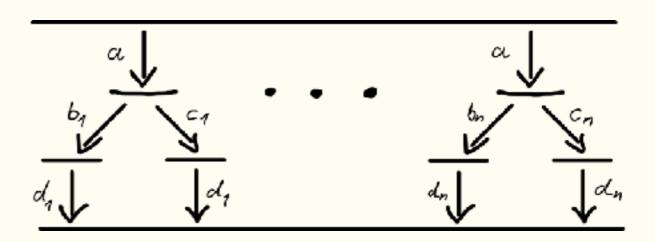
Learning sound deterministic negotiations

Igor Walukiewicz

joint work with Anca Muscholl

Motivation

Learning a finite distributed system may be more efficient than learning a finite automaton representing all the interleavings of the system.

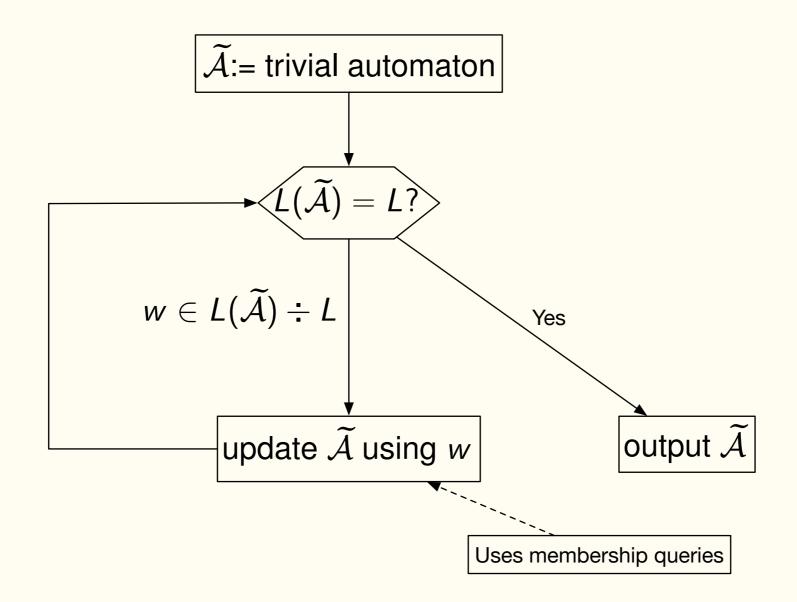


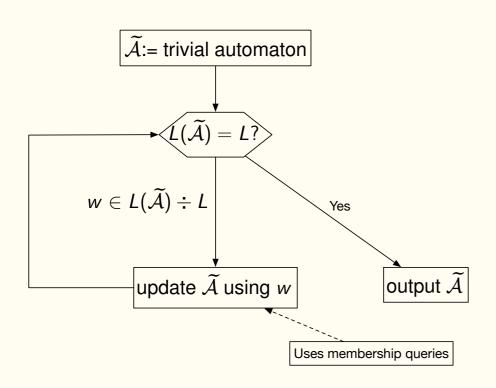
Teacher knows a regular language L. Learner wants to construct a finite automaton for L.

Learner can ask

membership queries: $w \in L$?

equivalence queries: $L(\widetilde{A}) = L$

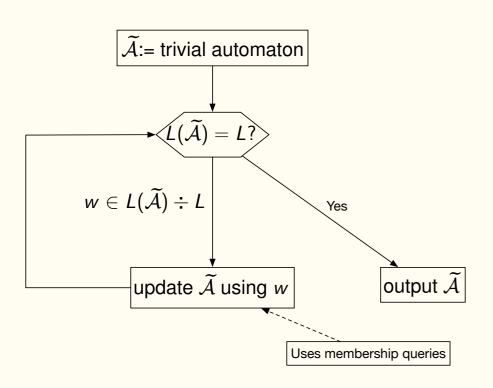




O(s(s+log(m)) membership queries

S equivalence queries

(S: the size of the minimal det. automaton for L)



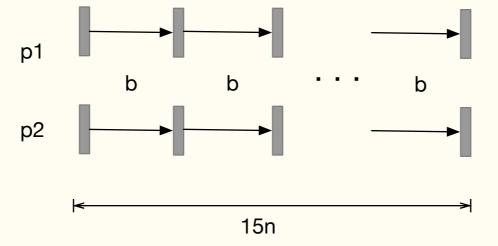
O(s(s+log(m))) membership queries

S equivalence queries

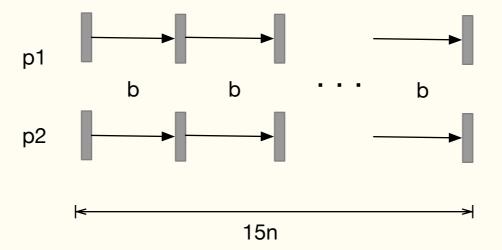
(S: the size of the minimal det. automaton for L)

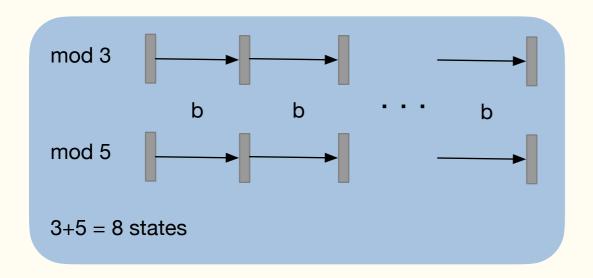
OBS: Learning produces a canonical automaton.

Why learning distributed systems is hard

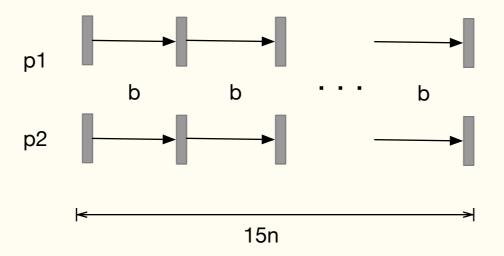


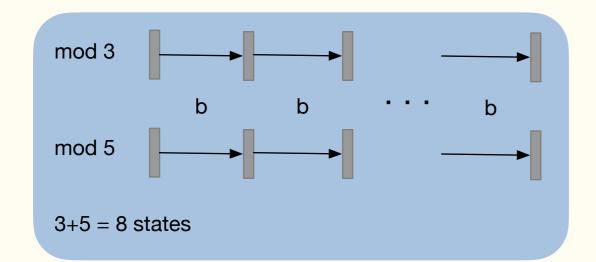
Why learning distributed systems is hard

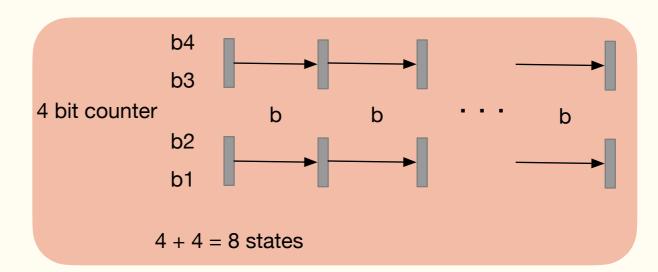




Why learning distributed systems is hard







Which of the two is canonical?

