COMPOSITIONAL RELATIONAL REASONING VIA
 OPERATIONAL GAME SEMANTICS

Guilhem Jaber
NANTES

Andrzej Murawski OXFORD

HGHER-ORDER CALL-BY-VALUE LANGUAGES WITH STATE

cONTEXTUAL EQUIVALENCE

$\mathbf{x} \in\{\mathrm{HOSC}, \mathrm{GOSC}, \mathrm{HOS}, \mathrm{GOS}\}$

$$
M_{1} \cong \mathbf{x} M_{2}
$$

M_{1}, M_{2} cannot be distinguished by x-contexts.

GAME SEMANTICS

- Interaction modelled as an exchange of moves between two players (O-context, P-term)

- Constraints on contexts can be expressed as restrictions on the shape of play for \bigcirc-moves.

Results from the I990s: Abramsky, Jagadeesan, Malacaria, Hyland, Ong, Laird, Honda, McCusker

CONSTRAINTS ON O-PLAY

- O-visibility (violation)

- O-bracketing (violation)

LTS-BASED ACCOUNT

Theorem (Jaber, M. (ESOP'21)). Let $\operatorname{Tr}_{\mathbf{x}}(M)$ be the set of traces generated by M in $\mathcal{L}_{\mathbf{x}}$, where $\mathbf{x} \in\{$ HOSC, GOSC, HOS, GOS $\}$.

$$
M_{1} \cong \mathbf{x} M_{2} \text { if and only if } \operatorname{Tr}_{\mathbf{x}}\left(M_{1}\right)=\operatorname{Tr}_{\mathbf{x}}\left(M_{2}\right)
$$

$$
\begin{array}{ccccc}
?(f, h, c) & \bar{f}\left(x, c_{1}\right) & x\left(g_{1}, c_{2}\right) & \bar{h}\left((), c_{3}\right) & c_{3}(()) \\
O & P & O & P & O
\end{array}
$$

LTS

```
\((P \tau) \mid\left\langle M, c, \gamma, \phi, h, H_{F}, H_{C}\right\rangle \quad \stackrel{\tau}{\longrightarrow}\left\langle N, c^{\prime}, \gamma, \phi, h^{\prime}, H_{F}, H_{C}\right\rangle\)
        when \((M, c, h) \rightarrow\left(N, c^{\prime}, h^{\prime}\right)\)
    \(\left\langle V, c, \gamma, \phi, h, H_{F}, H_{C}\right\rangle \quad \xrightarrow{\bar{c}(A)} \quad\left\langle\gamma \cdot \gamma^{\prime}, \phi \uplus \nu(A), h, H_{F}, H_{C}, F_{P A}^{\mathbf{x}} \uplus \nu(A), C_{P A}^{\mathbf{x}}\right\rangle\)
    when \(c: \sigma,\left(A, \gamma^{\prime}\right) \in \mathbf{A V a l}_{\sigma}(V)\)
\(\left.(P Q)\left\langle K[f V], c, \gamma, \phi, h, H_{F}, H_{C}\right\rangle \xrightarrow{\bar{f}\left(A, c^{\prime}\right)}\left\langle\gamma \cdot \gamma^{\prime} \cdot\left[c^{\prime} \mapsto(K, c)\right], \phi \uplus \phi^{\prime}, h, H_{F}, H_{C}, F_{P Q}^{\mathbf{x}} \uplus \nu(A), C_{P Q}^{\mathbf{x}} \uplus\left\{c^{\prime}\right\}\right)\right\rangle\)
    when \(f: \sigma \rightarrow \sigma^{\prime},\left(A, \gamma^{\prime}\right) \in \mathbf{A V a l}_{\sigma}(V), c^{\prime}: \sigma^{\prime}\) and \(\phi^{\prime}=\nu(A) \uplus\left\{c^{\prime}\right\}\)
\((O A) \quad\left\langle\gamma, \phi, h, H_{F}, H_{C}, F n, C n\right\rangle \xrightarrow{c(A)} \quad\left\langle K[A], c^{\prime}, \gamma, \phi \uplus \nu(A), h, H_{F} \cdot[\nu(A) \mapsto F n], H_{C} \cdot[\nu(A) \mapsto C n]\right\rangle\)
    when \(c \in C n, c: \sigma, A: \sigma, \gamma(c)=\left(K, c^{\prime}\right)\)
\((O Q)\left\langle\gamma, \phi, h, H_{F}, H_{C}, F n, C n\right\rangle \xrightarrow{f(A, c)}\left\langle V A, c, \gamma, \phi \uplus \phi^{\prime}, h, H_{F} \cdot\left[\phi^{\prime} \mapsto F n\right], H_{C} \cdot\left[\phi^{\prime} \mapsto C n\right]\right\rangle\)
    when \(f \in F n, f: \sigma \rightarrow \sigma^{\prime}, A: \sigma, c: \sigma^{\prime}, \gamma(f)=V\) and \(\phi^{\prime}=\nu(A) \uplus\{c\}\)
```


