
The Benefits of Duality in Verifying
Concurrent Programs under TSO

Parosh Aziz Abdulla1 Ahmed Bouajjani2Mohamed Faouzi Atig1

Tuan Phong Ngo1

1Uppsala University
2IRIF, Université Paris Diderot & IUF

CONCUR 20161

Motivation

Sequential Consistency

• Processes (atomically)write to/read from
shared memory

• Program order is persevered for each process

• Interleaving of the operations

Characteristics

😀 Simple and intuitive model

😞 Disallows many hardware/compiler optimizations

Processes

Execution

memory

P0

P1

write

write
read

read

P0 P1 P0 P0

2

Weak Memory Models
Hardware Optimizations

• Processors execute instructions out-of-order:
 😀 Better performance and energy

 😞 Non-intuitive behaviors: bugs
 Weak memory model: captures the semantics of out-of-
order execution

Goal

• Efficient verification technique for checking
safety properties

3

Outline
• Classical TSO (Total Store Order) semantics

• New semantics (Single-Buffer) allows:

- applying well quasi-order framework

• New semantics (Dual-TSO) allows:

- Efficient verification

- Parameterized verification

• Verification under Dual-TSO

• Experimental Results

• Conclusions

4

TSO - Total Store Order
Widely Used

• Used by Sun SPARCv9

• Current formalization of
Intel x86

5

TSO - Total Store Order

Optimize Memory Access

• Memory writes are slow

• Introduce (perfect) store
buffers

x = 0
y = 0

P0

P1

classical
semantics

Widely Used

• Used by Sun SPARCv9

• Current formalisation of
Intel x86

process shared
variables

6

TSO - Total Store Order

Optimise Memory Access

• Memory writes are slow

• Introduce (perfect) store
buffers

x = 0
y = 0

P0

P1

classical
semantics

Widely Used

• Used by Sun SPARCv9

• Current formalisation of
Intel x86

store
buffer

First In First Out (FIFO)

7

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

8

P0: write: x = 2

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

9

P0: write: x = 2

writes to
the buffer

x=1

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

10

P0: write: x = 2

writes to
the buffer

x=1x=2

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

11

P0: write: x = 2

x=1x=2

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

12

P0: write: x = 2

x=1x=2

reads from
the buffer

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

13

P0: write: x = 2

x=1x=2

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

14

P0: write: x = 2

x=1x=2

reads from
the memory

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

15

P0: write: x = 2

x=1x=2

updates to
the memory

Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

16

P0: write: x = 2
x=1

x=2

update the
memory

Classical TSO Semantics

0y = 0

P0

P1P0: read: x = 2

P0: write: x = 1

P0: read: y = 0

17

P0: write: x = 2

x=2
x = 1

updates to
the memory

18

Potentially Bad Behaviors -
Dekker

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

Sequential Consistency = Interleaving

At most one
process at its CS

at any time

P0 P1

19

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

20

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

21

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

22

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

23

x=1

writes to
buffer

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

24

x=1

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

25

x=1

read: y = 0

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

26

x=1

reads from
memory

read: y = 0

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

27

x=1

enters CS

read: y = 0

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

28

x=1

read: y = 0

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

29

x=1

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

P0 P1

30

x=1

writes to
buffer

y=1

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

31

x=1

y=1

read: x = 0

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

32

x=1

y=1

read: x = 0

reads from
memory

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

33

x=1

y=1

read: x = 0

enters CS

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

34

x=1

y=1

read: x = 0

2 processes in CS
at the same time

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

35

x=1

y=1

read: x = 0

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

36

x=1

y=1

read: x = 0

“read
overtaking

write”
“read

overtaking
write”

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

37

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

flushes the
buffer

prevents
re-ordeirng

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

38

x=1

y=1

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

39

x=1

y=1

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

40

y=1

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

41

y=1

read: x = 0
mfence mfence

execute
fence

Potentially Bad Behaviours -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

42

y=1

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

43

y=1

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

44

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

45

read: x = 0
mfence mfence

execute
fence

Potentially Bad Behaviours -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

46

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

47

read: x = 0
mfence mfence

Potentially Bad Behaviours -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

48

read: x = 0
mfence mfence

At
most one process

executes its CS
at any time

49

Verification and Correction

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

specification

no

yes

yes

no

insert fences

50

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

51

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

52

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

53

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

54

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

55

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

56

no reordering
=

bug not due to
memory model

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

57

specification

program

find reordering
and

prevent it

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

58

specification

program

try again

optimality = smallest set of fences
needed for correctness

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

59

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1

60

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1

61

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

infinite state
space

unbounded
buffer

62

Existing Methods

• Under approximation

😞 miss bugs: under-fencing

• Over approximation

😞 spurious bugs: over-fencing

• Exact verification techniques

😀 find real bugs iff they exist: optimal fencing

Verification under TSO is
Difficult

63

WQO for TSO

• Sub-word ordering on store buffers:

• monotone?

