The Benefits of Duality in Verifying Concurrent Programs under TSO

Parosh Aziz Abdulla¹

Mohamed Faouzi Atig¹

Tuan Phong Ngo¹

¹Uppsala University
²IRIF, Université Paris Diderot & IUF
CONCUR 2016

Ahmed Bouajjani²

Motivation

Sequential Consistency

- Processes (atomically) write to/read from shared memory
- Program order is persevered for each process
- Interleaving of the operations

Characteristics

- Simple and intuitive model
- Disallows many hardware/compiler optimizations

Weak Memory Models

Hardware Optimizations

- Processors execute instructions out-of-order:
 - Better performance and energy
 - Non-intuitive behaviors: bugs

Weak memory model: captures the semantics of out-oforder execution

Goal

• Efficient verification technique for checking safety properties

Outline

- Classical TSO (Total Store Order) semantics
- New semantics (Single-Buffer) allows:
 - applying well quasi-order framework
- New semantics (Dual-TSO) allows:
 - Efficient verification
 - Parameterized verification
- Verification under Dual-TSO
- Experimental Results
- Conclusions

TSO - Total Store Order

Widely Used

- Used by Sun SPARCv9
- Current formalization of Intel x86

TSO - Total Store Order

Widely Used

- Used by Sun SPARCv9
- Current formalisation of Intel x86

Optimize Memory Access

- Memory writes are slow
- Introduce (perfect) store buffers

TSO - Total Store Order

Widely Used

- Used by Sun SPARCv9
- Current formalisation of Intel x86

Optimise Memory Access

- Memory writes are slow
- Introduce (perfect) store buffers

Initially: x = y = 0

P0 P1

write: x = 1 write: y = 1

read: y = 0 read: x = 0

critical section critical section

PO

P1

x = 0

y = 0

At most one process at its CS at any time

Sequential Consistency = Interleaving

optimality = smallest set of fences needed for correctness

```
while (1)
     write: x=1
PO: write: x = 1
PO: write: x = 1
PO: write: x = 1
```



```
while (1)
     write: x=1
PO: write: x = 1
PO: write: x = 1
PO: write: x = 1
```



```
while (1)
     write: x=1
PO: write: x = 1
PO: write: x = 1
PO: write: x = 1
```



```
while (1)
     write: x=1
PO: write: x = 1
PO: write: x = 1
PO: write: x = 1
```


Existing Methods

- Under approximation
 - s miss bugs: under-fencing
- Over approximation
 - spurious bugs: over-fencing
- Exact verification techniques
 - @ find real bugs iff they exist: optimal fencing

Well-Quasi Ordering (WQO) Framework

- ordering on state space:
 - Well-quasi ordering
 - Monotonic transition system

WQO for TSO

- Sub-word ordering on store buffers:
 - monotone?

read: y = 2
not possible

read: y = 2
possible

- ordering on state space:
 - W

Monotonicity

· M

S₁

 S_2

WQO fo

Ш

 S_3

S₄

monotone?

Sub-word orderia

Well-Quasi Ordering (WQO) Framework

- ordering on state space:
 - Well-quasi ordering
 - Monotonic transition system

- Sub-word ordering on store buffers:
 - monotone?

Well-Quasi Ordering (WQO) Framework

- ordering on state space:
 - Well-quasi ordering
 - Monotonic transition system

- Sub-word ordering on store buffers:
 - monotone?

Well-Quasi Ordering (WQO) Framework

- ordering on state space:
 - Well-quasi ordering
 - Monotonic transition system

- Sub-word ordering on store buffers:
 - monotone? NO!

$$x = 0$$

$$y = 0$$

$$y = 0$$

$$y = 0$$

Well-Quasi Ordering (WQO) Framework

- ordering on state space:
 - Well-quasi ordering
 - Monotonic transition system

- Sub-word ordering on store buffers?
 - Not monotone!
- WQO cannot be applied easily to TSO

Semantics 2: Single Buffer Model [TACAS'12+13]

memory snapshot

written variable

writing process

Semantics 2: Single Buffer Model [TACAS'12+13]

equivalent to classical TSO modulo reachability

Sub-word relation on the content of the single buffer is a monotonic WQO

Parameterized Verification

- Store buffers are replaced by load buffers
- Equivalent to classical TSO

Exact Verification Technique

- Efficient analysis technique based on WQO
- Applicable to parameterized verification

Store Buffers - Load Buffers

- Write operations immediately update the memory
- Load buffers contain expected read operations

Theorem

The Dual-TSO semantics is equivalent to the TSO semantics with respect to the reachability problem.

