Probabilistic couplings for cryptography and privacy

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

September 13, 2016

Relational properties

Properties about two runs of the same program

- Assume inputs are related by Ψ
- Want to prove the outputs are related by Φ

Examples

Monotonicity

- $\psi: i n_{1} \leq i n_{2}$
- Φ : out out $_{1} \leq$ out $_{2}$
- "Bigger inputs give bigger outputs"

Examples

Monotonicity

- $\psi: i n_{1} \leq i n_{2}$
- Φ : out out $_{1} \leq$ out $_{2}$
- "Bigger inputs give bigger outputs"

Stability

- $\psi: i n p_{1} \sim i n p_{2}$
- Φ : out o $_{1} \sim$ out $_{2}$
- "If inputs are similar, then outputs are similar"

Examples

Monotonicity

- $\psi: i n_{1} \leq i n_{2}$
- Φ : out out $_{1} \leq$ out $_{2}$
- "Bigger inputs give bigger outputs"

Stability

- $\psi: i n p_{1} \sim i n p_{2}$
- Φ : out out $_{1} \sim$ out $_{2}$
- "If inputs are similar, then outputs are similar"

Non-interference

- Ψ : lowinp $_{1}=$ lowinp $_{2}$
- Φ : lowout $_{1}=$ lowout $_{2}$
- "If low inputs are equal, then low outputs are equal"

Probabilistic relational properties

Monotonicity

- $\Psi: i n_{1} \leq i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left._{1} \geq k\right] \leq \operatorname{Pr}\left[\right.$ out $\left._{2} \geq k\right]$

Probabilistic relational properties

Monotonicity

- $\Psi: i n_{1} \leq i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left._{1} \geq k\right] \leq \operatorname{Pr}\left[\right.$ out $\left._{2} \geq k\right]$

Stability

- $\Psi: i n_{1} \sim i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left._{1}=k\right] \sim \operatorname{Pr}\left[\right.$ out $\left._{2}=k\right]$

Probabilistic relational properties

Monotonicity

- $\psi: i n_{1} \leq i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left._{1} \geq k\right] \leq \operatorname{Pr}\left[\right.$ out $\left._{2} \geq k\right]$

Stability

- $\Psi: i n_{1} \sim i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left.t_{1}=k\right] \sim \operatorname{Pr}\left[o u t_{2}=k\right]$

Non-interference

- ψ : lowinp $_{1}=$ lowinp $_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ lowout $\left._{1}=k\right]=\operatorname{Pr}\left[\right.$ lowout $\left._{2}=k\right]$

Probabilistic relational properties

Monotonicity

- $\Psi: i n_{1} \leq i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left._{1} \geq k\right] \leq \operatorname{Pr}\left[\right.$ out $\left._{2} \geq k\right]$

Stability

- $\Psi: i n_{1} \sim i n_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ out $\left.t_{1}=k\right] \sim \operatorname{Pr}\left[o u t_{2}=k\right]$

Non-interference

- Ψ : lowinp $_{1}=$ lowinp $_{2}$
- $\Phi: \operatorname{Pr}\left[\right.$ lowout $\left._{1}=k\right]=\operatorname{Pr}\left[\right.$ lowout $\left._{2}=k\right]$

Richer properties

- Indistinguishability, differential privacy

Probabilistic couplings

- Used by mathematicians for proving relational properties
- Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Probabilistic couplings

- Used by mathematicians for proving relational properties
- Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Why is this interesting?

- Proving relational probabilistic properties reduced to proving non-relational non-probabilistic properties
- Compositional

Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X_{1}, X_{2} over set A
- Produce: joint distribution Y over $A \times A$
- Projection over the first component is X_{1}
- Projection over the second component is X_{2}

Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X_{1}, X_{2} over set A
- Produce: joint distribution Y over $A \times A$
- Projection over the first component is X_{1}
- Projection over the second component is X_{2}

Definition
Given two distributions X_{1}, X_{2} over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_{1}(Y)=X_{1}$ and $\pi_{2}(Y)=X_{2}$

Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X_{1}, X_{2} over set A
- Produce: joint distribution Y over $A \times A$
- Projection over the first component is X_{1}
- Projection over the second component is X_{2}