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
• ordering on state space:

• Well-quasi ordering

• Monotonic transition system

x=1

⊑

x=1

y=1 y=2

y=2

64

read: y = 2
possible

read: y = 2
not possible

WQO for TSO

• Sub-word ordering on store buffers:

• monotone?

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
• ordering on state space:

• Well-quasi ordering

• Monotonic transition system

65

P0
x = 0
y = 0

x=1 y=1

P0
x = 0
y = 0

x=1

⊑

Monotonicity

s1 s2

s3 s4
⊑

WQO for TSO

• Sub-word ordering on store buffers:

• monotone?

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
• ordering on state space:

• Well-quasi ordering

• Monotonic transition system

66

P0
x = 0
y = 0

x=1 y=1

P0
x = 0
y = 0

x=1

⊑

WQO for TSO

• Sub-word ordering on store buffers:

• monotone?

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
• ordering on state space:

• Well-quasi ordering

• Monotonic transition system

67

P0
x = 0
y = 0

x=1 y=1

P0
x = 1
y = 0

⊑

WQO for TSO

• Sub-word ordering on store buffers:

• monotone? NO!

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
• ordering on state space:

• Well-quasi ordering

• Monotonic transition system

68

P0
x = 0
y = 0

x=1 y=1

P0
x = 1
y = 0

⊑

Exact Verification Techniques

Well-Quasi Ordering (WQO) Framework
• ordering on state space:

• Well-quasi ordering

• Monotonic transition system

WQO for TSO

• Sub-word ordering on store buffers?

• Not monotone!

• WQO cannot be applied easily to TSO

69

Semantics 2: Single Buffer Model
[TACAS’12+13]

P0

P1

P1

y,P1

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P0

x=1
y=1

written
variable

writing
process

70

memory
snapshot

view
pointer

P1:
memory
content

P1:
pending
update

P0

P1

P1

y,P0

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P1

x=1
y=1

written
variable

writing
process

71

memory
snapshot

view
pointer

P0:
memory
content

P0:
no pending

update

P0

Semantics 2: Single Buffer Model
[TACAS’12+13]

P0

P1

P1

y,P0

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P1

x=1
y=1

72

P0

Semantics 2: Single Buffer Model
[TACAS’12+13]

P0

P1

P1

y,P0

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P1

x=1
y=1

73

P0

x,P0

x=2
y=1

Semantics 2: Single Buffer Model
[TACAS’12+13]

P0

P1

P1

y,P0

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P1

x=1
y=1

74

P0

x,P0

x=2
y=1

y,P1

x=2
y=3

Semantics 2: Single Buffer Model
[TACAS’12+13]

P0

P1

P1

y,P0

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P1

x=1
y=1

75

P0

x,P0

x=2
y=1

y,P1

x=2
y=3

update
view of

P0

Semantics 2: Single Buffer Model
[TACAS’12+13]

P0

P1

P1

y,P0

x=0
y=1

P0: write: x = 2
P1: write: y = 3

…
x,P1

x=1
y=1

76

P0

x,P0

x=2
y=1

y,P1

x=1
y=3

equivalent to classical TSO
modulo reachability

Sub-word relation on the content of
the single buffer is a monotonic WQO

Semantics 2: Single Buffer Model
[TACAS’12+13]

memory
snapshot

viewing
pointer

ID of writing
process

costly
overhead

cannot be directly
applied to parameterized

verification

77

Semantics 2: Single Buffer Model
[TACAS’12+13]

Parameterized Verification

P
P

P

P

P

P

P

P

P

P

P

P

P
example:

