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Quantum communication

I In 1984, C. Bennett (IBM) and C. Brassard (Univ. of
Montreal) proposed the first protocol for quantum key
distribution, the BB84 protocol.
...

I On August 16, 2016, China launched the first satellite using
quantum technology to send communications back to earth.

I A 2000-km quantum communication main network between
Beijing and Shanghai will be fully operational later this year.
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Quantum computation

I In 1982, R. Feynman proposed the idea to construct quantum
computers based on the theory of quantum mechanics.
...

I In 2011, the Canadian company D-Wave Systems claimed to
have created the first commercial 128-qubit quantum
computer, D-wave One.

I In December 2015, Google announced that, in solving a
specific optimization problem, their 512-qubit D-Wave 2X is
100 million times faster than conventional single-core
computers.
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Quantum programming

“the real challenge will be the software .... Programming this thing
[D-Wave] is ridiculously hard; it can take months to work out how
to phrase a problem so that the computer can understand it.”

— G. Rose
Founder and CTO at D-Wave Systems

[N. Jones. The Quantum Company. Nature 498:286-288, 2013.]



Quantum programming languages

I “Quantum data, classical control” [Selinger]
I Sequential languages

I Quipper [Dalhousie Univ.]
I LIQUi| > [Microsoft]
I Scaffold [Princeton]
I ...

I Concurrent languages (quantum process algebras) Aiming to
specify and verify quantum protocols.

I QPAlg [Jorrand and Lalire]
I CQP [Gay and Nagarajan]
I qCCS [Feng et al.]
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Dirac-notation

Let H be a Hilbert space.

I ‘ket’ |ψ〉 stands for a (normalized) vector in H.

I ‘bra’ 〈ψ| stands for the adjoint (dual vector) of |ψ〉.
I Generally, A† stands for the adjoint of A, such that

(A†|ψ〉, |φ〉) = (|ψ〉,A|φ〉).

In particular, (|ψ〉)† = 〈ψ|.



Dirac-notation

Let H be a Hilbert space.

I ‘ket’ |ψ〉 stands for a (normalized) vector in H.

I ‘bra’ 〈ψ| stands for the adjoint (dual vector) of |ψ〉.
I Generally, A† stands for the adjoint of A, such that

(A†|ψ〉, |φ〉) = (|ψ〉,A|φ〉).

In particular, (|ψ〉)† = 〈ψ|.



Dirac-notation

Let H be a Hilbert space.

I ‘ket’ |ψ〉 stands for a (normalized) vector in H.

I ‘bra’ 〈ψ| stands for the adjoint (dual vector) of |ψ〉.

I Generally, A† stands for the adjoint of A, such that

(A†|ψ〉, |φ〉) = (|ψ〉,A|φ〉).

In particular, (|ψ〉)† = 〈ψ|.



Dirac-notation

Let H be a Hilbert space.

I ‘ket’ |ψ〉 stands for a (normalized) vector in H.

I ‘bra’ 〈ψ| stands for the adjoint (dual vector) of |ψ〉.
I Generally, A† stands for the adjoint of A, such that

(A†|ψ〉, |φ〉) = (|ψ〉,A|φ〉).

In particular, (|ψ〉)† = 〈ψ|.



Quantum states

I Associated to any quantum system is a Hilbert space known
as the state space.

I The state of a closed quantum system is described by a unit
vector, say |ψ〉, in its state space.
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Quantum states(Cont’d)

I ρ = ∑k pk |ψk〉〈ψk | : lies in the state |ψk〉 with probability
pk , ∑k pk = 1.

I ρ is a positive operator

I tr(ρ) = 1

I These two conditions characterize exactly the set of density
operators.
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Quantum dynamics

A super-operator E over Hilbert space H is a linear map on the
space of linear operators on H.

I E is trace-preserving, if tr(E(A)) = tr(A) for any positive
operator A.

I E is completely positive, if for any auxiliary space H′ and any
positive operator σ on the tensor Hilbert space H′ ⊗H,
(IH′ ⊗ E)(σ) is also a positive operator on H′ ⊗H.
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Quantum dynamics

I The evolution of a quantum system is described by a
super-operator

ρ′ = E(ρ)



Quantum measurements

I An observable A is a Hermitian operator, A† = A. Let

A = ∑
k

λkPk ,

where Pk is the eigenspace associated with λk .

I If we measure ρ by the observable A, then we obtain the
result k with probability

pk = tr(Pkρ)

I The measurement disturbs the system, leaving it in a state
PkρPk/pk determined by the outcome.
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Syntax of qCCS

The syntax of qCCS:

nil | pref .P | P +Q | P‖Q | P\L | if b then P | A(q̃; x̃)

where

pref ::= τ | c?x | c !e | c?q | c !q | E [q̃] | M [q̃; x ]



Further requirements

I c?x .d !x .d !x .0

6⇒ c?r .d !r .d !r .0

I Quantum no-cloning theorem!