 $\widetilde{\mathcal{A}} := \text{trivial automaton}$ $w \in L(\widetilde{\mathcal{A}}) \div L$ $\text{update } \widetilde{\mathcal{A}} \text{ using } w$ $\text{output } \widetilde{\mathcal{A}}$ Uses membership queries

Tree languages [Drewes and Högberg 2007]

Weighted automata [Balle and Mohri 2015]

Omega-regular languages [Angluin and Fisman 2016]

Nominal automata [Moerman, Sammartino, Silva, Klin, Szynwelski. 2017]

Learning Communicating Automata from MSCs [Bollig, Katoen, Kern, Leucker 2010]

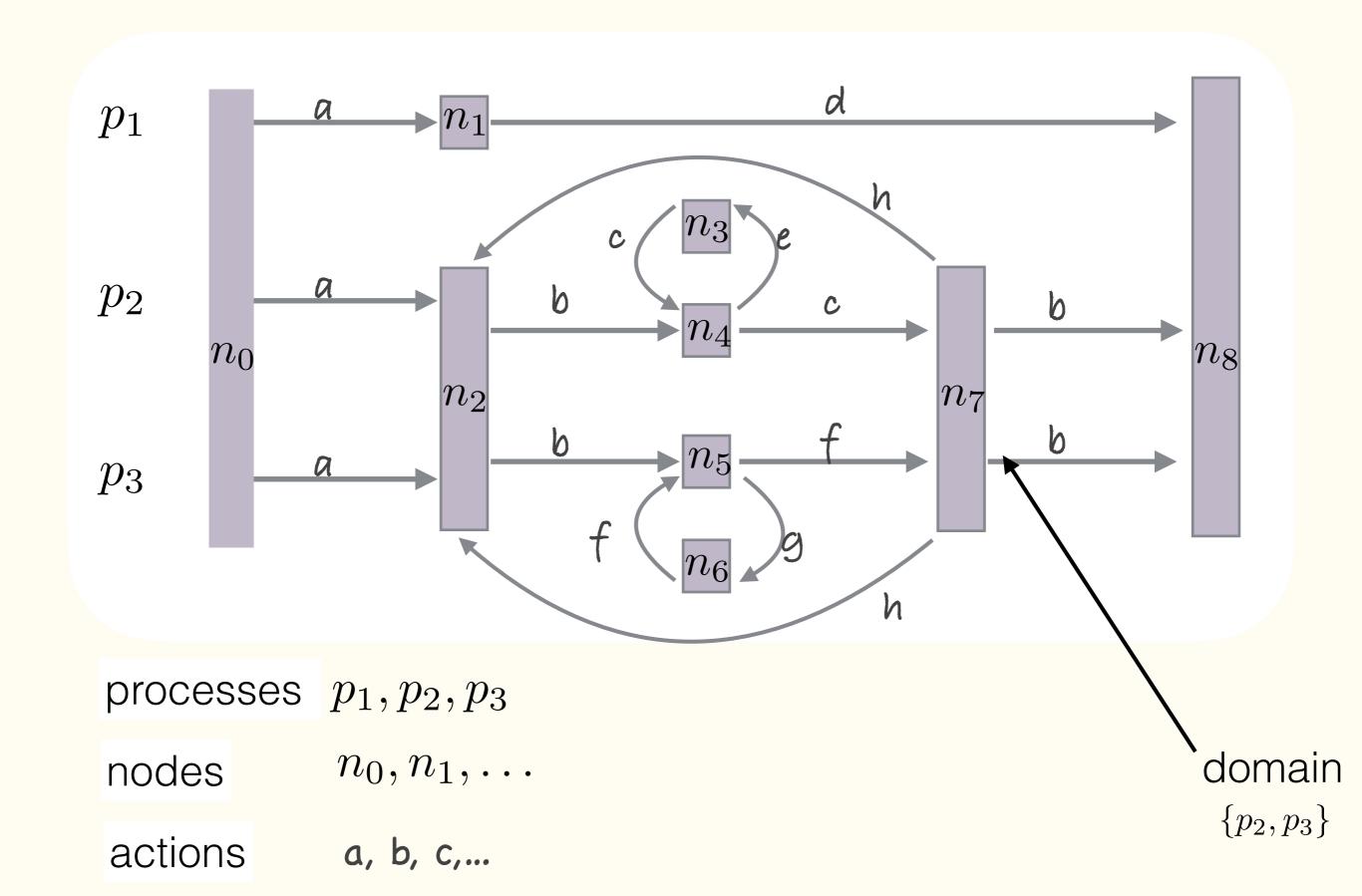
Learning Pomset Automata [Heerdt, Kappé, Rot, Silva 2021]