LTS INSTANTIATION

\mathbf{x}	$F_{P A}^{\mathbf{x}}$	$C_{P A}^{\mathbf{x}}$	$F_{P Q}^{\mathbf{x}}$	$C_{P Q}^{\mathbf{x}}$
HOSC	$\phi_{P F}$	$\phi_{P C}$	$\phi_{P F}$	$\phi_{P C}$
GOSC	$H_{F}(c)$	$H_{C}(c)$	$H_{F}(f)$	$H_{C}(f)$
HOS	$\phi_{P F}$	$H_{C}(c)$	$\phi_{P F}$	\emptyset
GOS	$H_{F}(c)$	$H_{C}(c)$	$H_{F}(f)$	\emptyset

TOWARDS KRIPKE NORMALFORM BISIMULATIONS

- The LTS can be used off the shelf prove equivalences via trace equivalence and bisimilarity.
- To achieve robustness, we will employ a combination of Kripke-style reasoning about heap invariants (Pitts, Stark, Ahmed, Dreyer, Rossberg, Neis, Birkedal) and normal-form/ open bisimulations (Sangiorgi, Stovring, Lassen, Levy, ...).
- Uniform treatment of all four languages.

WORLDTRANSITION SYSTEMS

Definition. A world transition system (WTS) \mathcal{A} is a triple (Worlds, $\sqsubseteq_{\mathrm{OQ}}, \sqsubseteq_{\mathrm{OA}}, \mathcal{I}$), where Worlds is a set of states (worlds), $\sqsubseteq_{\mathrm{OQ}}$, $\sqsubseteq_{\mathrm{OA}}$ are binary reflexive relations on Worlds, and \mathcal{I} : Worlds \rightarrow \mathcal{P} (Heap \times Heap) is the invariant assignment that associates a set of pairs of heaps to any world.

Two accessibility relations

- $w \sqsubseteq_{\mathrm{OQ}} w^{\prime}$: functions available to O in w are available in w^{\prime}
- $w \sqsubseteq_{\mathrm{OA}} w^{\prime}$: continuations available to O in w are available in w^{\prime}

\mathcal{A}-KNFB: $\left(\mathcal{V}_{\mathcal{A}}^{\mathrm{x}}, \mathcal{K}_{\mathcal{A}}^{\mathrm{x}}, \mathcal{E}_{\mathcal{A}}^{\mathrm{x}}\right)$