Syntax of qCCS, cont’d

For a process to be legal, we require

1. q 6∈ qv(P) in the process c !q.P;

2. qv(P) ∩ qv(Q) = ∅ in the process P || Q.



Operational Semantics of qCCS

A pair of the form
〈P, ρ〉

is a configuration, where P is a closed quantum process and ρ is a
density operator. The set of configurations is denoted by Con. We
let C,D, . . . range over Con.



Operational Semantics of qCCS

Let

Act = {τ} ∪ {c?v , c !v | c classical channel, v real number} ∪
{c?r , c !r | c quantum channel, r quantum variable},

and D(Con) be the set of finite-support probability distributions
over Con.

The semantics of qCCS is given by the probabilistic labeled
transition system (Con,Act,→), where→ ⊆ Con×Act ×D(Con)
is the smallest relation satisfying some rules.



An example: Teleportation

Quantum teleportation [Bennett, Brassard, Crepeau, Jozsa, Peres,
and Wootters, PRL 1993] makes use of a maximally entangled
state to teleport an unknown quantum state by sending only
classical information.

It serves as a key ingredient in many other quantum
communication protocols.



An example: Teleportation

H ✒

ZM1XM2

M1

M2

|ψ〉

|ψ〉

|Ψ〉
✒

Let

Alice := CNot[q, q1].H [q].M [q, q1; x ].c !x .nil

Bob := c?x .Ux [q2].nil

Telep := (Alice‖Bob)\{c}

Here M = ∑3
i=0 λi |ĩ〉〈ĩ |, and

Ux [q2].nil := if x = λ0 then σ0[q2].nil + if x = λ1 then σ1[q2].nil

+ if x = λ2 then σ3[q2].nil + if x = λ3 then σ2[q2].nil.



〈Telep, [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉)]〉

〈(c!λ0.nil‖Bob)\{c},
[α|000〉+ β|001〉]〉

τ

〈(H [q].M [q, q1;x].c!x.nil‖Bob)\{c}, [ 1√
2
(α(|000〉+ |011〉) + β(|110〉+ |101〉))]〉

〈(M [q, q1;x].c!x.nil‖Bob)\{c}, [ 12 (α(|000〉+ |100〉+ |011〉+ |111〉) + β(|010〉 − |110〉+ |001〉 − |101〉))]〉

〈(c!λ1.nil‖Bob)\{c},
[α|011〉+ β|010〉]〉

〈(c!λ2.nil‖Bob)\{c},
[α|100〉 − β|101〉]〉

〈(c!λ3.nil‖Bob)\{c},
[α|111〉 − β|110〉]〉

❄
τ

❄
τ

✾ ❂ $ ③

❄
τ

❄
τ

〈(nil‖σ1[q2].nil)\{c},
[|01〉 ⊗ (α|1〉+ β|0〉)]〉

〈(nil‖σ3[q2].nil)\{c},
[|10〉 ⊗ (α|0〉 − β|1〉)]〉

〈(nil‖σ2[q2].nil)\{c},
[|11〉 ⊗ (α|1〉 − β|0〉)]〉

〈(nil‖σ0[q2].nil)\{c},
[|00〉 ⊗ (α|0〉+ β|1〉)]〉

❄
τ

1/4 1/4 1/4
1/4

❄
τ

❄
τ

❄
τ

〈(nil‖nil)\{c},
[|01〉 ⊗ (α|0〉+ β|1〉)]〉

〈(nil‖nil)\{c},
[|10〉 ⊗ (α|0〉+ β|1〉)]〉

〈(nil‖nil)\{c},
[|11〉 ⊗ (α|0〉+ β|1〉)]〉

〈(nil‖nil)\{c},
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❄
τ

❄

❄
τ
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Lifted relation

Lift R ⊆ S × S to R◦ ⊆ Dist(S)×Dist(S) :

1. sRt implies s R◦ t;

2. ∆i R◦ Θi for all i ∈ I implies (∑i∈I pi · ∆i ) R◦ (∑i∈I pi ·Θi )
for any pi ∈ [0, 1] with ∑i∈I pi = 1, where I is a countable
index set.

There are alternative formulations; related to the Kantorovich

metric and the network flow problem. See e.g.

http://www.springer.com/978-3-662-45197-7

http://www.springer.com/978-3-662-45197-7


Lifted relation

Lift R ⊆ S × S to R◦ ⊆ Dist(S)×Dist(S) :

1. sRt implies s R◦ t;

2. ∆i R◦ Θi for all i ∈ I implies (∑i∈I pi · ∆i ) R◦ (∑i∈I pi ·Θi )
for any pi ∈ [0, 1] with ∑i∈I pi = 1, where I is a countable
index set.