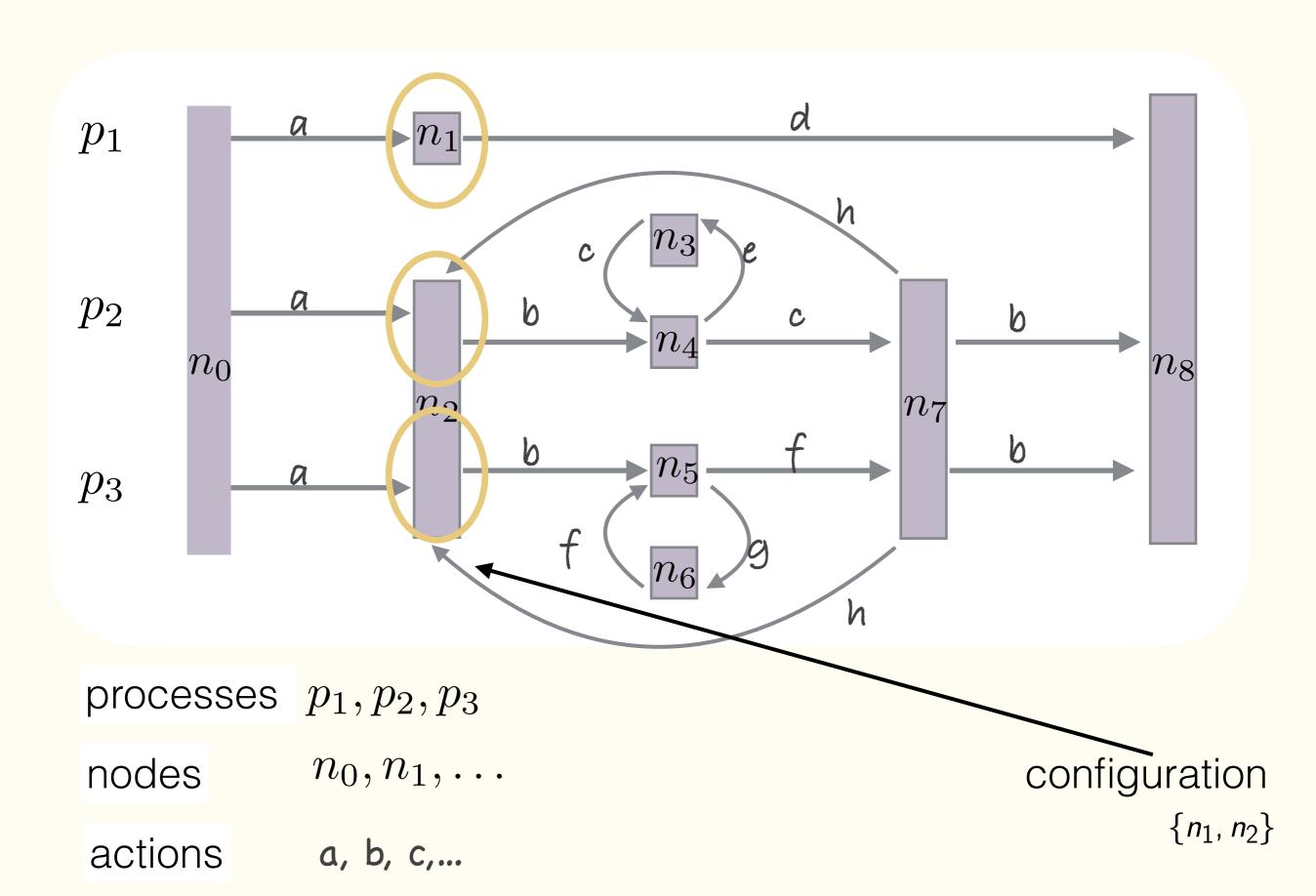
Algebraical/Categorical frameworks:

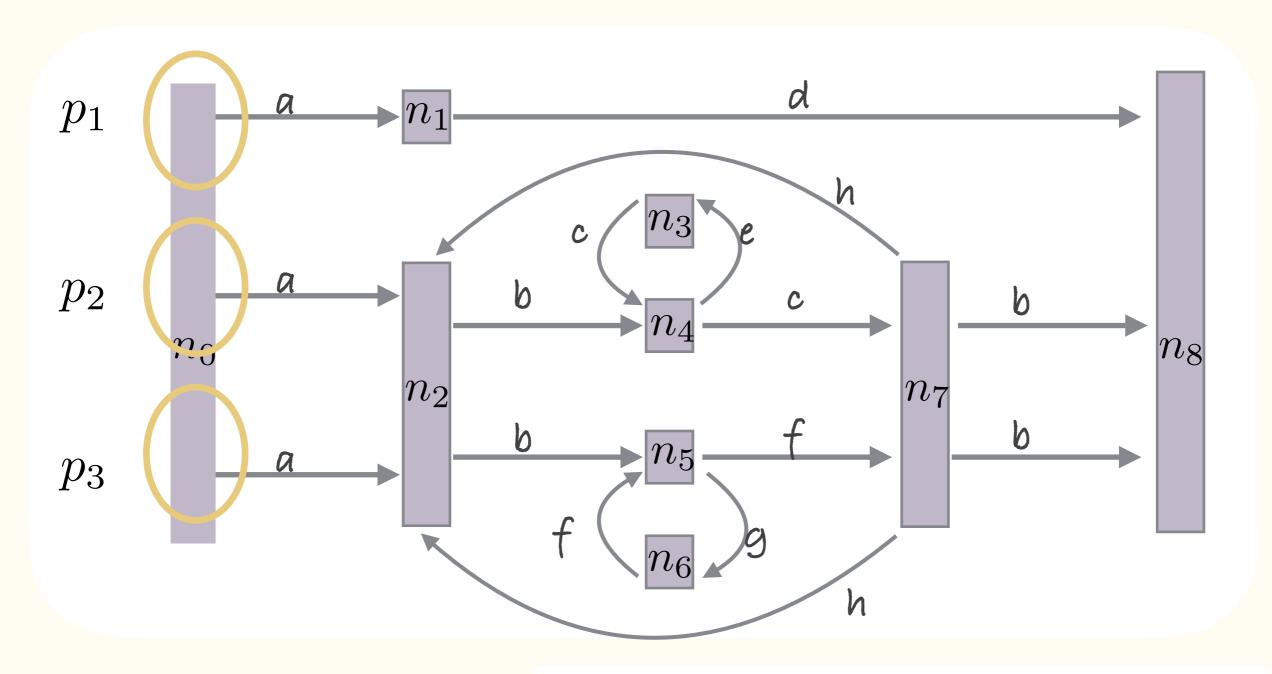
[Heerdt, Sammartino, Silva 2017] [Urbat and Lutz Schröder. 2020] [Colcombet, Petrisan, Stabile. 2021]

Case studies:

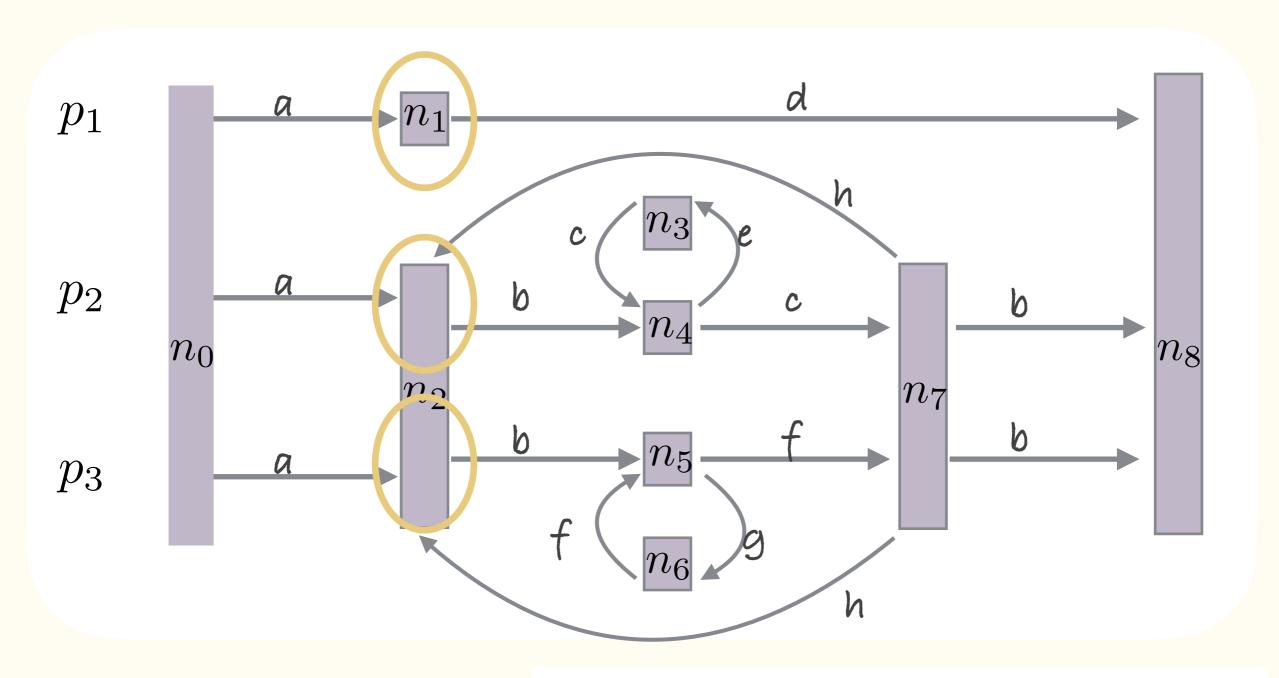
[Vaandrager. Model learning. Commun. ACM 2017] [Neider, Smetsers, Vaandrager, Kuppens LNCS11200, 2019]



