Probabilistic couplings for cryptography and privacy

Gilles Barthe IMDEA Software Institute, Madrid, Spain

September 13, 2016

(ロ) (同) (三) (三) (三) (○) (○)

Relational properties

Properties about two runs of the same program

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Assume inputs are related by Ψ
- Want to prove the outputs are related by Φ

Examples

Monotonicity

- Ψ : $in_1 \leq in_2$
- Φ : $out_1 \leq out_2$
- "Bigger inputs give bigger outputs"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Examples

Monotonicity

- Ψ : $in_1 \leq in_2$
- Φ : $out_1 \leq out_2$
- "Bigger inputs give bigger outputs"

Stability

- Ψ : inp₁ \sim inp₂
- Φ : $out_1 \sim out_2$
- "If inputs are similar, then outputs are similar"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples

Monotonicity

- Ψ : $in_1 \leq in_2$
- Φ : $out_1 \leq out_2$
- "Bigger inputs give bigger outputs"

Stability

- Ψ : inp₁ \sim inp₂
- Φ : $out_1 \sim out_2$
- "If inputs are similar, then outputs are similar"

Non-interference

- Ψ : $Iowinp_1 = Iowinp_2$
- Φ : lowout₁ = lowout₂
- "If low inputs are equal, then low outputs are equal"

(ロ) (同) (三) (三) (三) (○) (○)

•
$$\Psi$$
 : $in_1 \leq in_2$

• Φ : $\Pr[out_1 \ge k] \le \Pr[out_2 \ge k]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Ψ : $in_1 \leq in_2$
- Φ : $\Pr[out_1 \ge k] \le \Pr[out_2 \ge k]$

Stability

- Ψ : $in_1 \sim in_2$
- Φ : $\Pr[out_1 = k] \sim \Pr[out_2 = k]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Ψ : $in_1 \leq in_2$
- Φ : $\Pr[out_1 \ge k] \le \Pr[out_2 \ge k]$

Stability

•
$$\Psi$$
 : $in_1 \sim in_2$

•
$$\Phi$$
 : $\Pr[out_1 = k] \sim \Pr[out_2 = k]$

Non-interference

- Ψ : $Iowinp_1 = Iowinp_2$
- Φ : $\Pr[lowout_1 = k] = \Pr[lowout_2 = k]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Ψ : $in_1 \leq in_2$
- Φ : $\Pr[out_1 \ge k] \le \Pr[out_2 \ge k]$

Stability

•
$$\Psi$$
 : in₁ \sim in₂

•
$$\Phi$$
 : $\Pr[out_1 = k] \sim \Pr[out_2 = k]$

Non-interference

- Ψ : $Iowinp_1 = Iowinp_2$
- Φ : $\Pr[lowout_1 = k] = \Pr[lowout_2 = k]$

Richer properties

Indistinguishability, differential privacy

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Probabilistic couplings

Used by mathematicians for proving relational properties

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Probabilistic couplings

- Used by mathematicians for proving relational properties
- Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Why is this interesting?

- Proving relational probabilistic properties reduced to proving non-relational non-probabilistic properties
- Compositional

Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X₁, X₂ over set A
- Produce: joint distribution *Y* over $A \times A$
 - Projection over the first component is X₁
 - Projection over the second component is X₂

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introducing probabilistic couplings

Basic ingredients

- ▶ Given: two distributions *X*₁, *X*₂ over set *A*
- Produce: joint distribution Y over $A \times A$
 - Projection over the first component is X₁
 - Projection over the second component is X₂

Definition

Given two distributions X_1 , X_2 over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_1(Y) = X_1$ and $\pi_2(Y) = X_2$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X₁, X₂ over set A
- Produce: joint distribution Y over $A \times A$
 - Projection over the first component is X₁
 - Projection over the second component is X₂