There are alternative formulations; related to the Kantorovich

metric and the network flow problem. See e.g.

http://www.springer.com/978-3-662-45197-7

http://www.springer.com/978-3-662-45197-7


Lifted relation

Lift R ⊆ S × S to R◦ ⊆ Dist(S)×Dist(S) :

1. sRt implies s R◦ t;

2. ∆i R◦ Θi for all i ∈ I implies (∑i∈I pi · ∆i ) R◦ (∑i∈I pi ·Θi )
for any pi ∈ [0, 1] with ∑i∈I pi = 1, where I is a countable
index set.

There are alternative formulations; related to the Kantorovich

metric and the network flow problem. See e.g.

http://www.springer.com/978-3-662-45197-7

http://www.springer.com/978-3-662-45197-7


Four criteria to judge equivalence

A relation R is

I barb-preserving if CRD implies that C ⇓≥pc iff D ⇓≥pc for any
p ∈ [0, 1] and any classical channel c , where C ⇓≥pc holds if

C τ̂
=⇒ ∆ for some ∆ with

∑{∆(C ′) | C ′ c !v−→ for some v} ≥ p;

I reduction-closed if CRD implies

I whenever C τ̂
=⇒ ∆, there exists Θ such that D τ̂

=⇒ Θ and
∆ R◦ Θ,

I whenever D τ̂
=⇒ Θ, there exists ∆ such that C τ̂

=⇒ ∆ and
∆ R◦ Θ;
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Four criteria to judge equivalence, cont.

I compositional if CRD implies (C||R)R(D||R) for any
process R with qv(R) disjoint from qv(C) ∪ qv(D),

I closed under super-operator application, if CRD implies
E(C)RE(D) for any E ∈ SO(H

qv (C)).
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Reduction barbed congruence

Originated in [Honda & Tokoro 1995].

Let reduction barbed congruence, written ≈r , be the largest
relation over configurations which is

I barb-preserving,

I reduction-closed,

I compositional,

I closed under super-operator application,

I and furthermore, if C ≈r D then qv(C) = qv(D) and
env(C) = env(D).
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Open bisimulation

Inspired by [Sangorigi 1996].

A relation R ⊆ Con× Con is an open simulation if CRD implies
that

I qv(C) = qv(D), and env(C) = env(D),
I for any E ∈ SO(H

qv (C)), whenever E(C) α−→ ∆, there is

some Θ with E(D) α̂
=⇒ Θ and ∆ R◦ Θ.

A relation R is an open bisimulation if both R and R−1 are open
simulations. We let ≈o be the largest open bisimulation.



Theorem : Congruence

I The relation ≈o between processes is preserved by all the
constructors of qCCS except for summation.

I C ≈o D if and only if C ≈r D.
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An equivalence for super-operators

Let v be the Löwner preorder defined on operators: A v B if and
only if B − A is positive semi-definite.

For two super-operators A,B on H, let A .V B if for any
ρ ∈ D(H), trV (A(ρ)) v trV (B(ρ)), where V is the complement
set of V in qVar .

Let hV be .V ∩ &V and we abbreviate .∅ and h∅ to . and h,
respectively.



Super-operator valued distributions

A super-operator valued distribution ∆ over S is a function from S
to SO(H) such that ∑s∈S ∆(s) h IH.

Let DistH(S) be the set of finite-support super-operator valued
distributions over S .



Symbolic semantics

Inspired by [Hennessy & Lin 1995]

A pair of the form Lt, EM, where t ∈ T and E ∈ SOt(H), is called
a snapshot. The set of snapshots is denoted by SN.

The symbolic semantics of qCCS is given by the qLTS
(SN,BActs ,→) on snapshots, where
→ ⊆ SN × BActs ×DistH(SN) is the smallest relation satisfying
a few rules.



Symbolic semantics

E.g.

where

Aφi

r̃ : ρ 7→ |φi 〉r̃ 〈φi |ρ|φi 〉r̃ 〈φi | (1)

Set
φi

r̃ : ρ 7→∑
j∈I
|φi 〉r̃ 〈φj |ρ|φj 〉r̃ 〈φi |. (2)



Symbolic semantics

LQ, IHM

tt, τtt, τ

LP, IHM

Set0q

❄

Lnil, Set0qM

❄

LQ0, Set
0
qM LQ1, Set

1
qM

✙ ❘

0 = 0, τ 0 = 1, τ

Lnil, Set0qM
✠ ❥

1 = 0, τ 1 = 1, τ

Lnil, Set1qMXq

Lnil, Set1qM

Xq

Lnil, Set0qM

A1A0

❄

LI[q].nil, Set0qM

tt, τ



Symbolic bisimulation

Definition
Let S = {Sb : b ∈ BExp} be a family of equivalence relations on
SN. S is called a symbolic (strong open) bisimulation if for any
b ∈ BExp, Lt, EMSbLu,FM implies that