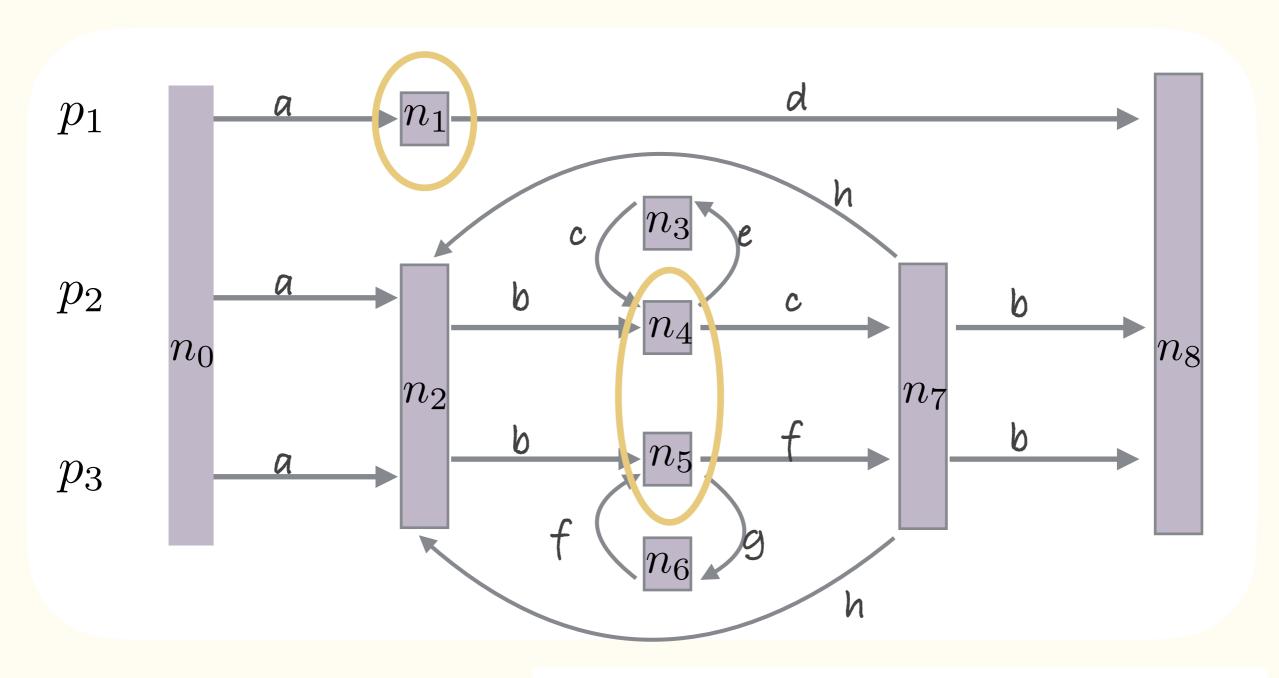




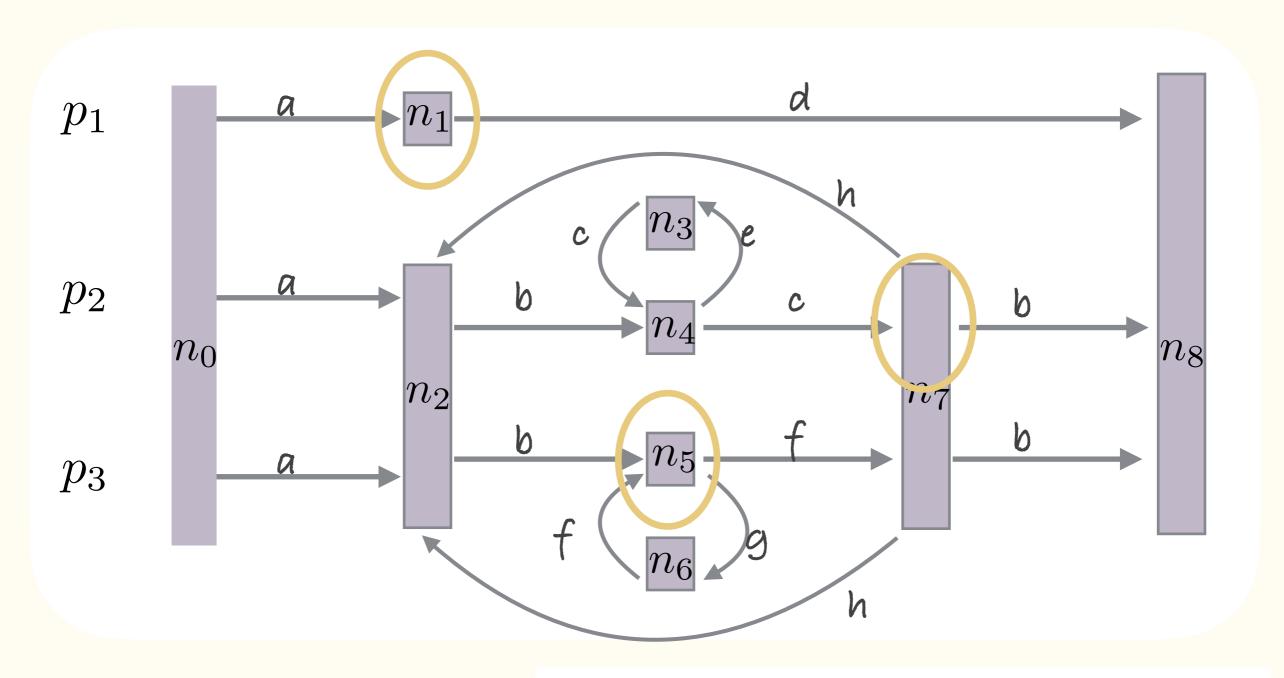
$$\{n_0\} \xrightarrow{a} \{n_1, n_2\} \xrightarrow{b} \{n_1, n_4, n_5\} \xrightarrow{c} \{n_1, n_7, n_5\} \xrightarrow{g} \{n_1, n_7, n_6\}$$