Definition

Given two distributions X_1, X_2 over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_1(Y) = X_1$ and $\pi_2(Y) = X_2$ where

$$\pi_1(Y)(a_1) = \sum_{a_2} Y(a_1, a_2)$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Fair coin toss

- One way to coordinate: require x₁ = x₂
- A different way: require $x_1 = \neg x_2$
- Yet another way: product distribution
- Choice of coupling depends on application

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Couplings always exist

Couplings vs liftings

Let $\mu_1, \mu_2 \in \text{Distr}(A)$, $\mu \in \text{Distr}(A \times A)$ and $R \subseteq A \times A$. Then $\mu \blacktriangleleft_R \langle \mu_1 \And \mu_2 \rangle \triangleq \pi_1(\mu) = \mu_1 \land \pi_2(\mu) = \mu_2 \land \Pr_{y \leftarrow \mu}[y \in R] = 1$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Different couplings yield liftings for different relations

Convergence of random walks

Simple random walk on integers

- Start at some position p
- Each step, flip coin $x \stackrel{s}{\leftarrow} flip$

(ロ) (同) (三) (三) (三) (三) (○) (○)

- ► Heads: *p* ← *p* + 1
- Tails: $p \leftarrow p 1$

Convergence of random walks

Simple random walk on integers

- Start at some position p
- Each step, flip coin $x \stackrel{s}{\leftarrow} flip$
- ► Heads: *p* ← *p* + 1
- Tails: $p \leftarrow p 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

Arrange samplings x₁ = x₂

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Continue to have $p_1 = p_2$

Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings x₁ = x₂
- Continue to have $p_1 = p_2$

Case $p_1 \neq p_2$: Walks have not met

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Arrange samplings $x_1 = \neg x_2$
- Walks make mirror moves

Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings x₁ = x₂
- Continue to have p₁ = p₂

Case $p_1 \neq p_2$: Walks have not met

- Arrange samplings $x_1 = \neg x_2$
- Walks make mirror moves

Under coupling, if walks meet, they move together

Memorylessness

Positions converge as we take more steps

Memorylessness

Positions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Memorylessness

Positions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Theorem If Y is a coupling of two distributions (X_1, X_2) , then

$$\|X_1 - X_2\|_{TV} \triangleq \sum_{a \in A} |X_1(a) - X_2(a)| \le \Pr_{(y_1, y_2) \sim Y} [y_1 \neq y_2].$$

Memorylessness

Positions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Theorem If Y is a coupling of two distributions (X_1, X_2) , then

$$\|X_1 - X_2\|_{TV} \triangleq \sum_{a \in A} |X_1(a) - X_2(a)| \le \Pr_{(y_1, y_2) \sim Y} [y_1 \neq y_2].$$

probabilistic Relational Hoare Logic

 \vdash {*P*}*c*₁ ~ *c*₂{*Q*} iff there exists μ such that

 $P(m_1 \uplus m_2) \Rightarrow \mu \blacktriangleleft_Q \langle \llbracket c_1 \rrbracket m_1 \And \llbracket c_2 \rrbracket m_2 \rangle$

where

 $\mu \blacktriangleleft_R \langle \mu_1 \& \mu_2 \rangle \triangleq \pi_1(\mu) = \mu_1 \land \pi_2(\mu) = \mu_2 \land \operatorname{supp}(\mu) \subseteq R$ Fundamental lemma of pRHL If $Q \triangleq E_1 \Rightarrow E_2$ then $\operatorname{Pr}_{(\llbracket c_1 \rrbracket m_1)}[E_1] \leq \operatorname{Pr}_{(\llbracket c_2 \rrbracket m_2)}[E_2]$

