Learning sound deterministic
negotiations

lgor Walukiewicz

joint work with Anca Muscholl

Motivation

Learning a finite distributed system may be more
efficient than learning a finite automaton
representing all the interleavings of the system.

Active learning finite automata [Angluin’67]

Teacher knows a regular language L. Learner wants to construct a finite automaton for L.

membership queries: weL?

| earner can ask ~
e equivalence queries: L(A)=L

—~

A:= trivial automaton

Yes

update A using w output A

'\
~
~

Uses membership queries

Active learning finite automata [Angluin’97 |

ff:: trivial automaton

~L(A) = L?

~

we LA+ L

A
update A using w output A

Active learning finite automata [Angluin’ 67|

~

A:= trivial automaton

O(s(s+log(m)) membership queries

A

~L(A4) . .
S equivalence queries
weL(A)«L
update A using w output A
~ (S: the size of the minimal det. automaton for L)

Uses membership queries

OBS: Learning produces a canonical automaton.

Why learning distributed systems is hard

I44 T
I41 —>I

Why learning distributed systems 1s hard

I44 T

I41 —>I

Why learning distributed systems 1s hard

p1|44 T
p2I41 *’I

15n

Which of the two is canonical?

Active learning finite automata [Angluin’ 67|

~

A= trivial automaton

update A using w output A

Tree languages [Drewes and Hégberg 2007]
Weighted automata [Balle and Mohri 2015] Uses membersip queris
Omega-regular languages [Angluin and Fisman 2016]

Nominal automata [Moerman, Sammartino, Silva, Klin, Szynwelski. 2017]

Learning Communicating Automata from MSCSs [Bollig, Katoen, Kern, Leucker 2010]
Learning Pomset Automata [Heerdt, Kappé, Rot, Silva 2021]

Algebraical/Categorical frameworks:
[Heerdt, Sammartino, Silva 2017]

[Urbat and Lutz Schroder. 2020]

[Colcombet, Petrisan, Stabile. 2021]

Case studies:

[Vaandrager. Model learning. Commun. ACM 2017]
[Neider, Smetsers, Vaandrager, Kuppens LNCS11200, 2019]

Negotiations [Desel & Esparza’13]

P1 /
Nrmy
p3 —>.—‘C—>I |

L

pProcesses pi1, P2, P3

nodes no, N1, - - . domain
{p2, 3}

actions a, b, c,...

Negotiations [Desel & Esparza’13]

P1

P2

P3

pProcesses pi1, P2, P3

nodes no, i, ... configuration

' ni, n
actions a, b, c,.. {ny, m}

Negotiations [Desel & Esparza’13]

<->x

14

A run is a sequence of configurations

b g
{no} == {n1, m} — {n1, na, ns} — {n1, n7, ns} == {n1, n7, g}

Negotiations [Desel & Esparza’13]

P1

P2

P3

A run is a sequence of configurations

b g
{no} == {n1, m} — {n1, na, ns} — {n1, n7, ns} == {n1, n7, g}

Negotiations [Desel & Esparza’13]

P1

P2

P3

A run is a sequence of configurations

b g
{no} == {n1, m} — {n1, na, ns} — {n1, n7, ns} == {n1, n7, g}

Negotiations [Desel & Esparza’13]

P1

P2

P3

A run is a sequence of configurations

b g
{no} == {n1, m} — {n1, na, ns} — {n1, n7, ns} == {n1, n7, g}

Negotiations [Desel & Esparza’13]

P2

P3

A run is a sequence of configurations

b g
{no} == {n1, m} — {n1, na, ns} — {n1, n7, ns} == {n1, n7, g}

Sound deterministic negotiations
n —p—p

S mmg i~ |—> b
D3 —}n - _>m
e

A negotiation is deterministic if its transition relation is a function
d: N xX x Proc— N

E:%

H

A negotiation is sound if there is a final node ng,, such that

every partial run {njpi;} — C can be completed C — {ng,}.

Sound deterministic negotiations
R o ———
Y N

D2
nQ

D3 —> | _>

A negotiation is deterministic if its transition relation is a function
d: N xX x Proc— N

A negotiation is sound if there is a final node ng,, such that

every partial run {njpi;} — C can be completed C — {ng,}.

, a 4 b *I—>
) <—— Not sound
I—>

Sound deterministic negotiations

D1

D2

A negotiation is deterministic if its transition relation is a function
d: N xX x Proc— N

A negotiation is sound if there is a final node ng,, such that

every partial run {njpi;} — C can be completed C — {ng,}.

Thm[Desel & Esparza’15]

Sound deterministic negotiations = sound, free-choice Petri nets with
initial and final markings.

A negotiation is deterministic if its transition relation is a function
d: N xXxProc— N

A negotiation is sound if there is a final node ng,, such that

every partial run {njpi;} — C can be completed C — {ng,}.

wi(x, 1) wi(x, k) wi(x, 1) Wk (.x, k)
nbq nby
" N
- —— — ——
ri(x, 1) re(x, 1) ri(x, k) re(x, k)
! Y y |

A negotiation is deterministic if its transition relation is a function
d: N xXxProc— N

A negotiation is sound if there is a final node ng,, such that

every partial run {njpi;} — C can be completed C — {ng,}.