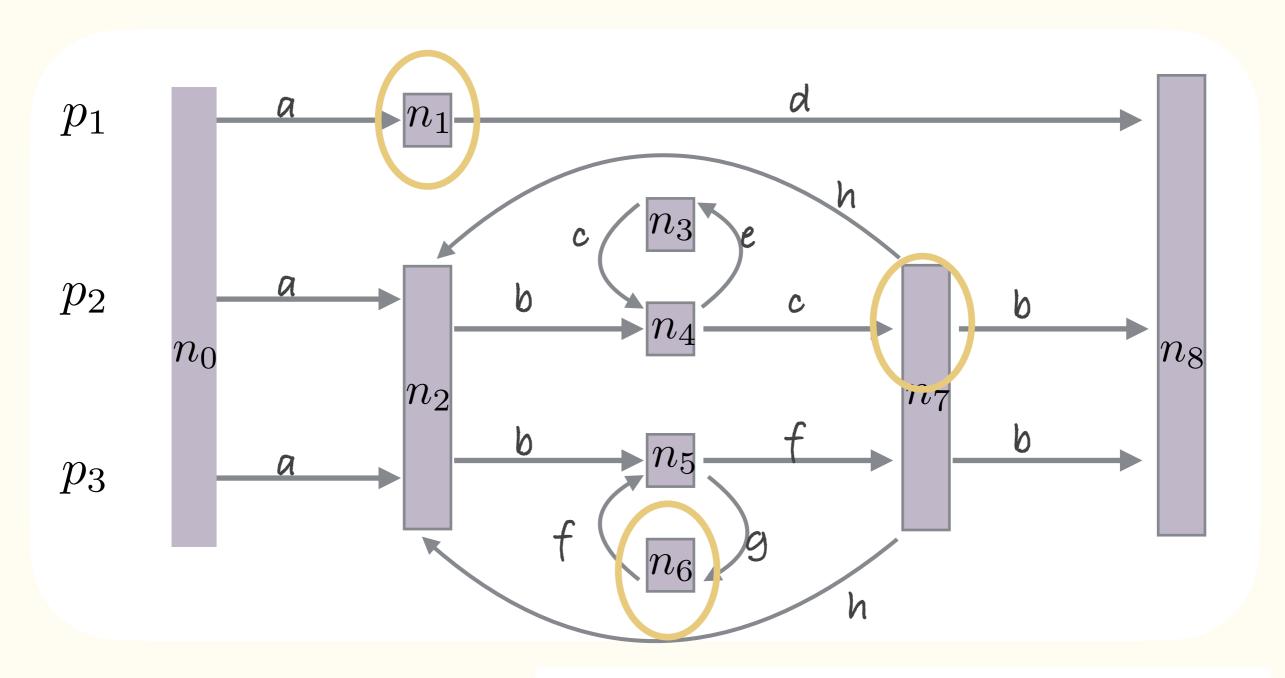
$$\{n_0\} \xrightarrow{a} \{n_1, n_2\} \xrightarrow{b} \{n_1, n_4, n_5\} \xrightarrow{c} \{n_1, n_7, n_5\} \xrightarrow{g} \{n_1, n_7, n_6\}$$



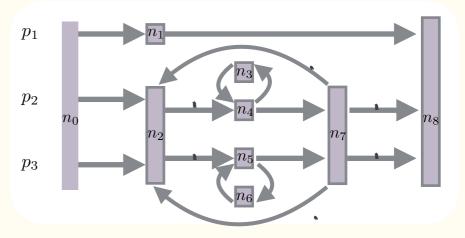
$$\{n_0\} \xrightarrow{a} \{n_1, n_2\} \xrightarrow{b} \{n_1, n_4, n_5\} \xrightarrow{c} \{n_1, n_7, n_5\} \xrightarrow{g} \{n_1, n_7, n_6\}$$



$$\{n_0\} \xrightarrow{a} \{n_1, n_2\} \xrightarrow{b} \{n_1, n_4, n_5\} \xrightarrow{c} \{n_1, n_7, n_5\} \xrightarrow{g} \{n_1, n_7, n_6\}$$



$$\{n_0\} \xrightarrow{a} \{n_1, n_2\} \xrightarrow{b} \{n_1, n_4, n_5\} \xrightarrow{c} \{n_1, n_7, n_5\} \xrightarrow{g} \{n_1, n_7, n_6\}$$

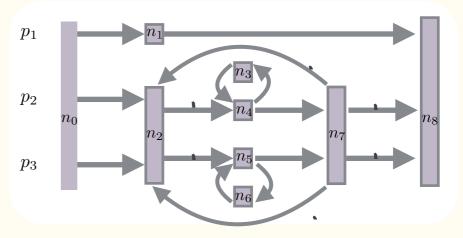


A negotiation is deterministic if its transition relation is a function

$$\delta: N \times \Sigma \times Proc \rightarrow N$$

A negotiation is sound if there is a final node n_{fin} such that

every partial run $\{n_{init}\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v} \{n_{fin}\}.$

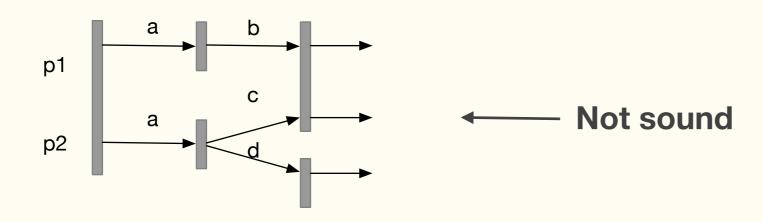


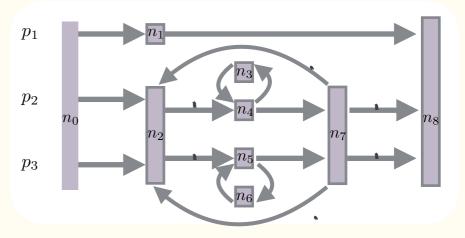
A negotiation is deterministic if its transition relation is a function

$$\delta: N \times \Sigma \times Proc \rightarrow N$$

A negotiation is sound if there is a final node n_{fin} such that

every partial run
$$\{n_{init}\} \xrightarrow{u} C$$
 can be completed $C \xrightarrow{v} \{n_{fin}\}.$