A D F A 同 F A E F A E F A Q A

Core rules

$$\frac{\{\Phi\}c_1 \sim c_2\{\Theta\} \quad \{\Theta\}c_1' \sim c_2'\{\Psi\}}{\{\Phi\}c_1; c_1' \sim c_2; c_2'\{\Psi\}}$$

$$\frac{\{\Phi \land b_1 \land b_2\}c_1 \sim c_2\{\Psi\} \quad \{\Phi \land \neg b_1 \land \neg b_2\}c'_1 \sim c'_2\{\Psi\}}{\{\Phi \land b_1 = b_2\} \text{if } b_1 \text{ then } c_1 \text{ else } c'_1 \sim \text{if } b_2 \text{ then } c_2 \text{ else } c'_2\{\Psi\}}$$

 $\frac{\{\Phi \land b_1 \land b_2\}c_1 \sim c_2\{\Phi \land b_1 = b_2\}}{\{\Phi \land b_1 = b_2\} \text{while } b_1 \text{ do } c_1 \sim \text{while } b_2 \text{ do } c_2\{\Phi \land \neg b_1 \land \neg b_2\}}$

Loops

- Benton: same number of iterations
- ► EasyCrypt (≤ 2015): one-sided rules
- EasyCrypt (2016): asynchronous loop rule
 relatively complete, subsumes 1-sided rules

$$\begin{split} \Psi &\Longrightarrow p_0 \oplus p_1 \oplus p_2 \\ \Psi \wedge p_0 &\Longrightarrow e_1 \wedge e_2 \quad \Psi \wedge p_1 \Longrightarrow e_1 \quad \Psi \wedge p_2 \Longrightarrow e_2 \\ \text{while } e_1 \wedge p_1 \text{ do } c_1 \Downarrow \text{ while } e_2 \wedge p_2 \text{ do } c_2 \\ \{\Psi \wedge p_1\}c_1 \sim \text{skip}\{\Psi\} \quad \{\Psi \wedge p_2\}\text{skip} \sim c_2\{\Psi\} \\ \{\Psi \wedge p_0\}c_1 \sim c_2\{\Psi\} \end{split}$$

 $\{\Psi\}$ while e_1 do $c_1 \sim$ while e_2 do $c_2\{\Psi \land \neg e_1 \land \neg e_2\}$

Example $x \leftarrow 0; i \leftarrow 0;$ while $i \le N \operatorname{do} (x + = i; i + +)$ $y \leftarrow 0; j \leftarrow 1;$ while $j \le N \operatorname{do} (y + = j; j + +)$ Rule for random assignment

$$\frac{\mu \blacktriangleleft_Q \langle \mu_1 \& \mu_2 \rangle}{\vdash \{\top\} x_1 \stackrel{s}{\leftarrow} \mu_1 \sim x_2 \stackrel{s}{\leftarrow} \mu_2 \{Q\}}$$

Specialized rule

$$\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v)}{\vdash \{\forall v, Q[v/x_1, f \ v/x_2]\} x_1 \stackrel{s}{\leftarrow} \mu_1 \sim x_2 \stackrel{s}{\leftarrow} \mu_2\{Q\}}$$

Notes

- Bijection f: specifies how to coordinate the samples
- Side condition: marginals are preserved under f
- Assume: samples coupled when proving postcondition

Proofs as (products) programs: xpRHL

- Every pRHL derivation yields a product program
- Different derivations yield different programs
- Can be modelled by a proof system $\vdash \{\Phi\}_{C_1} \sim C_2\{\Psi\} \sim C_2$

Fundamental lemma of xpRHL

- $\blacktriangleright \vdash \{\Phi\} c_1 \sim c_2 \{\Psi \implies x_1 = x_2\} \rightsquigarrow c$
- $\{\Box \Phi\} c \{\Pr[\neg \Psi] \le \epsilon\}$

implies

 $m_1 \Phi m_2 \Rightarrow \left| \Pr_{\left(\begin{bmatrix} c_1 \end{bmatrix} m_1 \right)}[E(x_1)] - \Pr_{\left(\begin{bmatrix} c_2 \end{bmatrix} m_2 \right)}[E(x_2)] \right| \leq \epsilon$

Dynkin's card trick (shift coupling)