mutual exclusion
protocols

unbounded
number of processes

correctness:
lock taken by at most

one process

78

Exact Verification Technique

• Efficient analysis technique based on WQO

• Applicable to parameterized verification

Semantics 3: Dual-TSO

• Store buffers are replaced by load buffers

• Equivalent to classical TSO

79

x = 1
y = 0

P0

P1 x,1,other

x,1,self

Store Buffers ☛ Load Buffers

• Write operations immediately
update the memory

• Load buffers contain expected
read operations

load
buffer

self
message

other
message

80

Semantics 3: Dual-TSO

x = 0
y = 0

P0

P1

P0: read: y = 0
P0: write: x = 1

81

Semantics 3: Dual-TSO

y = 0

P0

P1

P0: read: y = 0
P0: write: x = 1

writes to
the memory

x,1,self

x = 1

adds self
message

82

Semantics 3: Dual-TSO

y = 0

P0

P1

P0: read: y = 0
P0: write: x = 1

x,1,self

x = 1

x,1,other

propagates from
the memory

83

Semantics 3: Dual-TSO

y = 0

P0

P1

P0: read: y = 0
P0: write: x = 1

propagates from
the memory

x,1,self

x = 1

x,1,other

y,0,other

84

Semantics 3: Dual-TSO

y = 0

P0

P1

P0: read: y = 0
P0: write: x = 1 x = 1

x,1,other

y,0,other

85

x,1,self

deletes the
oldest message

Semantics 3: Dual-TSO

y = 0

P0

P1

x = 1

x,1,other

y,0,other

reads the
oldest message

P0: read: y = 0
P0: write: x = 1

86

Semantics 3: Dual-TSO

87

Theorem

The Dual-TSO semantics is equivalent to the TSO
semantics with respect to the reachability problem.

Semantics 3: Dual-TSO

Outline
• Classical TSO semantics

• New semantics (Dual-TSO) allows:

- Efficient verification

- Parameterised verification

• Verification under Dual-TSO

• Experimental Results

• Conclusions

88

x,2,self y,1,self y,0,self

partition of
load buffer

WQO under Dual-TSO

x,1,other x,0,other

Old New
newest self

message on x
newest self

message on y

89

x,2,self y,1,self y,0,selfx,1,other x,0,other

x,2,self y,1,self y,0,self x,0,other

= =

90

WQO under Dual-TSO
Extension of sub-word ordering

x,2,self y,1,self y,0,selfx,1,other x,0,other

x,2,self y,1,self y,0,self x,0,other

= =⊑ ⊑

91

WQO under Dual-TSO
Extension of sub-word ordering

WQO for Dual-TSO

• Same local states of processes

• Same shared memory

• Sub-word relation on load buffers

x = 1
y = 0

P0

P1 x,1,other

x,1,self

…
…

…
…

P0 P1

92

WQO under Dual-TSO

WQO for Dual-TSO

• Same local states of processes

• Same shared memory

• Sub-word relation on load buffers

x = 1
y = 0

P0

P1 x,1,other

x,1,self

…
…

…
…

P0 P1

93

WQO under Dual-TSO

x = 1
y = 0

P0

P1 x,1,other

x,1,self

…
…

…
…

P0 P1

94

WQO under Dual-TSO

WQO for Dual-TSO

• Same local states of processes

• Same shared memory

• Sub-word relation on load buffers

Dual-TSO vs Single Buffer

Dual-TSO Single Buffer

NO memory snapshot Need memory snapshot

No viewing pointer, ID of
process

Need viewing pointers,
IDs of processes

Several channels: one
channel per process Only one channel

Buffers have read
operations

Buffers have write
operations

efficient

can be applied to
parameterised

verification

Outline
• Classical TSO semantics

• New semantics (Dual-TSO) allows:

- Efficient verification

- Parameterised verification

• Verification under Dual-TSO

• Experimental Results

• Conclusions

96

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
Single buffer

approach (exact method
[TACAS12+13])

https://www.it.uu.se/katalog/tuang296/dual-tso
97

https://www.it.uu.se/katalog/tuang296/dual-tso

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results

standard
benchmarks:

litmus tests and mutual
algorithms

98

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Resultsrunning time
in seconds

99

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
generated

configurations

Dual-TSO is faster and uses
less memory in most of

examples

100

Experimental Results
Parameterised Cases

unbounded
number of processes

101

increasing
the number of

processes

102

Experimental Results
Parameterised Cases

Dual-TSO is
more scalable

103

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10

LB

Dual-TSO

Memorax

Experimental Results
Parameterised Cases

Dual-TSO is more efficient
and scalable

104

Experimental Results
Parameterised Cases

Summary

Dual-TSO Model

• Exact (parameterised) reachability method:

• Dual-TSO: Load buffers instead of store buffers

• Using well quasi-ordering framework:

• Efficient verification

• Parameterized verification

• Prototype implementation

105

Future Work

Possible Extension

• Infinite data domain: predicate abstraction

• Apply to more memory models: e.g. PSO

106

Thank you!

Question?

107

Appendix

108

109

Verification and Correction

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

specification

no

yes

yes

no

insert fences

110

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

111

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

112

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

113

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

114

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

115

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

116

no reordering
=

bug not due to
memory model

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

117

specification

program

find reordering
and

prevent it

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

118

specification

program

try again

optimality = smallest set of fences
needed for correctness

