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Motivation

Sequential Consistency

• Processes (atomically)write to/read from 
shared memory 

• Program order is persevered for each process  

• Interleaving of the operations

Characteristics

😀 Simple and intuitive model 

😞 Disallows many hardware/compiler optimizations 

Processes

Execution

memory

P0

P1

write

write
read

read

P0 P1 P0 P0
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Weak Memory Models
Hardware Optimizations

• Processors execute instructions out-of-order: 
 😀  Better performance and energy   

 😞  Non-intuitive behaviors: bugs  
 Weak memory model: captures the semantics of out-of-
order execution

Goal

• Efficient verification technique for checking 
safety properties
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Outline
• Classical TSO (Total Store Order) semantics 

• New semantics (Single-Buffer) allows: 

- applying well quasi-order framework 

• New semantics (Dual-TSO) allows: 

- Efficient verification 

- Parameterized verification 

• Verification under Dual-TSO 

• Experimental Results 

• Conclusions
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TSO - Total Store Order
Widely Used

• Used by Sun SPARCv9 

• Current formalization of 
Intel x86
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TSO - Total Store Order

Optimize Memory Access

• Memory writes are slow 

• Introduce (perfect) store 
buffers

x = 0
y = 0

P0

P1

classical 
semantics

Widely Used

• Used by Sun SPARCv9 

• Current formalisation of 
Intel x86

process shared 
variables
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TSO - Total Store Order

Optimise Memory Access

• Memory writes are slow 

• Introduce (perfect) store 
buffers

x = 0
y = 0

P0

P1

classical 
semantics

Widely Used

• Used by Sun SPARCv9 

• Current formalisation of 
Intel x86

store 
buffer

First In First Out (FIFO)
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Classical TSO Semantics

0

x = 0
y = 0

P0

P1P0:  read: x = 2

P0:  write:  x = 1

P0:  read: y = 0
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the buffer
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Classical TSO Semantics
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Classical TSO Semantics
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P1P0:  read: x = 2
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P0:  read: y = 0
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P0:  write:  x = 2

x=2
x = 1

updates to 
the memory
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Potentially Bad Behaviors - 
Dekker



Potentially Bad Behaviours - 
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

Sequential Consistency = Interleaving

At most one 
process at its CS  

at any time

P0 P1
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Potentially Bad Behaviours - 
Dekker

x = 0
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Initially: x = y = 0

write: x = 1

read: y = 0
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write: y = 1
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TSO

P0 P1
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Potentially Bad Behaviours - 
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

35

x=1

y=1

read: x = 0



Potentially Bad Behaviours - 
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Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

37

x=1

y=1

read: x = 0
mfence mfence

fence 
instruction
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Potentially Bad Behaviours - 
Dekker
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read: x = 0
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At 
most one process 

executes its CS  
at any time
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Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

specification

no

yes

yes

no

insert fences
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Verification and Correction
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analysis preventable?
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no
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Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences
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specification

program

try again

optimality = smallest set of fences 
needed for correctness



P0
x = 0
y = 0

Verification under TSO is 
Difficult

while (1)  
         write: x=1

P0:  write:  x = 1

P0:  write:  x = 1

P0:  write:  x = 1
…

…
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P0
x = 0
y = 0

Verification under TSO is 
Difficult

while (1)  
         write: x=1

P0:  write:  x = 1

P0:  write:  x = 1

P0:  write:  x = 1
…

…

x=1x=1…x=1

infinite state  
space

unbounded 
buffer
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Existing Methods

• Under approximation 

😞 miss bugs: under-fencing 

• Over approximation 

😞 spurious bugs: over-fencing 

•  Exact verification techniques 

😀  find real bugs iff they exist: optimal fencing

Verification under TSO is 
Difficult
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WQO for TSO

• Sub-word ordering on store buffers: 

• monotone?

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
•  ordering on state space: 

• Well-quasi ordering 

• Monotonic transition system

x=1

⊑

x=1

y=1 y=2

y=2

64

read: y = 2 
possible

read: y = 2 
not possible
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s1 s2
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WQO for TSO

• Sub-word ordering on store buffers: 

• monotone? NO!

Exact Verification Techniques
Well-Quasi Ordering (WQO) Framework
•  ordering on state space: 

• Well-quasi ordering 

• Monotonic transition system
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Exact Verification Techniques

Well-Quasi Ordering (WQO) Framework
•  ordering on state space: 

• Well-quasi ordering 

• Monotonic transition system

WQO for TSO

• Sub-word ordering on store buffers? 

• Not monotone! 