Definition

Given two distributions X_{1}, X_{2} over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_{1}(Y)=X_{1}$ and $\pi_{2}(Y)=X_{2}$ where

$$
\pi_{1}(Y)\left(a_{1}\right)=\sum_{a_{2}} Y\left(a_{1}, a_{2}\right)
$$

Fair coin toss

- One way to coordinate: require $x_{1}=x_{2}$
- A different way: require $x_{1}=\neg x_{2}$
- Yet another way: product distribution
- Choice of coupling depends on application
- Couplings always exist

Couplings vs liftings

Let $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A), \mu \in \operatorname{Distr}(A \times A)$ and $R \subseteq A \times A$. Then $\mu \measuredangle_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle \triangleq \pi_{1}(\mu)=\mu_{1} \wedge \pi_{2}(\mu)=\mu_{2} \wedge \operatorname{Pr}_{y \leftarrow \mu}[y \in R]=1$

Different couplings yield liftings for different relations

Convergence of random walks

Simple random walk on integers

- Start at some position p
- Each step, flip coin $x \stackrel{5}{\leftarrow}$ flip
- Heads: $p \leftarrow p+1$
- Tails: $p \leftarrow p-1$

Convergence of random walks

Simple random walk on integers

- Start at some position p
- Each step, flip coin $x \stackrel{\$}{\leftarrow}$ flip
- Heads: $p \leftarrow p+1$
- Tails: $p \leftarrow p-1$

Coupling the walks to meet

Case $p_{1}=p_{2}$: Walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Coupling the walks to meet

Case $p_{1}=p_{2}$: Walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Case $p_{1} \neq p_{2}$: Walks have not met

- Arrange samplings $x_{1}=\neg x_{2}$
- Walks make mirror moves

Coupling the walks to meet

Case $p_{1}=p_{2}$: Walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Case $p_{1} \neq p_{2}$: Walks have not met

- Arrange samplings $x_{1}=\neg x_{2}$
- Walks make mirror moves

Under coupling, if walks meet, they move together

Why is this interesting?

Memorylessness
Positions converge as we take more steps

Why is this interesting?

Memorylessness
Positions converge as we take more steps
Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Why is this interesting?

Memorylessness
Positions converge as we take more steps
Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Theorem
If Y is a coupling of two distributions $\left(X_{1}, X_{2}\right)$, then

$$
\left\|X_{1}-X_{2}\right\|_{T V} \triangleq \sum_{a \in A}\left|X_{1}(a)-X_{2}(a)\right| \leq \underset{\left(y_{1}, y_{2}\right) \sim Y}{\operatorname{Pr}}\left[y_{1} \neq y_{2}\right] .
$$

Why is this interesting?

Memorylessness
Positions converge as we take more steps
Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Theorem
If Y is a coupling of two distributions $\left(X_{1}, X_{2}\right)$, then

$$
\left\|X_{1}-X_{2}\right\|_{T V} \triangleq \sum_{a \in A}\left|X_{1}(a)-X_{2}(a)\right| \leq \underset{\left(y_{1}, y_{2}\right) \sim Y}{\operatorname{Pr}}\left[y_{1} \neq y_{2}\right] .
$$

probabilistic Relational Hoare Logic

$\vdash\{P\} c_{1} \sim c_{2}\{Q\}$ iff there exists μ such that

$$
P\left(m_{1} \uplus m_{2}\right) \Rightarrow \mu \measuredangle Q\left\langle\llbracket c_{1} \rrbracket m_{1} \& \llbracket c_{2} \rrbracket m_{2}\right\rangle
$$

where

$$
\mu \measuredangle R\left\langle\mu_{1} \& \mu_{2}\right\rangle \triangleq \pi_{1}(\mu)=\mu_{1} \wedge \pi_{2}(\mu)=\mu_{2} \wedge \operatorname{supp}(\mu) \subseteq R
$$

Fundamental lemma of pRHL
If $Q \triangleq E_{1} \Rightarrow E_{2}$ then $\operatorname{Pr}_{\left(\llbracket c_{1} \rrbracket m_{1}\right)}\left[E_{1}\right] \leq \operatorname{Pr}_{\left(\llbracket c_{2} \rrbracket m_{2}\right)}\left[E_{2}\right]$

Core rules

$$
\frac{\{\Phi\} c_{1} \sim c_{2}\{\Theta\} \quad\{\Theta\} c_{1}^{\prime} \sim c_{2}^{\prime}\{\Psi\}}{\{\Phi\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{\Psi\}}
$$

