇡ Unif[1 . . . N]};
cp[i] := 1; x := x�1

}

Suppose each box of cereal contains one of N different coupons
and once a consumer has collected a coupon of each type, he
can trade them for a prize. The aim of the problem is determining
the average number of cereal boxes the consumer should buy
to collect all coupon types, assuming that each coupon type
occurs with the same probability in the cereal boxes.

ert [Cccp] (0) = 4+ 2N · (2+HN�1) 2 O(N log(N))

Using our expected runtime
calculus we showed that the
expected number of necessary
cereal boxes is in .O(N log(N))

Summary

Soundness of the technique w.r.t. an operational program semantics

Reasoning about the expected runtime of probabilistic programs a la Dijkstra

Handles finite and infinite runtimes

Establishes both bounds and exact values of the program runtimes

Includes several sound and complete proof rules for reasoning about loops

Extension with recursion has recently been provided

Extends Hoare logic for bounding the runtime of deterministic programs

24

Cases: random walk, coupon collector’s problem, randomised binary search

Further details: see ESOP’16 paper; for recursion see LICS’16

Certified in Isabelle (courtesy Johannes Hölzl)