- $\left(V_{1}, V_{2}, w, \mathcal{H}\right) \in \mathcal{V}_{\mathcal{A}}^{\mathrm{x}}$
$\forall w^{\prime} \sqsupseteq_{\mathrm{OQ}}^{*} w . \forall A, c$ (fresh). $\left(V_{1} A, c, V_{2} A, c, w^{\prime}, \mathcal{H}\left[\nu(A), c \mapsto w^{\prime}\right]\right) \in \mathcal{E}_{\mathcal{A}}^{\mathbf{x}}$
- $\left(K_{1}, c_{1}, K_{2}, c_{2}, w, \mathcal{H}\right) \in \mathcal{K}_{\mathcal{A}}^{\mathrm{x}}$
$\forall w^{\prime} \beth_{\mathrm{OA}}^{*} w . \forall A$ (fresh). $\left(K_{1}[A], c_{1}, K_{2}[A], c_{2}, w^{\prime}, \mathcal{H}\left[\nu(A) \mapsto w^{\prime}\right]\right) \in \mathcal{E}_{\mathcal{A}}^{\mathrm{x}}$
- $\left(M_{1}, c_{1}, M_{2}, c_{2}, w, \mathcal{H}\right) \in \mathcal{E}_{\mathcal{A}}^{\mathbf{x}}$

$$
\forall\left(h_{1}, h_{2}\right) \in \mathcal{I}(w) . P_{D i v} \vee P_{P A} \vee P_{P Q}
$$

$\mathcal{E}_{\mathcal{A}}^{\mathbf{x}}$

$$
\begin{aligned}
P_{D i v} \triangleq & \left(M_{1}, c_{1}, h_{1}\right) \Uparrow \wedge\left(M_{2}, c_{2}, h_{2}\right) \Uparrow \\
P_{P A} \triangleq & \exists V_{1}, V_{2}, c, h_{1}^{\prime}, h_{2}^{\prime}, w^{\prime} . \\
& \left(M_{1}, c_{1}, h_{1}\right) \rightarrow^{*}\left(V_{1}, c, h_{1}^{\prime}\right) \wedge\left(M_{2}, c_{2}, h_{2}\right) \rightarrow^{*}\left(V_{2}, c, h_{2}^{\prime}\right) \wedge \\
& \left(h_{1}^{\prime}, h_{2}^{\prime}\right) \in \mathcal{I}\left(w^{\prime}\right) \wedge\left(V_{1}, V_{2}, w^{\prime}, \mathcal{H}\right) \in \mathcal{V}_{\mathcal{A}}^{\mathbf{x}} \wedge \\
& (w, \mathcal{H}) \sqsubseteq_{c}^{\mathbf{x}} w^{\prime} \\
& \\
P_{P Q} \triangleq & \exists K_{1}, V_{1}, K_{2}, V_{2}, c_{1}^{\prime}, c_{2}^{\prime}, f, w^{\prime} . \\
& \left(M_{1}, c_{1}, h_{1}\right) \rightarrow^{*}\left(K_{1}\left[f V_{1}\right], c_{1}^{\prime}, h_{1}^{\prime}\right) \wedge\left(M_{2}, c_{2}, h_{2}\right) \rightarrow^{*}\left(K_{2}\left[f V_{2}\right], c_{2}^{\prime}, h_{2}^{\prime}\right) \wedge \\
& \left(h_{1}^{\prime}, h_{2}^{\prime}\right) \in \mathcal{I}\left(w^{\prime}\right) \wedge\left(V_{1}, V_{2}, w^{\prime}, \mathcal{H}\right) \in \mathcal{V}_{\mathcal{A}}^{\mathbf{x}} \wedge\left(K_{1}, c_{1}^{\prime}, K_{2}, c_{2}^{\prime}, w^{\prime}, \mathcal{H}\right) \in \mathcal{K}_{\mathcal{A}}^{\mathbf{x}} \wedge \\
& (w, \mathcal{H}) \sqsubseteq_{f}^{\mathbf{x}} w^{\prime}
\end{aligned}
$$

