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Relational properties

Properties about two runs of the same program

I Assume inputs are related by Ψ

I Want to prove the outputs are related by Φ



Examples
Monotonicity

I Ψ : in1 ≤ in2

I Φ : out1 ≤ out2
I “Bigger inputs give bigger outputs”

Stability

I Ψ : inp1 ∼ inp2

I Φ : out1 ∼ out2
I “If inputs are similar, then outputs are similar”

Non-interference
I Ψ : lowinp1 = lowinp2

I Φ : lowout1 = lowout2
I “If low inputs are equal, then low outputs are equal”
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Probabilistic relational properties
Monotonicity

I Ψ : in1 ≤ in2

I Φ : Pr [out1 ≥ k ] ≤ Pr [out2 ≥ k ]

Stability

I Ψ : in1 ∼ in2

I Φ : Pr [out1 = k ] ∼ Pr [out2 = k ]

Non-interference
I Ψ : lowinp1 = lowinp2

I Φ : Pr [lowout1 = k ] = Pr [lowout2 = k ]

Richer properties

I Indistinguishability, differential privacy
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Probabilistic couplings

I Used by mathematicians for proving relational properties
I Applications: Markov chains, probabilistic processes

Idea
I Place two processes in the same probability space
I Coordinate the sampling

Why is this interesting?

I Proving relational probabilistic properties reduced to
proving non-relational non-probabilistic properties

I Compositional
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Introducing probabilistic couplings

Basic ingredients

I Given: two distributions X1,X2 over set A
I Produce: joint distribution Y over A× A

I Projection over the first component is X1
I Projection over the second component is X2

Definition
Given two distributions X1,X2 over a set A, a coupling Y is a
distribution over A× A such that π1(Y ) = X1 and π2(Y ) = X2

where
π1(Y )(a1) =

∑
a2

Y (a1,a2)
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Fair coin toss

I One way to coordinate: require x1 = x2

I A different way: require x1 = ¬x2

I Yet another way: product distribution
I Choice of coupling depends on application
I Couplings always exist



Couplings vs liftings

Let µ1, µ2 ∈ Distr(A), µ ∈ Distr(A× A) and R ⊆ A× A. Then
µ JR 〈µ1 & µ2〉 , π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ Pry←µ[y ∈ R] = 1

Different couplings yield liftings for different relations



Convergence of random walks

Simple random walk on integers

I Start at some position p
I Each step, flip coin x $← flip
I Heads: p ← p + 1
I Tails: p ← p − 1

1/2

1/2
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Coupling the walks to meet

Case p1 = p2: Walks have met

I Arrange samplings x1 = x2

I Continue to have p1 = p2

Case p1 6= p2: Walks have not met

I Arrange samplings x1 = ¬x2

I Walks make mirror moves

Under coupling, if walks meet, they move together
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Why is this interesting?

Memorylessness
Positions converge as we take more steps

Coupling bounds distance between distributions

I Once walks meet, they stay equal
I Distance is at most probability walks don’t meet

Theorem
If Y is a coupling of two distributions (X1,X2), then

‖X1 − X2‖TV ,
∑
a∈A

|X1(a)− X2(a)| ≤ Pr
(y1,y2)∼Y

[y1 6= y2].
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probabilistic Relational Hoare Logic

` {P}c1∼ c2{Q} iff there exists µ such that

P(m1 ]m2)⇒ µ JQ 〈Jc1K m1 & Jc2K m2〉

where
µ JR 〈µ1 & µ2〉 , π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ supp(µ) ⊆ R

Fundamental lemma of pRHL
If Q , E1 ⇒ E2 then Pr(Jc1Km1)[E1] ≤ Pr(Jc2Km2)[E2]



Core rules

{Φ}c1∼ c2{Θ} {Θ}c′1∼ c′2{Ψ}
{Φ}c1; c′1∼ c2; c′2{Ψ}

{Φ ∧ b1 ∧ b2}c1∼ c2{Ψ} {Φ ∧ ¬b1 ∧ ¬b2}c′1∼ c′2{Ψ}
{Φ ∧ b1 = b2}if b1 then c1 else c′1∼ if b2 then c2 else c′2{Ψ}

{Φ ∧ b1 ∧ b2}c1∼ c2{Φ ∧ b1 = b2}
{Φ ∧ b1 = b2}while b1 do c1∼while b2 do c2{Φ ∧ ¬b1 ∧ ¬b2}



Loops

I Benton: same number of iterations
I EasyCrypt (≤ 2015): one-sided rules
I EasyCrypt (2016): asynchronous loop rule