$\frac{\left\{\Phi \wedge b_{1} \wedge b_{2}\right\} c_{1} \sim c_{2}\{\Psi\} \quad\left\{\Phi \wedge \neg b_{1} \wedge \neg b_{2}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{\Psi\}}{\left\{\Phi \wedge b_{1}=b_{2}\right\} \text { if } b_{1} \text { then } c_{1} \text { else } c_{1}^{\prime} \sim \text { if } b_{2} \text { then } c_{2} \text { else } c_{2}^{\prime}\{\Psi\}}$
$\left\{\Phi \wedge b_{1} \wedge b_{2}\right\} c_{1} \sim c_{2}\left\{\Phi \wedge b_{1}=b_{2}\right\}$
$\overline{\left\{\Phi \wedge b_{1}=b_{2}\right\} \text { while } b_{1} \text { do } c_{1} \sim \text { while } b_{2} \text { do } c_{2}\left\{\Phi \wedge \neg b_{1} \wedge \neg b_{2}\right\}}$

Loops

- Benton: same number of iterations
- EasyCrypt (≤ 2015): one-sided rules
- EasyCrypt (2016): asynchronous loop rule
\Longrightarrow relatively complete, subsumes 1 -sided rules

$$
\begin{gathered}
\Psi \Longrightarrow p_{0} \oplus p_{1} \oplus p_{2} \\
\Psi \wedge p_{0} \Longrightarrow e_{1} \wedge e_{2} \Psi \wedge p_{1} \xlongequal{\Longrightarrow} e_{1} \quad \Psi \wedge p_{2} \Longrightarrow e_{2} \\
\text { while } e_{1} \wedge p_{1} \text { do } c_{1} \Downarrow \text { while } e_{2} \wedge p_{2} \text { do } c_{2} \\
\left\{\Psi \wedge p_{1}\right\} c_{1} \sim \operatorname{skip}\{\Psi\} \quad\left\{\Psi \wedge p_{2}\right\} \text { skip } \sim c_{2}\{\Psi\} \\
\left\{\Psi \wedge p_{0}\right\} c_{1} \sim c_{2}\{\Psi\}
\end{gathered}
$$

$\{\Psi\}$ while e_{1} do $c_{1} \sim$ while e_{2} do $c_{2}\left\{\Psi \wedge \neg e_{1} \wedge \neg e_{2}\right\}$

Example
$x \leftarrow 0$; $i \leftarrow 0$; while $i \leq N$ do $(x+=i ; i++)$
$y \leftarrow 0 ; j \leftarrow 1$; while $j \leq N$ do $(y+=j ; j++)$

Rule for random assignment

$$
\frac{\mu \measuredangle_{Q}\left\langle\mu_{1} \& \mu_{2}\right\rangle}{\vdash\{\top\} x_{1} \leftarrow^{\&} \mu_{1} \sim x_{2}{ }^{\&} \mu_{2}\{Q\}}
$$

Specialized rule

$$
\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}{\vdash\left\{\forall v, Q\left[v / x_{1}, f v / x_{2}\right]\right\} x_{1}{ }^{s} \mu_{1} \sim x_{2}{ }^{s} \mu_{2}\{Q\}}
$$

Notes

- Bijection f : specifies how to coordinate the samples
- Side condition: marginals are preserved under f
- Assume: samples coupled when proving postcondition Φ

Proofs as (products) programs: xpRHL

- Every pRHL derivation yields a product program
- Different derivations yield different programs
- Can be modelled by a proof system

$$
\vdash\{\Phi\} C_{1} \sim C_{2}\{\Psi\} \sim C
$$

Fundamental lemma of xpRHL

$$
\begin{aligned}
& -\vdash\{\Phi\} c_{1} \sim c_{2}\left\{\Psi \Longrightarrow x_{1}=x_{2}\right\} \sim c \\
& -\{\square \Phi\} c\{\operatorname{Pr}[\neg \psi] \leq \epsilon\}
\end{aligned}
$$

implies

$$
m_{1} \Phi m_{2} \Rightarrow\left|\operatorname{Pr}_{\left(\llbracket c_{1} \rrbracket m_{1}\right)}\left[E\left(x_{1}\right)\right]-\operatorname{Pr}_{\left(\llbracket c_{2} \rrbracket m_{2}\right)}\left[E\left(x_{2}\right)\right]\right| \leq \epsilon
$$

