Learning sound deterministic negotiations

Igor Walukiewicz

joint work with Anca Muscholl

Motivation

Learning a finite distributed system may be more efficient than learning a finite automaton representing all the interleavings of the system.

Active learning finite automata [Angluin'87]

Teacher knows a regular language L. Learner wants to construct a finite automaton for L .

Learner can ask membership queries: $\quad w \in L$?
equivalence queries: $\quad L(\widetilde{\mathcal{A}})=L$

Active learning finite automata [Angluin'87]

$\mathrm{O}(\mathrm{s}(\mathrm{s}+\log (\mathrm{m}))$ membership queries
S equivalence queries
(S: the size of the minimal det. automaton for L)

Active learning finite automata [Angluin'87]

$\mathrm{O}(\mathrm{s}(\mathrm{s}+\log (\mathrm{m}))$ membership queries

S equivalence queries
(S: the size of the minimal det. automaton for L)

OBS: Learning produces a canonical automaton.

Why learning distributed systems is hard

Why learning distributed systems is hard

$3+5=8$ states

Why learning distributed systems is hard

Which of the two is canonical?

Active learning finite automata [Angluin'87]

Tree languages [Drewes and Högberg 2007]
Weighted automata [Balle and Mohri 2015]

Omega-regular languages [Angluin and Fisman 2016]
Nominal automata [Moerman, Sammartino, Silva, Klin, Szynwelski. 2017]
Learning Communicating Automata from MSCs [Bollig, Katoen, Kern, Leucker 2010]
Learning Pomset Automata [Heerdt, Kappé, Rot, Silva 2021]
Algebraical/Categorical frameworks:
[Heerdt, Sammartino, Silva 2017]
[Urbat and Lutz Schröder. 2020]
[Colcombet, Petrisan, Stabile. 2021]
Case studies:
[Vaandrager. Model learning. Commun. ACM 2017]
[Neider, Smetsers, Vaandrager, Kuppens LNCS11200, 2019]

Negotiations [Desel \& Esparza'13]

Negotiations [Desel \& Esparza¹ 3]

Negotiations [Desel \& Esparza¹ 3]

A run is a sequence of configurations

$$
\left\{n_{0}\right\} \xrightarrow{a}\left\{n_{1}, n_{2}\right\} \xrightarrow{b}\left\{n_{1}, n_{4}, n_{5}\right\} \xrightarrow{c}\left\{n_{1}, n_{7}, n_{5}\right\} \xrightarrow{g}\left\{n_{1}, n_{7}, n_{6}\right\}
$$

Negotiations [Desel \& Esparza¹ 13]

A run is a sequence of configurations

$$
\left\{n_{0}\right\} \xrightarrow{a}\left\{n_{1}, n_{2}\right\} \xrightarrow{b}\left\{n_{1}, n_{4}, n_{5}\right\} \xrightarrow{c}\left\{n_{1}, n_{7}, n_{5}\right\} \xrightarrow{g}\left\{n_{1}, n_{7}, n_{6}\right\}
$$

Negotiations [Desel \& Esparza¹ 3]

A run is a sequence of configurations

$$
\left\{n_{0}\right\} \xrightarrow{a}\left\{n_{1}, n_{2}\right\} \xrightarrow{b}\left\{n_{1}, n_{4}, n_{5}\right\} \xrightarrow{c}\left\{n_{1}, n_{7}, n_{5}\right\} \xrightarrow{g}\left\{n_{1}, n_{7}, n_{6}\right\}
$$

Negotiations [Desel \& Esparza¹ 13]

A run is a sequence of configurations

$$
\left\{n_{0}\right\} \xrightarrow{a}\left\{n_{1}, n_{2}\right\} \xrightarrow{b}\left\{n_{1}, n_{4}, n_{5}\right\} \xrightarrow{c}\left\{n_{1}, n_{7}, n_{5}\right\} \xrightarrow{g}\left\{n_{1}, n_{7}, n_{6}\right\}
$$

Negotiations [Desel \& Esparza' 13]

A run is a sequence of configurations

$$
\left\{n_{0}\right\} \xrightarrow{a}\left\{n_{1}, n_{2}\right\} \xrightarrow{b}\left\{n_{1}, n_{4}, n_{5}\right\} \xrightarrow{c}\left\{n_{1}, n_{7}, n_{5}\right\} \xrightarrow{g}\left\{n_{1}, n_{7}, n_{6}\right\}
$$

Sound deterministic negotiations

A negotiation is deterministic if its transition relation is a function

$$
\delta: N \times \Sigma \times \text { Proc } \rightarrow N
$$

A negotiation is sound if there is a final node $n_{\text {fin }}$ such that
every partial run $\left\{n_{\text {init }}\right\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v}\left\{n_{\text {fin }}\right\}$.