A negotiation is deterministic if its transition relation is a function

$$\delta: N \times \Sigma \times Proc \rightarrow N$$

A negotiation is sound if there is a final node n_{fin} such that

every partial run $\{n_{init}\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v} \{n_{fin}\}.$

Thm[Desel & Esparza'15]

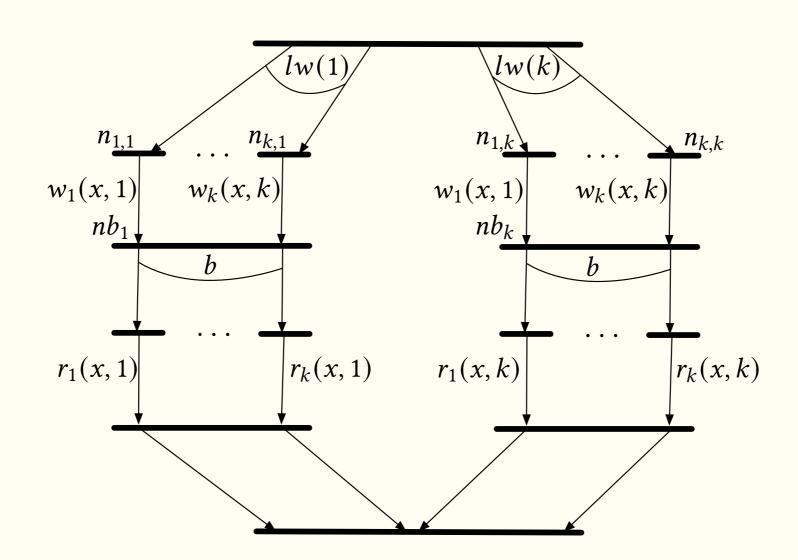
Sound deterministic negotiations \equiv sound, free-choice Petri nets with initial and final markings.

A negotiation is deterministic if its transition relation is a function

$$\delta: N \times \Sigma \times Proc \rightarrow N$$

A negotiation is sound if there is a final node n_{fin} such that

every partial run $\{n_{init}\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v} \{n_{fin}\}.$



A negotiation is deterministic if its transition relation is a function

$$\delta: N \times \Sigma \times Proc \rightarrow N$$

A negotiation is sound if there is a final node n_{fin} such that

every partial run
$$\{n_{init}\} \xrightarrow{u} C$$
 can be completed $C \xrightarrow{v} \{n_{fin}\}.$

Thm[Desel & Esparza & Hoffmann'17]

Checking soundness of a deterministic negotiation can be done in PTIME.

Thm[Esparza, Kuperberg, Muscholl, W.'18]

Checking soundness of a deterministic negotiation is NLogSpace-complete.

Soundness is characterized by 3 forbidden patterns.

- A syntactic restriction of Peri nets.
- A non-trivial extension of finite automata.

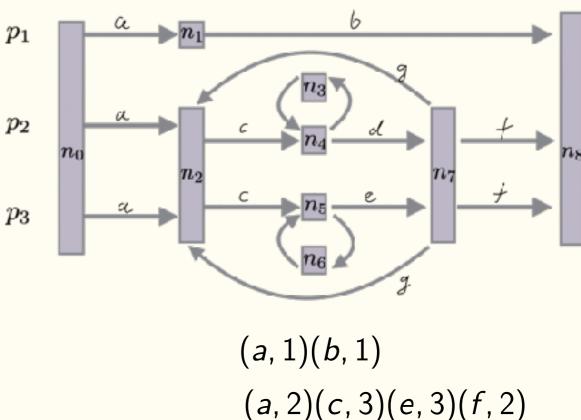
- There is an inductive definition of this class.
- Several verification problems are easy for this class.

Sound deterministic negotiations vs. finite automata

Sound deterministic negotiations vs. finite automata

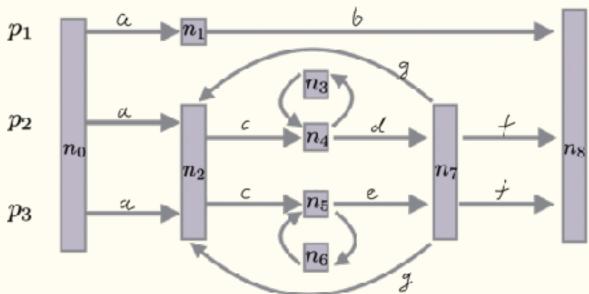
 $Paths(\mathcal{N}) \subseteq (\Sigma \times Proc)^*$ local paths in \mathcal{N} .

 $Paths(\mathcal{N})$ is a regular language.



Sound deterministic negotiations vs finite automata

 $Paths(\mathcal{N}) \subseteq (\Sigma \times Proc)^*$ local paths in \mathcal{N} .



Consider A_N , the minimal deterministic automaton for Paths(N).

We define $\overline{\mathcal{N}}$ from $\mathcal{A}_{\mathcal{N}}$.

$$\mathcal{A}_{\mathcal{N}} = \langle S, \Sigma \times \mathit{Proc}, s^0, \delta_{\mathcal{A}} : S \times \Sigma \to S \rangle$$
:

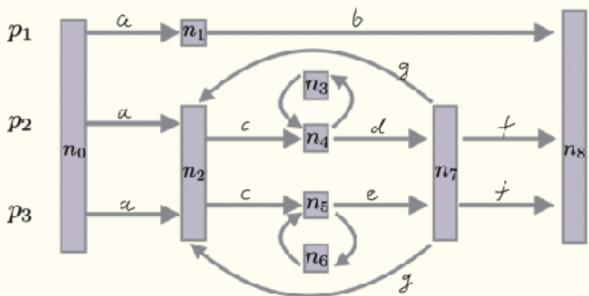
Nodes $N = S - \{\bot\}$, initial node s^0 .

 $\delta(s, a, p) = n'$ if $\delta_{\mathcal{A}}(s, (a, p)) = n'$.

 $dom(s) = \{p : \exists a \in \Sigma. \ \delta(s, a, p) \neq \bot\}$.

Sound deterministic negotiations vs finite automata

 $Paths(\mathcal{N}) \subseteq (\Sigma \times Proc)^*$ local paths in \mathcal{N} .



Consider A_N , the minimal deterministic automaton for Paths(N).

We define $\overline{\mathcal{N}}$ from $\mathcal{A}_{\mathcal{N}}$.

$$\mathcal{A}_{\mathcal{N}} = \langle S, \Sigma \times \mathit{Proc}, s^0, \delta_{\mathcal{A}} : S \times \Sigma \to S \rangle$$
:

Nodes $\mathcal{N} = S - \{\bot\}$, initial node s^0 .

