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repeat

c := coin flip(0.5)
until (c=heads)
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Average 
Runtime



Probabilistic Programs — Basics

What is a probabilistic program?

“Ordinary” 
Program

Probabilistic
 Choice

+
randomly choose a process with which communicate

select a random prime in interval [1, n2] 
flip a (fair/biased) coin;

imperative

functional

logical

…

In this work
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Program behaviour (input-output relation + runtime) is determined by the 
outcome of its probabilistic choices.

Program output is a probability distribution: v1 with probability p1, v2 with probability p2, etc


Program runtime is a random variable: t1 with probability p1, t2 with probability p2, etc



Probabilistic Programs — Example
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Probabilistic program 
that simulates a 
geometric distribution

C
geo

: n := 0;
repeat

n := n+ 1;
c := coin flip(0.5)

until (c=heads);
return n



Randomisation Allows Speeding Up Algorithms
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QS(A) ,
if (|A|  1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�

Quicksort:

Worst case complexity: 
O(n2) comparisons

rQS(A) ,
if (|A|  1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�

Randomised Quicksort:

Worst case complexity:  
O(n log(n)) expected comparisons



Run-Time Analysis of Probabilistic Programs is Intricate
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Positive almost sure termination is not closed under sequential composition:

(Positive) almost-sure termination is “more undecidable” than ordinary termination

C1 and C2 both terminate in finite expected time, while C1;C2 does not.

Probabilistic programs may admit infinite runs, but finite expected run-time

C
geo

: n := 0;
repeat

n := n+1; c := coin flip(0.5)
until (c=heads)

C1 : x

:= 1;
repeat

c

:= coin flip(0.5); x := 2x;
until (c=heads)

C2 : repeat

x

:= x�1;
until (x0)



This talk

Soundness of the calculus w.r.t. an operational program semantics

wp-Calculus for bounding the expected runtime of probabilistic programs

Consistency w.r.t. Nielson's logic for bounding runtime of ordinary programs
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Runtime analysis of random walk and the coupon collector’s problem 



Probabilistic Programming Language
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C ::= empty empty program

| skip e↵ectless operation

| halt immediate termination

| x :⇡ µ probabilistic assignment

| C ; C sequential composition

| {C}2 {C} non–deterministic choice

| if (⌘) {C} else {C} probabilistic conditional

| while (⌘) {C} probabilistic while loop

if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else

�
if

�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true}

else {succ :⇡ false}
 

Truncated geometric distribution:

h :⇡ 0; t :⇡ 30;

while (h  t)

t :⇡ t+ 1;

if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{h :⇡ h+ Unif[0..10]}

else {empty}

Race between tortoise and hare:



The Expected Runtime Transformer — Basics
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In particular,

                              runtime 

of C, when started in state s.
ert [C] (0) (s) 7!

Our aim:

               number of skips, assignments and guard 
evaluations in the execution of C from state s

program C hC :

Tz }| {
S ! R1

�0

hC(s) 7!

Our approach:

We use a continuation passing style through transformer 

f 7!         runtime of the compu-

tation following program C

ert [C] (f) 7!                     runtime of C, plus 

the computation following C

ert[C] : T ! T



The Expected Runtime Transformer — Inductive Definition
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P
v Pr[µ=v] · f(s[x/v])

Characteristic functional 

ert [empty] (f) = f

ert [skip] (f) = 1+ f

ert [halt] (f) = 0

ert [x :⇡
P

i pi · hvii] (f) = 1+ �s

•
P

i pi · f(s[x 7! vi])

ert [C1; C2] (f) = ert [C1] (ert [C2] (f))

ert [{C1}2 {C2}] (f) = max{ert [C1] (f) , ert [C2] (f)}
ert [if (⌘) {C1} else {C2}] (f) = 1+ Pr [⌘=true] · ert [C1] (f) + Pr [⌘=false] · ert [C2] (f)

ert [while (⌘) {C}] (f) = lfp
�
F

h⌘,Ci
f

�
where

F

h⌘,Ci
f (X) = 1+ Pr [⌘=false] · f + Pr [⌘=true] · ert [C] (X)



The Expected Runtime Transformer — Elementary Properties
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f � g =) ert [C ] (f) � ert [C ] (g)

ert [C ] (k+ f) = k+ ert [C ] (f)
provided C is halt–free

ert [C ] (1) = 1
provided C is halt–free

ert [C] (f + g) � ert [C] (f) + ert [C] (g);
C is fully probabilistic

ert [C] (r · f) ⌫ min{1, r} · ert [C] (f)
ert [C] (r · f) � max{1, r} · ert [C] (f)

Monotonicity:

Propagation  
of constants:

Preservation of ∞:

Sub-additivity:

Scaling:



The Expected Runtime Transformer — Application Example
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Ctrunc : if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else