Dynkin's card trick (shift coupling)

$$
\begin{aligned}
& p_{1} \leftarrow s_{1} ; p_{2} \leftarrow s_{2} ; \\
& l_{1} \leftarrow\left[p_{1}\right] ; l_{2} \leftarrow\left[p_{2}\right] ; \\
& \text { while } n_{1}<N \vee n_{2}<N \text { do } \\
& \text { if } p_{1}=p_{2} \text { then } \\
& n \neq[1,10]) ; \\
& p_{1} \leftarrow p_{1}+n ; p_{2} \leftarrow p_{2}+n ; \\
& l_{1} \leftarrow p_{1}:: l_{1} ; l_{2} \leftarrow p_{2}:: l_{2} ; \\
& \text { else } \\
& \text { if } p_{1}<p_{2} \text { then } \\
& n_{1} \$[1,10] ; \\
& p_{1} \leftarrow p_{1}+n_{1} ; \\
& l_{1} \leftarrow p_{1}:: l_{1} ; \\
& \text { else } \\
& n_{2} \$[1,10] ; \\
& p_{2} \leftarrow p_{2}+n_{2} ; \\
& l_{2} \leftarrow p_{2}:: l_{2} ; \\
& \text { return }\left(p_{1}, p_{2}\right)
\end{aligned}
$$

Convergence
If $s_{1}, s_{2} \in[1,10]$, and $N>10$, then $\Delta\left(p_{1}^{\text {final }}, p_{2}^{\text {final }}\right) \leq(9 / 10)^{N / 5-2}$

Applications to cryptography

Experiment G_{1}

- Cryptosystem
- Adversary \mathcal{A}
- Winning condition E

Experiment G_{2}

- Hardness assumption
- Adversary \mathcal{B}
- Winning condition F

For all adversary \mathcal{A}, there exists adversary \mathcal{B} s.t. $t_{\mathcal{A}} \approx t_{\mathcal{B}}$ and

$$
\operatorname{Pr}_{G_{1}}[E] \leq q \cdot \operatorname{Pr}_{G_{2}}[F]+\delta
$$

Applications to cryptography

Experiment G_{1}

- Cryptosystem
- Adversary \mathcal{A}
- Winning condition E

Experiment G_{2}

- Hardness assumption
- Adversary \mathcal{B}
- Winning condition F

For all adversary \mathcal{A}, there exists adversary \mathcal{B} s.t. $t_{\mathcal{A}} \approx t_{\mathcal{B}}$ and
$-\vdash\{T\} G_{1} \sim G_{2}\left\{E \Rightarrow\left(F^{\prime} \vee F_{b a d}\right)\right\}$

- $\operatorname{Pr}_{G_{2}}\left[F^{\prime}\right] \leq q \cdot \operatorname{Pr}_{G_{2}}[F]$ and $\operatorname{Pr}_{G_{2}}\left[F_{\text {bad }}\right] \leq \delta$

Formalizing cryptographic proofs?

- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor. Bellare and Rogaway, 2004-2006
- Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect). Halevi, 2005

OAEP

Provable security of OAEP

```
Game \(\operatorname{INDCCA}(\mathcal{A})\) :
    \((s k, p k) \leftarrow \mathcal{K}() ;\)
    \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}_{1}^{\mathcal{G}, \mathcal{H}, \mathcal{D}}(p k)\);
    \(b \leftarrow\{0,1\}\);
    \(c^{\star} \leftarrow \mathcal{E}_{p k}\left(m_{b}\right)\);
    \(\bar{b} \leftarrow \mathcal{A}_{2}^{\mathcal{G}, \mathcal{H}, \mathcal{D}}\left(c^{\star}\right) ;\)
    return \((\bar{b}=b)\)
```

Game sPDOW(I) $(s k, p k) \leftarrow \mathcal{K}() ;$ $y_{0}{ }^{\Phi}\{0,1\}^{n_{0}}$;
$y_{1} \stackrel{\&}{\leftarrow}\{0,1\}^{n_{1}}$;
$x^{\star} \leftarrow \mathrm{f}_{p k}\left(y_{0} \| y_{1}\right)$;
$\bar{Y} \leftarrow \mathcal{I}\left(x^{\star}\right) ;$ return $\left(y_{0} \in \bar{Y}\right)$