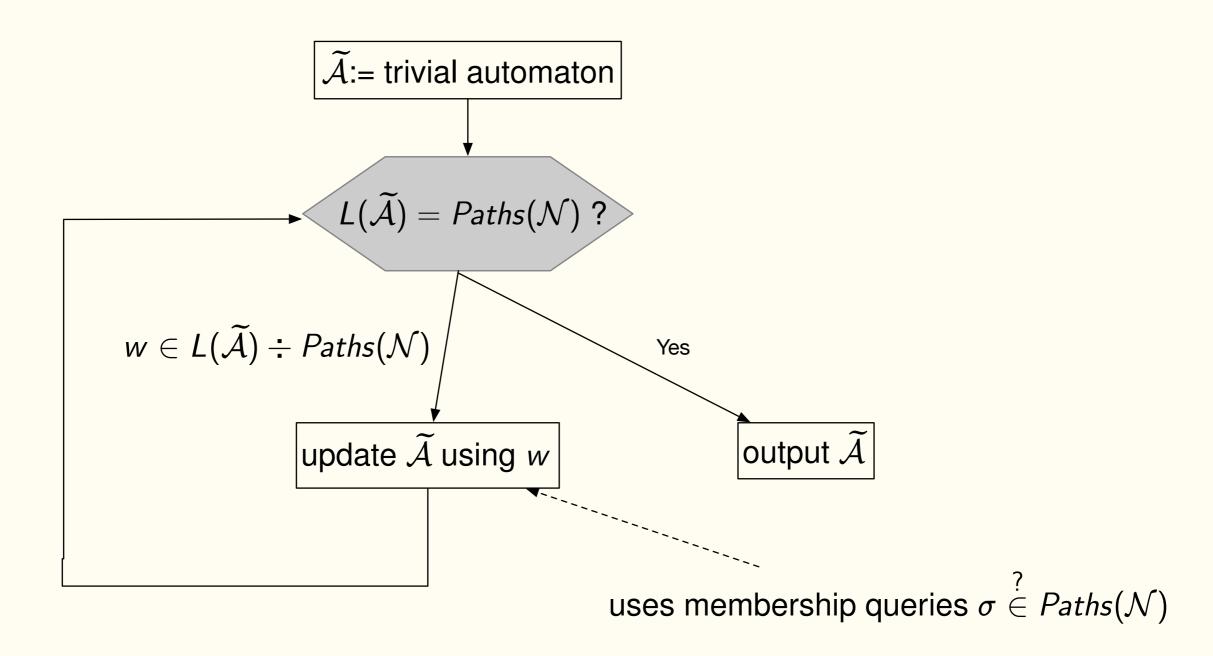
 $\delta(s, a, p) = n'$ if $\delta_{\mathcal{A}}(s, (a, p)) = n'$.

 $dom(s) = \{p : \exists a \in \Sigma. \ \delta(s, a, p) \neq \bot\}$.

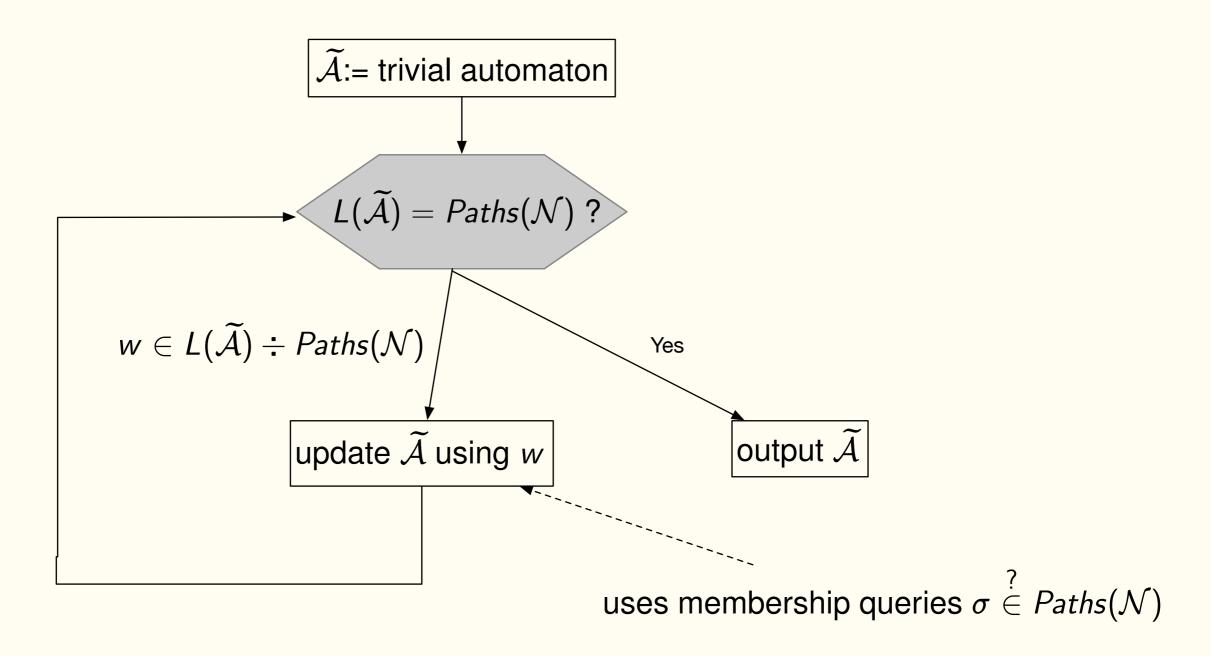
Fact: $\overline{\mathcal{N}}$ is a negotiation and there is a homomorphism $h: \mathcal{N} \to \overline{\mathcal{N}}$.

So we can just learn $Paths(\mathcal{N})$ and then construct $\overline{\mathcal{N}}$.

Using finite automat learning directly



Using finite automat learning directly



- $\boldsymbol{1}$. Automaton $\widetilde{\mathcal{A}}$ may not resemble a negotiation.
- **2**. Answering $\sigma \stackrel{?}{\in} Paths(\mathcal{N})$ requires to know internals of \mathcal{N}

Learning sound deterministic negotiations

We fix a set of processes, Proc, and a distributed alphabet $(\Sigma, dom : \Sigma \rightarrow Proc)$.

Teacher knows the language L of a sound deterministic negotiation.