 $p \leftarrow s; l \leftarrow [p];$ while p < N do $n \stackrel{s}{\leftarrow} [1, 10];$ $p \leftarrow p + n;$ $l \leftarrow p :: l;$ return p $p_1 \leftarrow s_1; p_2 \leftarrow s_2;$ $l_1 \leftarrow [p_1]; l_2 \leftarrow [p_2];$ while $n_1 < N \lor n_2 < N$ do if $p_1 = p_2$ then $n \stackrel{\hspace{0.1em} {\scriptstyle \ensuremath{\&}}}{=} ([1, 10]);$ $p_1 \leftarrow p_1 + n; p_2 \leftarrow p_2 + n;$ $l_1 \leftarrow p_1 :: l_1 : l_2 \leftarrow p_2 :: l_2:$ else if $p_1 < p_2$ then $n_1 \notin [1, 10];$ $p_1 \leftarrow p_1 + n_1$: $h \leftarrow p_1 :: h$ else $n_2 \notin [1, 10];$ $p_2 \leftarrow p_2 + n_2;$ $b \leftarrow p_2 :: b;$ return (p_1, p_2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Convergence If $s_1, s_2 \in [1, 10]$, and N > 10, then $\Delta(p_1^{\text{final}}, p_2^{\text{final}}) \le (9/10)^{N/5-2}$

Applications to cryptography

Experiment G1

- Cryptosystem
- Adversary A
- Winning condition E

Experiment G₂

- Hardness assumption
- Adversary B
- Winning condition F

(ロ) (同) (三) (三) (三) (三) (○) (○)

For all adversary A, there exists adversary B s.t. $t_A \approx t_B$ and

 $\Pr_{G_1}[E] \leq q \cdot \Pr_{G_2}[F] + \delta$

Applications to cryptography

Experiment G1

- Cryptosystem
- Adversary A
- Winning condition E

Experiment G2

- Hardness assumption
- Adversary B
- Winning condition F

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For all adversary A, there exists adversary B s.t. $t_A \approx t_B$ and

- $\blacktriangleright \vdash \{\top\}G_1 \sim G_2\{E \Rightarrow (F' \lor F_{bad})\}$
- $\Pr_{G_2}[F'] \le q \cdot \Pr_{G_2}[F]$ and $\Pr_{G_2}[F_{bad}] \le \delta$

Formalizing cryptographic proofs?

- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor. Bellare and Rogaway, 2004-2006
- Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect). Halevi, 2005

OAEP

Provable security of OAEP

Game INDCCA(A) :	Encryption	Game sPDOW(\mathcal{I})
$(sk, pk) \leftarrow \mathcal{K}();$	$\mathcal{E}_{OAEP(pk)}(m)$:	$(\textit{sk},\textit{pk}) \leftarrow \mathcal{K}();$
$(m_0, m_1) \leftarrow \mathcal{A}_1^{\mathcal{G}, \mathcal{H}, \mathcal{D}}(pk);$	$r \notin \{0, 1\}^{k_0};$	<i>y</i> ₀
$b \stackrel{\hspace{0.1em} {\scriptscriptstyle\bullet}}{\leftarrow} \{0,1\};$	$s \leftarrow G(r) \oplus (m \parallel 0^{k_1});$	$y_1 \notin \{0,1\}^{n_1};$
$c^{\star} \leftarrow \mathcal{E}_{pk}(m_b);$	$t \leftarrow H(s) \oplus r;$	$\underline{x^{\star}} \leftarrow f_{pk}(y_0 \parallel y_1);$
$\overline{b} \leftarrow \mathcal{A}_{2}^{\mathcal{G},\mathcal{H},\mathcal{D}}(\mathbf{C}^{\star});$	return $f_{pk}(s \parallel t)$	$Y \leftarrow \mathcal{I}(x^{\star});$
return $\overline{(b} = b)$	_	return ($y_0 \in Y$)
. ,	Decryption	