�
if

�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true}

else {succ :⇡ false}
 

ert [Ctrunc] (0) = 1+ 1
2 · ert [succ :⇡ true] (0)

+ 1
2 · ert [if (. . .) {succ :⇡ true} else {succ :⇡ false}] (0)

= 1+ 1
2 · 1+ 1

2 ·
⇣
1+ 1

2 · ert [succ :⇡ true] (0)+ 1
2 · ert [succ :⇡ false] (0)

⌘

= 1+ 1
2 · 1+ 1

2 ·
⇣
1+ 1

2 · 1+ 1
2 · 1

⌘
= 5

2

 The execution of           takes, on average, 2.5 units of timeCtrunc∴

ert [x :⇡
P

i pi · hvii] (f) =

1+ �s

•
P

ipi · f(s[x 7! vi])

ert [if (⌘) {C1} else {C2}] (f) =

1+ Pr [⌘=true] · ert [C1] (f) + Pr [⌘=false] · ert [C2] (f)



The Expected Runtime of Loops — Proof Rules
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F h⌘,Ci
f (I)  I

ert [while (⌘) {C}] (f)  I
[while]

F h⌘,Ci
f (X) = 1+ Pr [⌘=false] · f + Pr [⌘=true] · ert [C] (X)

Theorem

The above proof rules are sound and complete.

F h⌘,Ci
f (0) � I0 F h⌘,Ci

f (In) � In+1

ert [while (⌘) {C}] (f) � lim
n!1

In
[!–while�]

F h⌘,Ci
f (0)  I0 F h⌘,Ci

f (In)  In+1

ert [while (⌘) {C}] (f)  lim
n!1

In
[!–while]



The Expected Runtime of Loops — Example
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1+ [b 6= 1] · 0+ [b = 1] · ert
⇥
b :⇡ 1

2 ·h0i+
1
2 ·h1i

⇤
(I)

= 1+ [b = 1] ·
�
1+ 1

2 · I[b/0] + 1
2 · I[b/1]

�

= 1+ [b = 1] ·
�
1+ 1

2 · (1+ [0 = 1] · 4| {z }
=1

) + 1
2 · (1+ [1 = 1] · 4| {z }

=5

)
�

= 1+ [b = 1] · 4 = I  I

1+ Pr [⌘=false] · f + Pr [⌘=true] · ert [C] (I)  I

ert [while (⌘) {C}] (f)  I

[while]

ert [x :⇡ µ] (f) = 1+ �s

• Eµ (�v. f(s[x/v]))C
geo

? : while (b = 1) {b :⇡ 1
2 ·h0i+

1
2 ·h1i}

To upper-bound the runtime of          we apply rule [while] with continuation             
and invariant                                                          I = 1+ [b = 1] · 4

f = 0C
geo

?

The expected runtime of          is at most 5 from any initial state where b=1 
and at most 1 from all other states.∴ C

geo

?

and conclude that                                                        ert [C
geo

? ] (0)  1+ [b=1] · 4



The Expected Runtime of Loops — Bound Refinement
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ert [ while (⌘) {C}] (f)  g F h⌘,Ci
f (g)  g

ert [while (⌘) {C}] (f)  F h⌘,Ci
f (g)  g

ert [ while (⌘) {C}] (f) � g F h⌘,Ci
f (g) � g

ert [while (⌘) {C}] (f) � F h⌘,Ci
f (g) � g



Operational Program Semantics — The Big Picture
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Reward Markov 
Decision Process 

          (RMDP)   

Correspondence 
Theorem

Program C

Initial state s0

      Continuation          f : T

+

+

       Transformer  
ert[C] : T ! T



Operational Program Semantics
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Ctrunc : if
�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else

�
if

�
1
2 ·htruei+ 1

2 ·hfalsei
�
{succ :⇡ true} else {succ :⇡ false}

| {z }
C0

 

RMDP for program          , initial state s0 and continuation fCtrunc

hsucc :⇡ true, s0i

h sink i

hC 0, s0i

hCtrunc, s0i

hsucc :⇡ false, s0i
f(s0[succ/true])

f(s0[succ/false])

1

1 1

1

0

1/2

1

1/2 1/2

1 1

1

Probability

Reward

⌅
⌅

1

1/2

h#, s0[succ 7! false]i

h#, s0[succ 7! true]i



Operational Program Semantics — Reward MDP Construction
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Sample Construction Rules

intermediate execution point 

(C remaining computation from 
intermediate state s)

normal termination

(s final program state)

0 or 1

0

Interpretation RMDP RewardRMDP State

h sink i

hC, si, h#;C, si

h#, si

termination

(normal or halt)

f(s)

Pr [µ(s)=v] = p > 0

hx :⇡ µ, si ⌧�! h#, s[x/v]i ` p

[pr–assgn]

Pr [⌘(s)=true] = p > 0

hif (⌘) {C1} else {C2}, si
⌧�! hC1, si ` p

[if–true]

hwhile (⌘) {C}, si ⌧�! hif (⌘) {C ; while (⌘) {C}} else {empty}, si ` 1
[while]



Operational Program Semantics — Relation to the           Transformer
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ert[·]

Theorem (Soundness)

Let                                     be the expected reward to reach the sink in the RMDP 
associated to program C, initial state s0 and continuation f. Then

ExpRew

Mf
s0

[C](h sink i)

ert [C] (f) (s0) = ExpRew

Mf
s0

[C](h sink i) .