1

We want to construct the minimal negotiation of L using two kinds of queries:

membership queries: $\sigma \overset{?}{\in} \mathit{Paths}(\mathcal{N})$

equivalence queries: $L(\widetilde{N}) \stackrel{?}{=} L$

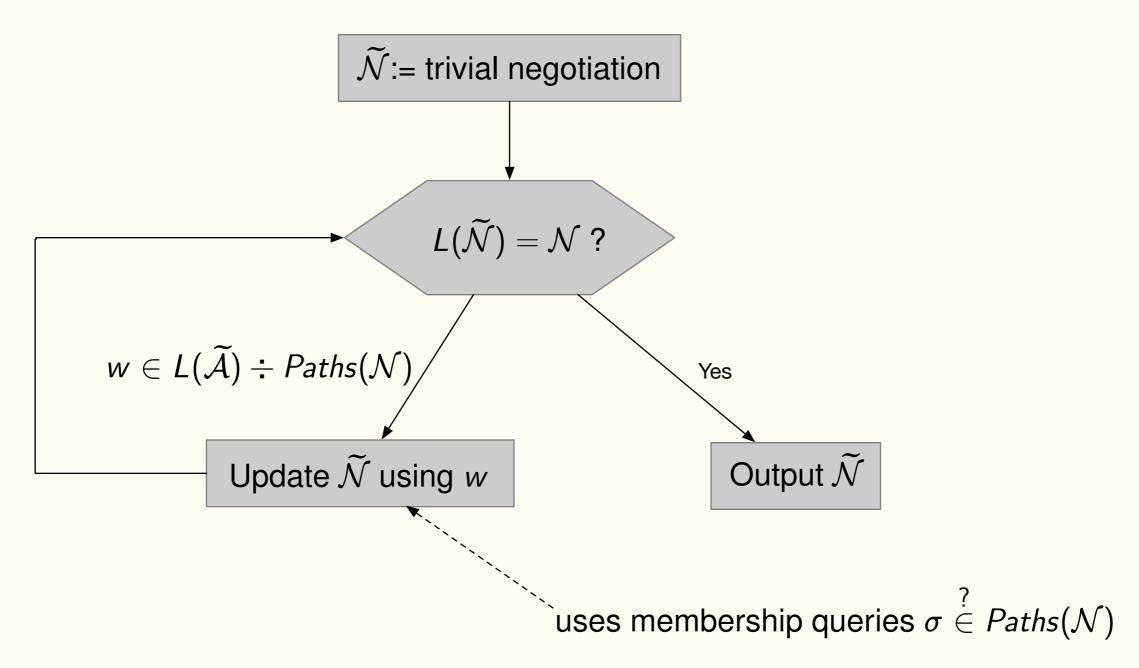
2

We want to construct the minimal negotiation of *L* using two kinds of queries:

membership queries: $u \stackrel{?}{\in} L(\mathcal{N})$

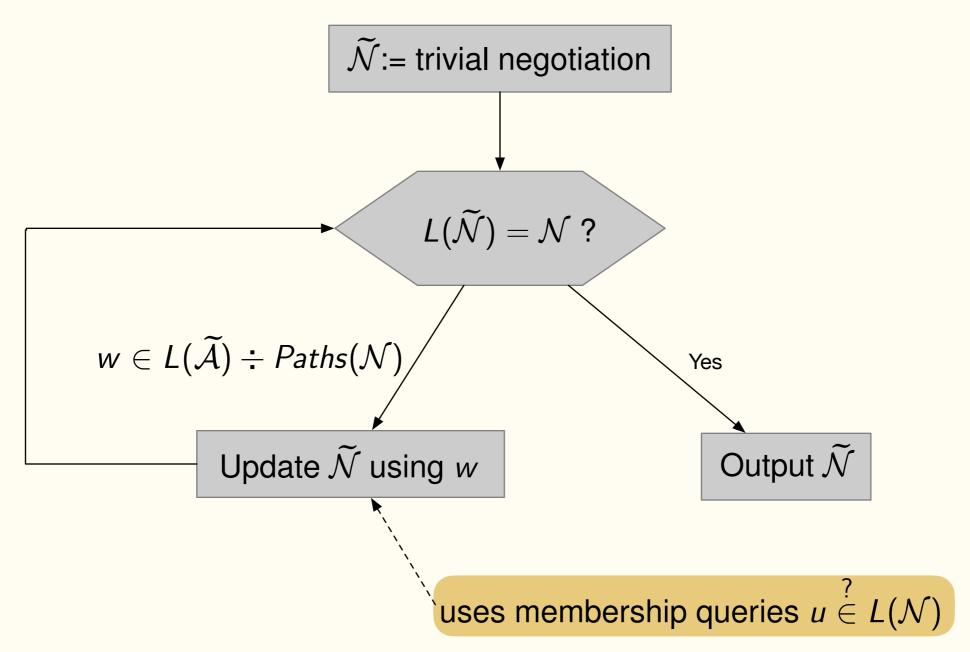
equivalence queries: $L(\widetilde{N}) \stackrel{?}{=} L$

Local paths in membership queries



- -1. Automaton $\widetilde{\mathcal{A}}$ may not resemble a negotiation.
 - **2**. Answering $\sigma \stackrel{?}{\in} Paths(\mathcal{N})$ requires to know internals of \mathcal{N}

Executions in membership queries



- -1. Automaton $\widetilde{\mathcal{A}}$ may not resemble a negotiation.
- **2**. Answering $\sigma \stackrel{?}{\in} Paths(\mathcal{N})$ requires to know internals of \mathcal{N}

Learning sound deterministic negotiations

We fix a set of processes, Proc, and a distributed alphabet $(\Sigma, dom : \Sigma \rightarrow Proc)$.

Teacher knows the language L of a sound deterministic negotiation.

1

We want to construct the minimal negotiation of *L* using two kinds of queries:

membership queries: $\sigma \stackrel{?}{\in} Paths(\mathcal{N})$

equivalence queries: $L(\widetilde{N}) \stackrel{?}{=} L$

THM: s(s+|Proc|+log(m)) membership queries, s equivalence queries

2

We want to construct the minimal negotiation of *L* using two kinds of queries:

membership queries: $u \stackrel{?}{\in} L(\mathcal{N})$

equivalence queries: $L(\widetilde{N}) \stackrel{?}{=} L$

THM: s(s+log(m)) membership queries, s equivalence queries

Summary

- Sound deterministic negotiations are a syntactic subclass of Petri nets (as well as Zielonka automata).
- They have a lot of structure: finite automaton for the path language (decomposition results)
- Thanks to this structure some analysis problems are PTIME.
- * It is also possible to minimize them and get an active learning algorithm.

Further work

- Black box learning.

 [Leemans, Fahland, Aalst: Scalable process discovery and conformance checking, 2016]

 [Ehrenfeucht, Rozenberg: Region theory for Petri Nets, 1990]
- Approximating Zielonka automata by sound deterministic negotiations.

Summary

- Sound deterministic negotiations are a syntactic subclass of Petri nets (as well as Zielonka automata).
- They have a lot of structure: finite automaton for the path language (decomposition results)
- Thanks to this structure some analysis problems are PTIME.
- * It is also possible to minimize them and get an active learning algorithm.

Further work

- Black box learning.

 [Leemans, Fahland, Aalst: Scalable process discovery and conformance checking, 2016]

 [Ehrenfeucht, Rozenberg: Region theory for Petri Nets, 1990]
- Approximating Zielonka automata by sound deterministic negotiations.

Thank you!