Sound deterministic negotiations

A negotiation is deterministic if its transition relation is a function

$$
\delta: N \times \Sigma \times \text { Proc } \rightarrow N
$$

A negotiation is sound if there is a final node $n_{\text {fin }}$ such that every partial run $\left\{n_{\text {init }}\right\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v}\left\{n_{\text {fin }}\right\}$.

\longleftarrow Not sound

Sound deterministic negotiations

A negotiation is deterministic if its transition relation is a function

$$
\delta: N \times \Sigma \times \text { Proc } \rightarrow N
$$

A negotiation is sound if there is a final node $n_{\text {fin }}$ such that every partial run $\left\{n_{\text {init }}\right\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v}\left\{n_{\text {fin }}\right\}$.

Thm[Desel \& Esparza'15]
Sound deterministic negotiations \equiv sound, free-choice Petri nets with initial and final markings.

Sound deterministic negotiations

A negotiation is deterministic if its transition relation is a function

$$
\delta: N \times \Sigma \times \text { Proc } \rightarrow N
$$

A negotiation is sound if there is a final node $n_{\text {fin }}$ such that every partial run $\left\{n_{\text {init }}\right\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v}\left\{n_{\text {fin }}\right\}$.

Sound deterministic negotiations

A negotiation is deterministic if its transition relation is a function

$$
\delta: N \times \Sigma \times \text { Proc } \rightarrow N
$$

A negotiation is sound if there is a final node $n_{\text {fin }}$ such that every partial run $\left\{n_{\text {init }}\right\} \xrightarrow{u} C$ can be completed $C \xrightarrow{v}\left\{n_{\text {fin }}\right\}$.

Thm[Desel \& Esparza \& Hoffmann'17]
Checking soundness of a deterministic negotiation can be done in PTIME.

Thm[Esparza, Kuperberg, Muscholl, W.'18]
Checking soundness of a deterministic negotiation is NLogSpace-complete.
Soundness is characterized by 3 forbidden patterns.

Sound deterministic negotiations are:

- A syntactic restriction of Peri nets.
- A non-trivial extension of finite automata.
- There is an inductive definition of this class.
- Several verification problems are easy for this class.

Sound deterministic negotiations vs. finite automata

Sound deterministic negotiations vs. finite automata

Paths $(\mathcal{N}) \subseteq(\Sigma \times \operatorname{Proc})^{*}$ local paths in \mathcal{N}.
$\operatorname{Paths}(\mathcal{N})$ is a regular language.

$$
\begin{aligned}
& (a, 1)(b, 1) \\
& (a, 2)(c, 3)(e, 3)(f, 2)
\end{aligned}
$$

Sound deterministic negotiations vs finite automata

Paths $(\mathcal{N}) \subseteq(\Sigma \times \operatorname{Proc})^{*}$ local paths in \mathcal{N}.

Consider $\mathcal{A}_{\mathcal{N}}$, the minimal deterministic automaton for $\operatorname{Paths}(\mathcal{N})$.

We define $\overline{\mathcal{N}}$ from $\mathcal{A}_{\mathcal{N}}$.

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{N}}=\left\langle S, \Sigma \times \operatorname{Proc}, s^{0}, \delta_{\mathcal{A}}: S \times \Sigma \rightarrow S\right\rangle: \\
& \text { Nodes } N=S-\{\perp\}, \text { initial node } s^{0} . \\
& \delta(s, a, p)=n^{\prime} \text { if } \quad \delta_{\mathcal{A}}(s,(a, p))=n^{\prime} . \\
& \quad \operatorname{dom}(s)=\{p: \exists a \in \Sigma . \delta(s, a, p) \neq \perp\} .
\end{aligned}
$$

Sound deterministic negotiations vs finite automata

$\operatorname{Paths}(\mathcal{N}) \subseteq(\Sigma \times \operatorname{Proc})^{*}$ local paths in \mathcal{N}.

Consider $\mathcal{A}_{\mathcal{N}}$, the minimal deterministic automaton for $\operatorname{Paths}(\mathcal{N})$.

We define $\overline{\mathcal{N}}$ from $\mathcal{A}_{\mathcal{N}}$.