Outline

- Classical TSO semantics
- New semantics (Dual-TSO) allows:
 - Efficient verification
 - Parameterised verification
- Verification under Dual-TSO
- Experimental Results
- Conclusions

Extension of sub-word ordering

Extension of sub-word ordering

WQO for Dual-TSO

- Same local states of processes
- Same shared memory
- Sub-word relation on load buffers

WQO for Dual-TSO

- Same local states of processes
- Same shared memory
- Sub-word relation on load buffers

WQO for Dual-TSO

- Same local states of processes
- Same shared memory
- Sub-word relation on load buffers

Dual-TSO vs Single Buffer

efficie	Dual-TSO ent	Single Buffer		
	NO memory snapshot	Need memory snapshot		
	No viewing pointer, ID of process	Need viewing pointers, IDs of processes		
	Seve al channels: one channel per process	Only one channel		
CE	have read an be applied to	Buffers have write operations		
	parameterised verification			

Outline

- Classical TSO semantics
- New semantics (Dual-TSO) allows:
 - Efficient verification
 - Parameterised verification
- Verification under Dual-TSO
- Experimental Results
- Conclusions

Experimental Results

Single buffer approach (exact method [TACAS12+13])

Dual-TSO vs Memorax

- Running time
- Memory consumption

Drogram	#P	Dual-TSO		Memorax	
Program		#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
$Sense_rev_bar$	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
$Ticket_spin_lock$	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

0.7

Experimental Results

Dual-TSO vs Memorax

- Running time
- Memory consumption

standard
benchmarks:
litmus tests and mutual
algorithms

Drogram	#D	Dual-TSO		Memorax	
Program	#P	#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
Ticket_spin_lock	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

Experimental R

running time in seconds

Dual-TSO vs Memorax

- Running time
- Memory consumption

Program	#P	Dual-TS		Memorax	
1 Togram	#1	#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
$Sense_rev_bar$	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
${\bf Dekker_simple}$	2	0.0	98	0.0	5 95
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
$Ticket_spin_lock$	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
$Lamport_fast$	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

Experimental Res

generated configurations

Dual-TSO vs Memorax

- Running time
- Memory consumption

Dual-TSO is faster and uses less memory in most of examples

		Dual-TSO		Memorax	
Program	#P	#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
Ticket_spin_lock	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	Ŀ

IRIW

Dual-TSO

increasing the number of processes

Program	Dual-TSO		
Trogram	#T	#C	
SB	0.0	147	
LB	0.6	1028	
MP	0.0	149	
WRC	0.8	618	
ISA2	4.3	1539	
RWC	0.2	293	
W+RWC	1.5	828	
IRIW	4.6	648	

Dual-TSO is more efficient and scalable

Program	Dual-TSO			
Togram	#T	#C		
SB	0.0	147		
LB	0.6	1028		
MP	0.0	149		
WRC	0.8	618		
ISA2	4.3	1539		
RWC	0.2	293		
W+RWC	1.5	828		
IRIW	4.6	648		

Summary

Dual-TSO Model

- Exact (parameterised) reachability method:
 - Dual-TSO: Load buffers instead of store buffers
 - Using well quasi-ordering framework:
 - Efficient verification
 - Parameterized verification
- Prototype implementation

Future Work

Possible Extension

- Infinite data domain: predicate abstraction
- Apply to more memory models: e.g. PSO

Thank you!

Question?

Appendix

optimality = smallest set of fences needed for correctness