Thm[Desel & Esparza & Hoffmann’17]
Checking soundness of a deterministic negotiation can be done in PTIME.

Thm[Esparza, Kuperberg, Muscholl, W. 18]

Checking soundness of a deterministic negotiation is NLogSpace-complete.

Soundness is characterized by 3 forbidden patterns.

Sound deterministic negotiations are:

A syntactic restriction of Peri nets.

e A non-trivial extension of finite automata.

There Is an inductive definition of this class.

Several verification problems are easy for this class.

Sound deterministic negotiations vs. finite automata

Sound deterministic negotiations vs. finite automata

”1

Paths(N') C (X x Proc)* local paths in N. P2

Paths(N) is a regular language. 3

Sound deterministic negotiations vs finite automata

Paths(N') C (X x Proc)* local paths in V.

e ‘ b

P1 ——p-} »
/ED\K
o
£+
mn2 W ,
P2 “_y ;’@#’ _'f>

(@

Consider A, the minimal deterministic automaton for Paths(N').

We define N from A .

An = (S, X x Proc,s°,84: S x X — S):
Nodes N = S — {_L}, initial node s°.
6(s,a,p)=n" if 4(s,(a,p))=n.

dom(s) ={p:dac X.é(s,a,p)# L}

J.

nx

Sound deterministic negotiations vs finite automata

n —>f :
S
Paths(N) C (X x Proc)* local paths in \V. P2 m'—“b Sl
my ni
D3 ¢ _p| —BHE——>| |——>

Consider A, the minimal deterministic automaton for Paths(N').

We def|neﬁfrom AN .AN'=<5,Z><Proc,so,éA:SxZ—>5):
Nodes N = S — {_L}, initial node s°.

!

6(s,a,p)=n" if 4(s,(a,p))=n.
dom(s) ={p:dac X.é(s,a,p)# L}

Fact: \ is a negotiation and there is a homomorphism h: N — N.

So we can just learn Paths(N') and then construct N.

g

Using finite automat learning directly

~

A:= trivial automaton

»@) = Pa ths(]\}

w € L(A) + Paths(N) Yes

update A using ﬂ output A

?
uses membership queries o € Paths(/N)

I~

A:= trivial automaton

l

»@) = Pa ths(./\>

w & L(.A) - Paths(N) Yes

update A using va output A

?
uses membership queries o € Paths(/N)

1. Automaton A may not resemble a negotiation.

?
2. Answering o € Paths(N) requires to know internals of A/

We fix a set of processes, Proc, and a distributed alphabet (X, dom : ¥ — Proc).

Teacher knows the language L of a sound deterministic negotiation.

We want to construct the minimal negotiation of L using two kinds of queries:
?
membership queries: o € Paths(/N)

equivalence queries: L(N) =L

We want to construct the minimal negotiation of L using two kinds of queries:
?

membership queries: v € L(N)

equivalence queries: L(N) iy

Local paths in membership queries

I~

N := trivial negotiation

~

w & L(.A) - Paths(N) Yes

Update N using w Outputﬁ

i\

?
uses membership queries o € Paths(/N\)

1. Automaton A may not resemble a negotiation.

?
2. Answering o € Paths(N) requires to know internals of A/

Executions in membership queries

~

N := trivial negotiation

< % N’?
w € L(A) + Paths(/

Update A using w
S

Yes

Output N

?

“uses membership queries u € L(N)

1. Automaton A may not resemble a negotiation.

?
2. Answering o ¢ Paths(\') requires to know internals of A/

We fix a set of processes, Proc, and a distributed alphabet (X, dom : ¥ — Proc).

Teacher knows the language L of a sound deterministic negotiation.

We want to construct the minimal negotiation of L using two kinds of queries:
?
membership queries: o € Paths(N)

equivalence queries: L(N) iy

THM: s(s+|Proc|+log(m)) membership queries, s equivalence queries

We want to construct the minimal negotiation of L using two kinds of queries:
?
membership queries: v € L(N)
equivalence queries: L(N) iy

THM.: s(s+log(m)) membership queries, s equivalence queries

Summary

¢ Sound deterministic negotiations are a syntactic subclass of
Petri nets (as well as Zielonka automata).

¢ They have a lot of structure:
finite automaton for the path language (decomposition results)

%» Thanks to this structure some analysis problems are PTIME.

% It is also possible to minimize them and get an active learning algorithm.

Further work

«¢* Black box learning.

[Leemans, Fahland, Aalst: Scalable process discovery and conformance checking, 2016]
[Ehrenfeucht, Rozenberg: Region theory for Petri Nets, 1990]

¢ Approximating Zielonka automata by sound deterministic negotiations.

Summary

¢ Sound deterministic negotiations are a syntactic subclass of
Petri nets (as well as Zielonka automata).

¢ They have a lot of structure:
finite automaton for the path language (decomposition results)

%» Thanks to this structure some analysis problems are PTIME.

% It is also possible to minimize them and get an active learning algorithm.

Further work

«¢* Black box learning.

[Leemans, Fahland, Aalst: Scalable process discovery and conformance checking, 2016]
[Ehrenfeucht, Rozenberg: Region theory for Petri Nets, 1990]

¢ Approximating Zielonka automata by sound deterministic negotiations.

Thank you!