$\sqsubseteq_{c}^{\mathrm{x}}$ and $\sqsubseteq_{f}^{\mathrm{x}}$

\mathbf{x}	$F_{P A}^{\mathbf{x}}$	$C_{P A}^{\mathbf{x}}$	$F_{P Q}^{\mathbf{x}}$	$C_{P Q}^{\mathbf{x}}$
HOSC	$\phi_{P F}$	$\phi_{P C}$	$\phi_{P F}$	$\phi_{P C}$
GOSC	$H_{F}(c)$	$H_{C}(c)$	$H_{F}(f)$	$H_{C}(f)$
HOS	$\phi_{P F}$	$H_{C}(c)$	$\phi_{P F}$	\emptyset
GOS	$H_{F}(c)$	$H_{C}(c)$	$H_{F}(f)$	\emptyset

\mathbf{x}	$(w, \mathcal{H}) \sqsubseteq_{c}^{\mathbf{x}} w^{\prime}$	$(w, \mathcal{H}) \sqsubseteq_{f}^{\mathbf{x}} w^{\prime}$
HOSC	$w \sqsubseteq_{\mathrm{OQ}} w^{\prime} \wedge w \sqsubseteq_{\mathrm{OA}} w^{\prime}$	$w \sqsubseteq_{\mathrm{OQ}} w^{\prime} \wedge w \sqsubseteq_{\mathrm{OA}} w^{\prime}$
GOSC	$\mathcal{H}(c) \sqsubseteq_{\mathrm{OQ}} w^{\prime} \wedge \mathcal{H}(c) \sqsubseteq_{\mathrm{OA}} w^{\prime}$	$\mathcal{H}(f) \sqsubseteq_{\mathrm{OQ}} w^{\prime} \wedge \mathcal{H}(f) \sqsubseteq_{\mathrm{OA}} w^{\prime}$
HOS	$w \sqsubseteq_{\mathrm{OQ}} w^{\prime} \wedge \mathcal{H}(c) \sqsubseteq_{\mathrm{OA}} w^{\prime}$	$w \sqsubseteq_{\mathrm{OQ}} w^{\prime}$
GOS	$\mathcal{H}(c) \sqsubseteq_{\mathrm{OQ}} w^{\prime} \wedge \mathcal{H}(c) \sqsubseteq_{\mathrm{OA}} w^{\prime}$	$\mathcal{H}(f) \sqsubseteq_{\mathrm{OQ}} w^{\prime}$

FULL ABSTRACTION

Theorem (Jaber, M. (LICS'21)). Let $\mathbf{x} \in\{$ HOSC, GOSC, HOS, GOS $\}$.

$$
M_{1} \cong{ }^{\mathrm{x}} M_{2}
$$

if and only if there exists a WTS \mathcal{A}, initial world w_{0} such that $(\emptyset, \emptyset) \in \mathcal{I}\left(w_{0}\right)$ and

$$
\left(M_{1}, c, M_{2}, c, w_{0},\left[c \mapsto w_{0}\right]\right) \in \mathcal{E}_{\mathcal{A}}^{\mathrm{x}} .
$$

Comparison with Kripke logical relations:
 Dreyer, Neis, Birkedal (ICFP' IO, JFP 2012)

game semantics
Kripke logical relations
Kripke nf-bisimulations

GOSC

O-visibility
backtracking

$$
\begin{aligned}
& \mathcal{H}(n) \sqsubseteq_{\mathrm{OQ}} w^{\prime} \\
& \mathcal{H}(n) \sqsubseteq_{\mathrm{OA}} w^{\prime}
\end{aligned}
$$

HOS
O-bracketing
private vs public

$$
w \sqsubseteq_{\mathrm{OQ}} w^{\prime}
$$

$\mathcal{H}(c) \sqsubseteq_{\mathrm{OA}} w^{\prime}$
(Q vs A)

SUMMARY

- Relational techniques derived from game models in a uniform fashion
- Soundness and completeness (without biorthogonal closure)
- Abstraction, compositionality, direct style, lightweight quantification
- Scope for automation and generalisation