=⇒ relatively complete, subsumes 1-sided rules

Ψ =⇒ p0 ⊕ p1 ⊕ p2
Ψ ∧ p0 =⇒ e1 ∧ e2 Ψ ∧ p1 =⇒ e1 Ψ ∧ p2 =⇒ e2

while e1 ∧ p1 do c1 ⇓ while e2 ∧ p2 do c2
{Ψ ∧ p1}c1∼ skip{Ψ} {Ψ ∧ p2}skip∼ c2{Ψ}

{Ψ ∧ p0}c1∼ c2{Ψ}
{Ψ}while e1 do c1∼while e2 do c2{Ψ ∧ ¬e1 ∧ ¬e2}

Example
x ← 0; i ← 0; while i ≤ N do (x += i ; i++)
y ← 0; j ← 1; while j ≤ N do (y += j ; j++)



Rule for random assignment

µ JQ 〈µ1 & µ2〉
` {>}x1 $← µ1∼ x2 $← µ2{Q}

Specialized rule

f ∈ T 1−1−→ T ∀v ∈ T . d1(v) = d2(f v)

` {∀v ,Q[v/x1, f v/x2]}x1 $← µ1∼ x2 $← µ2{Q}

Notes
I Bijection f : specifies how to coordinate the samples
I Side condition: marginals are preserved under f
I Assume: samples coupled when proving postcondition Φ



Proofs as (products) programs: xpRHL

I Every pRHL derivation yields a product program
I Different derivations yield different programs
I Can be modelled by a proof system

` {Φ}c1∼ c2{Ψ}; c

Fundamental lemma of xpRHL

I ` {Φ}c1∼ c2{Ψ =⇒ x1 = x2}; c
I {2Φ} c {Pr[¬Ψ] ≤ ε}

implies

m1 Φ m2 ⇒
∣∣Pr(Jc1K m1)[E(x1)]− Pr(Jc2K m2)[E(x2)]

∣∣ ≤ ε



Dynkin’s card trick (shift coupling)

p ← s; l ← [p];
while p < N do

n $← [1, 10];
p ← p + n;
l ← p :: l ;

return p

p1 ← s1; p2 ← s2;
l1 ← [p1]; l2 ← [p2];
while n1 < N ∨ n2 < N do

if p1 = p2 then
n $← ([1, 10]);
p1 ← p1 + n; p2 ← p2 + n;
l1 ← p1 :: l1; l2 ← p2 :: l2;

else
if p1 < p2 then

n1
$← [1, 10];

p1 ← p1 + n1;
l1 ← p1 :: l1;

else
n2

$← [1, 10];
p2 ← p2 + n2;
l2 ← p2 :: l2;

return (p1, p2)

Convergence
If s1, s2 ∈ [1,10], and N > 10, then ∆(pfinal

1 ,pfinal
2 ) ≤ (9/10)N/5−2



Applications to cryptography

Experiment G1

I Cryptosystem
I Adversary A
I Winning condition E

Experiment G2

I Hardness assumption
I Adversary B
I Winning condition F

For all adversary A, there exists adversary B s.t. tA ≈ tB and

PrG1 [E ] ≤ q · PrG2 [F ] + δ
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I Cryptosystem
I Adversary A
I Winning condition E

Experiment G2

I Hardness assumption
I Adversary B
I Winning condition F

For all adversary A, there exists adversary B s.t. tA ≈ tB and
I ` {>}G1∼G2{E ⇒ (F ′ ∨ Fbad )}
I PrG2 [F ′] ≤ q · PrG2 [F ] and PrG2 [Fbad ] ≤ δ



Formalizing cryptographic proofs?

I In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor. Bellare and Rogaway, 2004-2006

I Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect). Halevi, 2005

OAEP

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2011

BGLZ



Provable security of OAEP

Game INDCCA(A) :
(sk ,pk)← K( );

(m0,m1)← AG,H,D1 (pk);
b $← {0,1};
c? ← Epk (mb);

b ← AG,H,D2 (c?);

return (b = b)

Encryption
EOAEP(pk)(m) :
r $← {0,1}k0 ;
s ← G(r)⊕ (m ‖ 0k1 );
t ← H(s)⊕ r ;
return fpk (s ‖ t)

Decryption . . .