FOR ALL IND-CCA adversary \mathcal{A} against ($\left.\mathcal{K}, \mathcal{E}_{\text {OAEP }}, \mathcal{D}_{\text {OAEP }}\right)$, THERE EXISTS a sPDOW adversary \mathcal{I} against $\left(\mathcal{K}, \mathrm{f}, \mathrm{f}^{-1}\right)$ st

$$
\left|\operatorname{Pr}_{\text {IND-CCA }(\mathcal{A})}[\bar{b}=b]-\frac{1}{2}\right| \leq \operatorname{Pr}_{\operatorname{PDOW}(\mathcal{I})}\left[y_{0} \in \bar{Y}\right]+\frac{3 q_{D} q_{G}+q_{D}^{2}+4 q_{D}+q_{G}}{2^{k_{0}}}+\frac{2 q_{D}}{2^{k_{1}}}
$$

and

$$
t_{\mathcal{I}} \leq t_{\mathcal{A}}+q_{D} q_{G} q_{H} T_{f}
$$

The code-based game-playing approach

- Everything is a probabilistic program
- Decompose the proof in sequence of transitions
- Prove each transition using pRHL
- Bound prob. of events w/ non-relational logic

Typical couplings

- Bridging step: $\mu_{1}={ }^{\#} \mu_{2}$, then for every event X,

$$
\operatorname{Pr}_{z \leftarrow \mu_{1}}[X]=\operatorname{Pr}_{z \leftarrow \mu_{2}}[X]
$$

- Failure Event: If x R y iff $F(x) \Rightarrow x=y$ and $F(x) \Leftrightarrow F(y)$, then for every event X,

$$
\left|\operatorname{Pr}_{z \leftarrow \mu_{1}}[X]-\operatorname{Pr}_{z \leftarrow \mu_{2}}[X]\right| \leq \max \left(\operatorname{Pr}_{z \leftarrow \mu_{1}}[\neg F], \operatorname{Pr}_{z \leftarrow \mu_{2}}[\neg F]\right)
$$

- Reduction: If x R y iff $F(x) \Rightarrow G(y)$, then

$$
\operatorname{Pr}_{x \leftarrow \mu_{2}}[G] \leq \operatorname{Pr}_{y \leftarrow \mu_{1}}[F]
$$

EasyCrypt

- Interactive proof assistant
- backend to SMT solvers, CAS, etc.
- encryption, signatures, hash designs, key exchange protocols, zero knowledge protocols, garbled circuits...
- SHA3, e-voting
- Back-end for automated tools
- Front-end for certified compilers

approximate probabilistic Relational Hoare Logic

- Quantitative generalization of pRHL $\vdash_{\epsilon, \delta}\{P\} c_{1} \sim c_{2}\{Q\}$
- Valid if there exists μ_{L}, μ_{R} such that

$$
P\left(m_{1} \uplus m_{2}\right) \Longrightarrow \mu_{L}, \mu_{R} ⿶_{Q}^{\epsilon, \delta}\left\langle\llbracket c_{1} \rrbracket m_{1} \& \llbracket c_{2} \rrbracket m_{2}\right\rangle
$$

where

$$
\mu_{L}, \mu_{R} \iota_{Q}^{\epsilon, \delta}\left\langle\mu_{1} \& \mu_{2}\right\rangle \triangleq\left\{\begin{array}{l}
\pi_{1}\left(\mu_{L}\right)=\mu_{1} \wedge \pi_{2}\left(\mu_{R}\right)=\mu_{2} \\
\operatorname{supp}\left(\mu_{L}\right), \operatorname{supp}\left(\mu_{R}\right) \subseteq Q \\
\Delta_{\epsilon}\left(\mu_{1}, \mu_{2}\right) \leq \delta
\end{array}\right.
$$

- Fundamental theorem of apRHL: if $Q \triangleq E_{1} \Rightarrow E_{2}$ then

$$
\operatorname{Pr}_{\left(\llbracket c_{1} \rrbracket m_{1}\right)}\left[E_{1}\right] \leq \exp (\epsilon) \operatorname{Pr}_{\left(\llbracket c_{2} \rrbracket m_{2}\right)}\left[E_{2}\right]+\delta
$$