ExpRew

Mf
s [C](h sink i)

= Pr[⇡true] · rew(⇡true)

+ Pr[⇡false true] · rew(⇡false true)

+ Pr[⇡false false] · rew(⇡false false)

=
�
1
2 · 1 · 1

�
· (1 + 1 + f(s0[succ/true]))

+
�
1
2 · 1

2 · 1 · 1
�
· (1 + 1 + 1 + f(s0[succ/true]))

+
�
1
2 · 1

2 · 1 · 1
�
· (1 + 1 + 1 + f(s0[succ/false]))

= 5
2 + 3

4 · f(s0[succ/true]) + 1
4 · f(s0[succ/false]).

ExpRew

M0
s0

[C](h sink i) = 5
2 = ert [C] (0) (s0)∴

hsucc :⇡ true, s0i

h sink i

hC 0, s0i

hCtrunc, s0i

hsucc :⇡ false, s0i
f(s0[succ/true])

f(s0[succ/false])

1

1 1

1

0

1/2

1

1/2 1/2

1 1

11

1/2

h#, s0[succ 7! false]i

h#, s0[succ 7! true]i



Nielson’s Logic for Deterministic Programs — Basics
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Eg. {true} while (x�0) {x := x�1} {x + x<0}

Sample proof rules

`E {Q[x/e]} x

:= e {1 + Q} [Assgn]

`E {P ^B} C1 {E + Q} `E {P ^ ¬B} C2 {E + Q}
`E {P} if (B) {C1} else {C2} {E + Q} [if]

Judgments

deterministic 
program

numeric expression 
over program variables

(Total Correctness) (Runtime Bound)

{P} C {E + Q} , {P} C {+ Q} +
C terminates from s in (at most a

mult. of) JEK(s) steps if s |=P



Consistency w.r.t. Nielson’s Logic
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Theorem           generalises Nielson’s logic to probabilistic programs

For any deterministic program C,

` {P} C {+ Q} =) `E {P} C {ert [C] (0) + Q} (soundness)

(completeness)

ert[·]

`E {P} C {E + Q} =) 9k • ert [C] (0) (s) = k · JEK(s)



Runtime Analysis of a Random Walk
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Crw : x

:= 10; while (x > 0) {x :⇡ 1
/2 · hx�1i+ 1

/2 · hx+1i}

It can be shown that Crw terminates with probability one. Using our expected 
runtime calculus one can show that it takes an expected infinite time to do so:

ert [Crw] (0) = 1

A particle starts at position x=10 and moves 
with equal probability to the left or to the right 
in each turn. The random walk stops when 
the particle reaches position x=0. 


What is the expected number of moves to 
termination?

0 1

1/2 1/2

10
… …



Coupon Collector’s Problem
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Coupon Collector’s Problem
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Cccp : cp := [0, . . . , 0]; i := 1; x := N ;

while (x > 0) {
while (cp[i] 6= 0) {i :⇡ Unif[1 . . . N ]};
cp[i] := 1; x := x�1

}

Suppose each box of cereal contains one of N different coupons 
and once a consumer has collected a coupon of each type, he 
can trade them for a prize. The aim of the problem is determining 
the average number of cereal boxes the consumer should buy 
to collect all coupon types, assuming that each coupon type 
occurs with the same probability in the cereal boxes.

ert [Cccp] (0) = 4+ 2N · (2+HN�1) 2 O(N log(N))

Using our expected runtime 
calculus we showed that the 
expected number of necessary 
cereal boxes is in                      .O(N log(N))



Summary

Soundness of the technique w.r.t. an operational program semantics

Reasoning about the expected runtime of probabilistic programs a la Dijkstra

Handles finite and infinite runtimes

Establishes both bounds and exact values of the program runtimes 

Includes several sound and complete proof rules for reasoning about loops


Extension with recursion has recently been provided


Extends Hoare logic for bounding the runtime of deterministic programs
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Cases: random walk, coupon collector’s problem, randomised binary search

Further details: see ESOP’16 paper; for recursion see LICS’16

Certified in Isabelle (courtesy Johannes Hölzl)