• WQO cannot be applied easily to TSO
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Semantics 2: Single Buffer Model 
[TACAS’12+13]
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written  
variable

writing  
process
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P0

Semantics 2: Single Buffer Model 
[TACAS’12+13]
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equivalent to classical TSO 
modulo reachability

Sub-word relation on the content of 
the single buffer is a monotonic WQO

Semantics 2: Single Buffer Model 
[TACAS’12+13]



memory  
snapshot

viewing  
pointer

ID of writing  
process

costly 
overhead

cannot be directly 
applied to parameterized 

verification
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Parameterized Verification

P
P

P

P

P

P

P

P

P

P

P

P

P
example: 

mutual exclusion 
protocols

unbounded 
number of processes

correctness: 
lock taken by at most 

one process
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Exact Verification Technique

• Efficient analysis technique based on WQO 

• Applicable to parameterized verification

Semantics 3: Dual-TSO 

• Store buffers are replaced by load buffers 

• Equivalent to classical TSO
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x = 1
y = 0

P0

P1 x,1,other

x,1,self

Store Buffers ☛ Load Buffers

• Write operations immediately 
update the memory 

• Load buffers contain expected 
read operations

load 
buffer

self 
message

other 
message
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P0:  read: y = 0
P0:  write:  x = 1
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y = 0

P0

P1

P0:  read: y = 0
P0:  write:  x = 1

writes to 
the memory

x,1,self

x = 1

adds self 
message
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propagates from 
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Semantics 3: Dual-TSO 
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x,1,other
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reads the 
oldest message

P0:  read: y = 0
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Theorem

The Dual-TSO semantics is equivalent to the TSO 
semantics with respect to the reachability problem.

Semantics 3: Dual-TSO 



Outline
• Classical TSO semantics 

• New semantics (Dual-TSO) allows: 

- Efficient verification 

- Parameterised verification 

• Verification under Dual-TSO 

• Experimental Results 

• Conclusions
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x,2,self y,1,self y,0,self

partition of 
load buffer

WQO under Dual-TSO

x,1,other x,0,other

Old New
newest self 

message on x
newest self 

message on y
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x,2,self y,1,self y,0,selfx,1,other x,0,other

x,2,self y,1,self y,0,self x,0,other

= =
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WQO under Dual-TSO
Extension of sub-word ordering



x,2,self y,1,self y,0,selfx,1,other x,0,other

x,2,self y,1,self y,0,self x,0,other

= =⊑ ⊑
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WQO under Dual-TSO
Extension of sub-word ordering



WQO for Dual-TSO

• Same local states of processes 

• Same shared memory 

• Sub-word relation on load buffers

          
x = 1
y = 0

P0

P1 x,1,other

x,1,self

… 
…

… 
…

P0 P1
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WQO under Dual-TSO

WQO for Dual-TSO

• Same local states of processes 

• Same shared memory 

• Sub-word relation on load buffers



Dual-TSO vs Single Buffer

Dual-TSO Single Buffer

NO memory snapshot Need memory snapshot

No viewing pointer, ID of 
process

Need viewing pointers, 
IDs of processes

Several channels: one 
channel per process Only one channel

Buffers have read 
operations

Buffers have write 
operations

efficient

can be applied to 
parameterised 

verification



Outline
• Classical TSO semantics 

• New semantics (Dual-TSO) allows: 

- Efficient verification 

- Parameterised verification 

• Verification under Dual-TSO 

• Experimental Results 

• Conclusions
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Dual-TSO vs Memorax

• Running time 

• Memory consumption

Experimental Results
Single buffer 

approach (exact method 
[TACAS12+13])

https://www.it.uu.se/katalog/tuang296/dual-tso
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Dual-TSO vs Memorax

• Running time 

• Memory consumption

Experimental Results

standard 
benchmarks: 

litmus tests and mutual 
algorithms
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Dual-TSO vs Memorax

• Running time 

• Memory consumption

Experimental Resultsrunning time 
in seconds
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Dual-TSO vs Memorax

• Running time 

• Memory consumption

Experimental Results
generated 

configurations

Dual-TSO is faster and uses 
less memory in most of 

examples
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Experimental Results 
Parameterised Cases

unbounded 
number of processes
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increasing 
the number of 

processes
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Experimental Results 
Parameterised Cases



Dual-TSO is 
more scalable
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Dual-TSO is more efficient  
and scalable
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Experimental Results 
Parameterised Cases



Summary

Dual-TSO Model

• Exact (parameterised) reachability method: 

• Dual-TSO: Load buffers instead of store buffers 

• Using well quasi-ordering framework: 

• Efficient verification 

• Parameterized verification 

• Prototype implementation
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Future Work

Possible Extension

• Infinite data domain: predicate abstraction 

• Apply to more memory models: e.g. PSO
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Thank you!

Question?
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Appendix

108
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Verification and Correction



Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

specification

no

yes

yes

no

insert fences
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Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect
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Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences
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Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

no

yes

yes

no
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Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences
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no reordering 
=  

bug not due to 
memory model

specification

program



Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences
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specification

program

find reordering 
and  

prevent it



Verification and Correction

reachability 
analysis reachable? execution 

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences
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specification

program

try again

optimality = smallest set of fences 
needed for correctness