- Extends to f-divergences

Application: differential privacy

Application: differential privacy

Application: differential privacy

Application: differential privacy

A randomized algorithm \mathcal{K} is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_{1} and D_{2} s.t. $\Phi\left(D_{1}, D_{2}\right)$

$$
\forall S . \operatorname{Pr}\left[\mathcal{K}\left(D_{1}\right) \in S\right] \leq \exp (\epsilon) \cdot \operatorname{Pr}\left[\mathcal{K}\left(D_{2}\right) \in S\right]+\delta
$$

Application: differential privacy

A randomized algorithm \mathcal{K} is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_{1} and D_{2} s.t. $\Phi\left(D_{1}, D_{2}\right)$

$$
\forall S . \operatorname{Pr}\left[\mathcal{K}\left(D_{1}\right) \in S\right] \leq \exp (\epsilon) \cdot \operatorname{Pr}\left[\mathcal{K}\left(D_{2}\right) \in S\right]+\delta
$$

Privacy as approximate couplings
\mathcal{K} is (ϵ, δ)-differentially private wrt Φ iff $\vdash_{\epsilon, \delta}\{\Phi\} \mathcal{K}_{1} \sim \mathcal{K}_{2}\{\equiv\}$

Differential privacy via output perturbation

Let f be k-sensitive w.r.t. Φ :

$$
\Phi\left(a, a^{\prime}\right) \Longrightarrow\left|f a-f a^{\prime}\right| \leq k
$$

Then $a \mapsto \operatorname{Lap}_{\epsilon}(f(a))$ is $(k \cdot \epsilon, 0)$-differentially private w.r.t. Φ

Proof principles for Laplace mechanism

Making different things look equal

$$
\frac{\Phi \triangleq\left|e_{1}-e_{2}\right| \leq k^{\prime}}{\vdash_{k^{\prime} \cdot \epsilon, 0}\{\Phi\} y_{1}{ }^{\oint} \mathcal{L}_{\epsilon}\left(e_{1}\right) \sim y_{2} \mathcal{L}_{\epsilon}\left(e_{2}\right)\left\{y_{1}=y_{2}\right\}}
$$

Making equal things look different

$$
\frac{\phi \triangleq e_{1}=e_{2}}{\vdash_{k \cdot \epsilon, 0}\{\Phi\} y_{1}{ }^{\$} \mathcal{L}_{\epsilon}\left(e_{1}\right) \sim y_{2}{ }^{\$} \mathcal{L}_{\epsilon}\left(e_{2}\right)\left\{y_{1}+k=y_{2}\right\}}
$$

Pointwise equality

$$
\frac{\forall i . \vdash_{\epsilon, 0}\{\Phi\} c_{1} \sim c_{2}\left\{x_{1}=i \Rightarrow x_{2}=i\right\}}{\vdash_{\epsilon, 0}\{\Phi\} c_{1} \sim c_{2}\left\{x_{1}=x_{2}\right\}}
$$

Differential privacy by sequential composition

- If \mathcal{K} is (ϵ, δ)-differentially private, and
- λa. $\mathcal{K}^{\prime}(a, b)$ is $\left(\epsilon^{\prime}, \delta^{\prime}\right)$-differentially private for every $b \in B$,
- then λa. $\mathcal{K}^{\prime}(a, \mathcal{K}(a))$ is $\left(\epsilon+\epsilon^{\prime}, \delta+\delta^{\prime}\right)$-differentially private

Beyond composition: Sparse Vector Technique

```
SparseVector \(_{b t}(a, b, M, N, d):=\)
\(i \leftarrow 0 ; I \leftarrow[] ; u \leftarrow \mathcal{L}_{\epsilon}(0) ; A \leftarrow a-u ; B \leftarrow b+u ;\)
while \(i<N\) do
    \(i \leftarrow i+1 ; q \leftarrow \mathcal{A}(I) ; S \longleftarrow \mathcal{L}_{\epsilon}(q(d)) ;\)
    if \((A \leq S \leq B \wedge| | \mid<M)\) then \(/ \leftarrow i:: I\);
return /
```

Privacy
If queries are 1 -sensitive, then $\left(\sqrt{M} \epsilon, \delta^{\prime}\right)$-diff. private
Tools

- advanced composition
- accuracy-dependent privacy
- optimal subset coupling

Perspectives and further directions

Language-based techniques

- for provable security and differential privacy
- based on probabilistic couplings

Open questions

- semantical foundations of approximate couplings
- applications to security (complexity of attacks)