FOR ALL IND-CCA adversary \mathcal{A} against ($\mathcal{K}, \mathcal{E}_{OAEP}, \mathcal{D}_{OAEP}$), THERE EXISTS a sPDOW adversary \mathcal{I} against (\mathcal{K}, f, f^{-1}) st

$$\begin{split} \left| \Pr_{\mathsf{IND-CCA}(\mathcal{A})} \left[\overline{\boldsymbol{b}} = \boldsymbol{b} \right] - \frac{1}{2} \right| &\leq \Pr_{\mathsf{PDOW}(\mathcal{I})} \left[\boldsymbol{y}_0 \in \overline{\boldsymbol{Y}} \right] + \frac{3q_D q_G + q_D^2 + 4q_D + q_G}{2^{k_0}} + \frac{2q_D}{2^{k_1}} \end{split}$$
and

$$t_{\mathcal{I}} \leq t_{\mathcal{A}} + q_D q_G q_H T_f$$

The code-based game-playing approach

- Everything is a probabilistic program
- Decompose the proof in sequence of transitions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Prove each transition using pRHL
- Bound prob. of events w/ non-relational logic

Typical couplings

• Bridging step: $\mu_1 = \# \mu_2$, then for every event *X*,

$$\Pr_{Z \leftarrow \mu_1}[X] = \Pr_{Z \leftarrow \mu_2}[X]$$

► Failure Event: If x R y iff $F(x) \Rightarrow x = y$ and $F(x) \Leftrightarrow F(y)$, then for every event X,

 $|\Pr_{z \leftarrow \mu_1}[X] - \Pr_{z \leftarrow \mu_2}[X]| \le \max\left(\Pr_{z \leftarrow \mu_1}[\neg F], \Pr_{z \leftarrow \mu_2}[\neg F]\right)$

• Reduction: If $x \mathrel{R} y$ iff $F(x) \Rightarrow G(y)$, then

 $\Pr_{\mathbf{X}\leftarrow\mu_2}[\mathbf{G}]\leq\Pr_{\mathbf{Y}\leftarrow\mu_1}[\mathbf{F}]$

A D F A 同 F A E F A E F A Q A

EasyCrypt

- Interactive proof assistant
 - backend to SMT solvers, CAS, etc.
 - encryption, signatures, hash designs, key exchange protocols, zero knowledge protocols, garbled circuits...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- SHA3, e-voting
- Back-end for automated tools
- Front-end for certified compilers

approximate probabilistic Relational Hoare Logic

- ▶ Quantitative generalization of pRHL $\vdash_{\epsilon,\delta} \{P\}c_1 \sim c_2\{Q\}$
- Valid if there exists μ_L, μ_R such that

 $P(m_1 \uplus m_2) \implies \mu_L, \mu_R \blacktriangleleft_Q^{\epsilon, \delta} \langle \llbracket c_1 \rrbracket m_1 \And \llbracket c_2 \rrbracket m_2 \rangle$

where

$$\mu_{L}, \mu_{R} \blacktriangleleft_{Q}^{\epsilon, \delta} \langle \mu_{1} \& \mu_{2} \rangle \triangleq \begin{cases} \pi_{1}(\mu_{L}) = \mu_{1} \land \pi_{2}(\mu_{R}) = \mu_{2} \\ \operatorname{supp}(\mu_{L}), \operatorname{supp}(\mu_{R}) \subseteq Q \\ \Delta_{\epsilon}(\mu_{1}, \mu_{2}) \leq \delta \end{cases}$$

Fundamental theorem of apRHL: if $Q \triangleq E_1 \Rightarrow E_2$ then

 $\Pr_{\left(\llbracket c_1 \rrbracket \ m_1\right)}[E_1] \leq \exp(\epsilon) \Pr_{\left(\llbracket c_2 \rrbracket \ m_2\right)}[E_2] + \delta$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Extends to *f*-divergences