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{N}}=\left\langle S, \Sigma \times \operatorname{Proc}, s^{0}, \delta_{\mathcal{A}}: S \times \Sigma \rightarrow S\right\rangle: \\
& \text { Nodes } N=S-\{\perp\}, \text { initial node } s^{0} . \\
& \delta(s, a, p)=n^{\prime} \text { if } \quad \delta_{\mathcal{A}}(s,(a, p))=n^{\prime} . \\
& \quad \operatorname{dom}(s)=\{p: \exists a \in \Sigma . \delta(s, a, p) \neq \perp\} .
\end{aligned}
$$

Fact: $\overline{\mathcal{N}}$ is a negotiation and there is a homomorphism $h: \mathcal{N} \rightarrow \overline{\mathcal{N}}$.
So we can just learn $\operatorname{Paths}(\mathcal{N})$ and then construct $\overline{\mathcal{N}}$.

Using finite automat learning directly

Using finite automat learning directly

1. Automaton $\widetilde{\mathcal{A}}$ may not resemble a negotiation.
2. Answering $\sigma \stackrel{?}{\in} \operatorname{Paths}(\mathcal{N})$ requires to know internals of \mathcal{N}

Learning sound deterministic negotiations

We fix a set of processes, Proc, and a distributed alphabet (Σ, dom : $\Sigma \rightarrow$ Proc).
Teacher knows the language L of a sound deterministic negotiation.

1
We want to construct the minimal negotiation of L using two kinds of queries:

$$
\begin{array}{ll}
\text { membership queries: } & \sigma \stackrel{?}{\in} \operatorname{Paths}(\mathcal{N}) \\
\text { equivalence queries: } & L(\widetilde{N}) \stackrel{?}{=} L
\end{array}
$$

\square
We want to construct the minimal negotiation of L using two kinds of queries:

$$
\begin{array}{ll}
\text { membership queries: } & u \stackrel{?}{\in} L(\mathcal{N}) \\
\text { equivalence queries: } & L(\widetilde{N}) \stackrel{?}{=} L
\end{array}
$$

Local paths in membership queries

1. Automaton $\tilde{\mathcal{A}}$ may not resemble a negotiation.
2. Answering $\sigma \stackrel{?}{\in} \operatorname{Paths}(\mathcal{N})$ requires to know internals of \mathcal{N}

Executions in membership queries

1. Automaton $\tilde{\mathcal{A}}$ may not resemble a negotiation.
2. Answering $\sigma \stackrel{?}{\subset} \operatorname{Paths}(\mathcal{N})$ requires to know internals of \mathcal{N}

Learning sound deterministic negotiations

We fix a set of processes, Proc, and a distributed alphabet (Σ, dom : $\Sigma \rightarrow$ Proc).
Teacher knows the language L of a sound deterministic negotiation.

We want to construct the minimal negotiation of L using two kinds of queries:

$$
\begin{aligned}
\text { membership queries: } & \sigma \stackrel{?}{\oplus} \operatorname{Paths}(\mathcal{N}) \\
\text { equivalence queries: } & L(\widetilde{N}) \stackrel{?}{=} L
\end{aligned}
$$

THM: $s(s+\mid$ Proc|+log(m)) membership queries, s equivalence queries

2
We want to construct the minimal negotiation of L using two kinds of queries:

$$
\begin{array}{cl}
\text { membership queries: } & u \stackrel{?}{\in} L(\mathcal{N}) \\
\text { equivalence queries: } & L(\widetilde{N}) \stackrel{?}{=} L
\end{array}
$$

THM: $s(s+\log (m))$ membership queries, s equivalence queries

Summary

\% Sound deterministic negotiations are a syntactic subclass of Petri nets (as well as Zielonka automata).
\& They have a lot of structure:
finite automaton for the path language (decomposition results)
\& Thanks to this structure some analysis problems are PTIME.
\& It is also possible to minimize them and get an active learning algorithm.

Further work

\& Black box learning.
[Leemans, Fahland, Aalst: Scalable process discovery and conformance checking, 2016]
[Ehrenfeucht, Rozenberg: Region theory for Petri Nets, 1990]
\& Approximating Zielonka automata by sound deterministic negotiations.

Summary

\% Sound deterministic negotiations are a syntactic subclass of Petri nets (as well as Zielonka automata).
\& They have a lot of structure:
finite automaton for the path language (decomposition results)
\& Thanks to this structure some analysis problems are PTIME.
$\%$ It is also possible to minimize them and get an active learning algorithm.

Further work

\& Black box learning.
[Leemans, Fahland, Aalst: Scalable process discovery and conformance checking, 2016] [Ehrenfeucht, Rozenberg: Region theory for Petri Nets, 1990]
\& Approximating Zielonka automata by sound deterministic negotiations.