Game sPDOW(I)
(sk ,pk)← K();
y0 $← {0,1}n0 ;
y1 $← {0,1}n1 ;
x? ← fpk (y0 ‖ y1);

Y ← I(x?);

return (y0 ∈ Y )

FOR ALL IND-CCA adversary A against (K, EOAEP,DOAEP),
THERE EXISTS a sPDOW adversary I against (K, f, f−1) st

∣∣PrIND-CCA(A)

[
b = b

]
− 1

2

∣∣ ≤ PrPDOW(I)
[
y0 ∈ Y

]
+

3qDqG+q2
D+4qD+qG

2k0
+ 2qD

2k1

and
tI ≤ tA + qD qG qH Tf



The code-based game-playing approach

I Everything is a probabilistic program
I Decompose the proof in sequence of transitions
I Prove each transition using pRHL
I Bound prob. of events w/ non-relational logic



Typical couplings

I Bridging step: µ1 =# µ2, then for every event X ,

Prz←µ1 [X ] = Prz←µ2 [X ]

I Failure Event: If x R y iff F (x)⇒ x = y and F (x)⇔ F (y),
then for every event X ,

|Prz←µ1 [X ]− Prz←µ2 [X ]| ≤ max (Prz←µ1 [¬F ],Prz←µ2 [¬F ])

I Reduction: If x R y iff F (x)⇒ G(y), then

Prx←µ2 [G] ≤ Pry←µ1 [F ]



EasyCrypt

I Interactive proof assistant
I backend to SMT solvers, CAS, etc.
I encryption, signatures, hash designs, key exchange

protocols, zero knowledge protocols, garbled circuits. . .
I SHA3, e-voting

I Back-end for automated tools
I Front-end for certified compilers



approximate probabilistic Relational Hoare Logic
I Quantitative generalization of pRHL `ε,δ {P}c1∼ c2{Q}
I Valid if there exists µL, µR such that

P(m1 ]m2) =⇒ µL, µR Jε,δ
Q 〈Jc1K m1 & Jc2K m2〉

where

µL, µR Jε,δ
Q 〈µ1 & µ2〉 ,


π1(µL) = µ1 ∧ π2(µR) = µ2
supp(µL), supp(µR) ⊆ Q
∆ε(µ1, µ2) ≤ δ

I Fundamental theorem of apRHL: if Q , E1 ⇒ E2 then

Pr(Jc1K m1)[E1] ≤ exp(ε)Pr(Jc2K m2)[E2] + δ

I Extends to f -divergences



Application: differential privacy

Query

Bounded
ratio

A randomized algorithm K is (ε, δ)-differentially private w.r.t. Φ
iff for all databases D1 and D2 s.t. Φ(D1,D2)

∀S. Pr[K(D1) ∈ S] ≤ exp(ε) · Pr[K(D2) ∈ S] + δ

Privacy as approximate couplings
K is (ε, δ)-differentially private wrt Φ iff `ε,δ {Φ}K1∼K2{≡}
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Differential privacy via output perturbation

Let f be k -sensitive w.r.t. Φ:

Φ(a,a′) =⇒ |f a− f a′| ≤ k

Then a 7→ Lapε(f (a)) is (k · ε,0)-differentially private w.r.t. Φ



Proof principles for Laplace mechanism

Making different things look equal

Φ , |e1 − e2| ≤ k ′

`k ′·ε,0 {Φ}y1 $← Lε(e1)∼ y2 $← Lε(e2){y1 = y2}

Making equal things look different

Φ , e1 = e2

`k·ε,0 {Φ}y1 $← Lε(e1)∼ y2 $← Lε(e2){y1 + k = y2}

Pointwise equality

∀i . `ε,0 {Φ}c1∼ c2{x1 = i ⇒ x2 = i}
`ε,0 {Φ}c1∼ c2{x1 = x2}



Differential privacy by sequential composition

I If K is (ε, δ)-differentially private, and
I λa. K′(a,b) is (ε′, δ′)-differentially private for every b ∈ B,
I then λa. K′(a,K(a)) is (ε+ ε′, δ + δ′)-differentially private

(ε+ε′, δ + δ′)-dpriv

(ε, δ)-dpriv

(ε′, δ′)-dpriv



Beyond composition: Sparse Vector Technique

SparseVectorbt (a,b,M,N,d) :=
i ← 0; l ← []; u $← Lε(0); A← a− u; B ← b + u;
while i < N do

i ← i + 1; q ← A(l); S $← Lε(q(d));
if (A ≤ S ≤ B ∧ |l | < M) then l ← i :: l ;

return l

Privacy
If queries are 1-sensitive, then (

√
Mε, δ′)-diff. private

Tools
I advanced composition
I accuracy-dependent privacy
I optimal subset coupling



Perspectives and further directions

Language-based techniques
I for provable security and differential privacy
I based on probabilistic couplings

Open questions
I semantical foundations of approximate couplings
I applications to security (complexity of attacks)