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

ヘロト 人間 とくほとくほとう

3

A randomized algorithm \mathcal{K} is (ϵ, δ) -differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t. $\Phi(D_1, D_2)$

 $\forall S. \ \Pr[\mathcal{K}(D_1) \in S] \leq \ \exp(\epsilon) \cdot \Pr[\mathcal{K}(D_2) \in S] + \delta$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

A randomized algorithm \mathcal{K} is (ϵ, δ) -differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t. $\Phi(D_1, D_2)$

 $\forall S. \ \Pr[\mathcal{K}(D_1) \in S] \leq \ \exp(\epsilon) \cdot \Pr[\mathcal{K}(D_2) \in S] + \delta$

Privacy as approximate couplings \mathcal{K} is (ϵ, δ) -differentially private wrt Φ iff $\vdash_{\epsilon, \delta} \{\Phi\} \mathcal{K}_1 \sim \mathcal{K}_2 \{\equiv\}$

Differential privacy via output perturbation

Then $a \mapsto Lap_{\epsilon}(f(a))$ is $(k \cdot \epsilon, 0)$ -differentially private w.r.t. Φ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof principles for Laplace mechanism

Making different things look equal

 $\frac{\Phi \triangleq |\boldsymbol{e}_1 - \boldsymbol{e}_2| \leq k'}{\vdash_{k' \cdot \epsilon, 0} \{\Phi\} y_1 \notin \mathcal{L}_{\epsilon}(\boldsymbol{e}_1) \sim y_2 \notin \mathcal{L}_{\epsilon}(\boldsymbol{e}_2) \{y_1 = y_2\}}$

Making equal things look different

$$\frac{\Phi \triangleq \boldsymbol{e}_1 = \boldsymbol{e}_2}{\vdash_{k \cdot \epsilon, 0} \{\Phi\} \boldsymbol{y}_1 \stackrel{\text{\tiny \ssssymbol{\&}}}{=} \mathcal{L}_{\epsilon}(\boldsymbol{e}_1) \sim \boldsymbol{y}_2 \stackrel{\text{\tiny \sssssymbol{\&}}}{=} \mathcal{L}_{\epsilon}(\boldsymbol{e}_2) \{\boldsymbol{y}_1 + \boldsymbol{k} = \boldsymbol{y}_2\}}$$

Pointwise equality

$$\frac{\forall i. \vdash_{\epsilon,0} \{\Phi\} c_1 \sim c_2 \{x_1 = i \Rightarrow x_2 = i\}}{\vdash_{\epsilon,0} \{\Phi\} c_1 \sim c_2 \{x_1 = x_2\}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Differential privacy by sequential composition

- If \mathcal{K} is (ϵ, δ) -differentially private, and
- ► $\lambda a. \mathcal{K}'(a, b)$ is (ϵ', δ') -differentially private for every $b \in B$,
- ▶ then λa . $\mathcal{K}'(a, \mathcal{K}(a))$ is $(\epsilon + \epsilon', \delta + \delta')$ -differentially private

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Beyond composition: Sparse Vector Technique

SparseVector_{bt}(a, b, M, N, d) := $i \leftarrow 0; l \leftarrow []; u \triangleq \mathcal{L}_{\epsilon}(0); A \leftarrow a - u; B \leftarrow b + u;$ while i < N do $i \leftarrow i + 1; q \leftarrow \mathcal{A}(l); S \triangleq \mathcal{L}_{\epsilon}(q(d));$ if $(A \leq S \leq B \land |I| < M)$ then $I \leftarrow i :: I;$ return I

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Privacy

If queries are 1-sensitive, then $(\sqrt{M}\epsilon, \delta')$ -diff. private

Tools

- advanced composition
- accuracy-dependent privacy
- optimal subset coupling

Perspectives and further directions

Language-based techniques

- for provable security and differential privacy
- based on probabilistic couplings
- Open questions
 - semantical foundations of approximate couplings

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

applications to security (complexity of attacks)