1. qv(t) = qv(u) and E h
qv (t) F , if b is satisfiable;

2. for any G ∈ SOt(Hqv (t)), whenever Lt,GEM b1,γ→ ∆ with

bv(γ) ∩ fv(b, t, u) = ∅, there exists a collection of booleans
B such that b ∧ b1 →

∨
B and ∀ b′ ∈ B, ∃b2, γ′ with

b′ → b2, γ =b′ γ′, Lu,GFM b2,γ
′

→ Ξ, and
(GE • ∆)Sb′(GF • Ξ).



Ground bisimulation

Definition
A family of equivalence relations {Sb : b ∈ BExp} is called a
symbolic ground bisimulation if for any b ∈ BExp, Lt, EMSbLu,FM
implies that

1. qv(t) = qv(u) and E h
qv (t) F , if b is satisfiable,

2. whenever Lt, EM b1,γ→ ∆ with bv(γ) ∩ fv(b, t, u) = ∅, there
exists a collection of booleans B such that b ∧ b1 →

∨
B and

∀ b′ ∈ B, ∃b2, γ′ with b′ → b2, γ =b′ γ′, Lu,FM b2,γ
′

→ Ξ, and
(E • ∆)Sb′(F • Ξ).



Closure under super-operator application

Definition
A relation S on SN is said to be closed under super-operator
application if Lt, EMSLu,FM implies Lt,GEMSLu,GFM for any
G ∈ SOt(Hqv (t)).

Theorem
A family of equivalence relations {Sb : b ∈ BExp} is a symbolic
bisimulation if and only if it is both a ground bisimulation and
closed under super-operator application.



Special case

Theorem
If t and u are both free of quantum input, then Lt, EM ∼b

s Lu,FM if
and only if Lt, EM ∼b

g Lu,FM.



Symbolic bisimilarity

Theorem

1. For each b ∈ BExp, ∼b
s is an equivalence relation.

2. The family {∼b
s : b ∈ BExp} is a symbolic bisimulation.



Symbolic vs open bisimulation

Theorem

1. t ∼b
s u if and only if for any evaluation ψ, ψ(b) = tt implies

tψ ∼o uψ.

2. t ∼s u if and only if t ∼o u.
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The algorithm
Bisim(t,u) = Match(t,u, tt,∅)

Match(t,u, b,W ) = where t = Lt, EM and u = Lu,FM
if (t,u) ∈W then

(θ,T ) := (tt,∅)
else

for γ ∈ Act(t,u) do
(θγ ,Tγ) := MatchAction(γ, t,u, b,W )

end
(θ,T ) := (

∧
γ θγ ,

⊔
γ(Tγ t {(t,u) 7→ (b ∧∧

γ θγ)}))
end
return (θ ∧ (qv (t) = qv (u)) ∧ (E h

qv (t)
F ),T )

MatchAction(γ, t,u, b,W ) =
...
case τ

for t
bi ,τ−→ ∆i and u

b′j ,τ−→ Θj do
(θij ,Tij ) := MatchDistribution(∆i ,Θj , b ∧ bi ∧ b′j , {(t,u)} ∪W )

end

return (
∧
i (bi →

∨
j (b
′
j ∧ θij )) ∧

∧
j (b
′
j →

∨
i (bi ∧ θij )),

⊔
ij Tij )

endsw
...

MatchDistribution(∆,Θ, b,W )=
for ti ∈ d∆e and uj ∈ dΘe do

(θij ,Tij ) := Match(ti ,uj , b,W )

end
R := {(t,u) | b → (

⊔
ij Tij )(t,u)}∗

return (Check(∆,Θ,R), ⊔
ij Tij )

Check(∆,Θ,R) =
θ := tt

for S ∈ d∆e ∪ dΘe/R do
θ := θ ∧ (∆(S) h Θ(S))

end
return θ



Correctness

Theorem
For two snapshots t and u, the function Bisim(t, u) terminates.
Moreover, if Bisim(t, u) = (θ,T ) then T (t, u) = θ = mgb(t, u).



Complexity

Assume the ability of real computation, the worst case time
complexity of executing Bisim(t, u) is O(n5/ log n). To implement
the algorithm, we have to approximate super-operators using
matrices of algebraic or even rational numbers, thus increase the
complexity.
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Quantum while-language [Ying 2011]



Quantum programs



Notations



Operational semantics (selected rules)



Semantic function









Hoare logic for partial correctness (selected rules)
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