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HIGHER-ORDER CALL-BY-VALUE 
LANGUAGES WITH STATE

HOSC
(higher-order store + call/cc)

!!
!!
!!
!!
!!
!!
!!

GOSC
(ground store + call/cc)

HOS
(higher-order store)

"""""""""""""

GOS
(ground store)

#############

$$$$$$$$$$$$$$

HOSC
(O-unrestricted)

%
%%
%
%%
%%
%%
%%

GOSC
(O-visibility)

HOS
(O-bracketing)

&&&&&&&&&&&&&

GOS
(O-visibility and O-bracketing)

%%
%%%%%

%%%%%%

&&&&&&&&&&&&&&
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CONTEXTUAL EQUIVALENCE

HOSC
(higher-order store + call/cc)

GOSC
(ground store + call/cc)

HOS
(higher-order store)

GOS
(ground store)

Given x 2 {HOSC,GOSC,HOS,GOS}, we write

M1
⇠=x M2

M1,M2 cannot be distinguished by x-contexts.
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GAME SEMANTICS
• Interaction modelled as an exchange of moves 

between two players (O-context, P-term)

• Constraints on contexts can be expressed as 
restrictions on the shape of play for O-moves.

q0 q1 q2 q3 q4
O P O P O

q0 q1 q2 q3 a1
O P O P O

q0 q1 q2 q3 a3 q4 a1
O P O P O P O
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Results from the 1990s: Abramsky, Jagadeesan, 
Malacaria, Hyland, Ong, Laird, Honda, McCusker
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CONSTRAINTS ON O-PLAY

q0 q1 q2 q3 q4
O P O P O

q0 q1 q2 q3 a1
O P O P O

q0 q1 q2 q3 a3 q4 a1
O P O P O P O

1

• O-visibility (violation)

• O-bracketing (violation)q0 q1 q2 q3 q4
O P O P O

q0 q1 q2 q3 a1
O P O P O

q0 q1 q2 q3 a3 q4 a1
O P O P O P O
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LTS-BASED ACCOUNT

HOSC
(higher-order store + call/cc)

!!
!!
!!
!!
!!
!!
!!

GOSC
(ground store + call/cc)

HOS
(higher-order store)

"""""""""""""

GOS
(ground store)

#############

$$$$$$$$$$$$$$

HOSC
(unrestricted)

%
%%
%%
%%
%%
%%
%%

GOSC
(O-visibility)

HOS
(O-bracketing)

&&&&&&&&&&&&&&

GOS
(O-visibility and O-bracketing)

%%
%%%%%

%%%%%%

&&&&&&&&&&&&&&

Theorem (Jaber, M. (ESOP’21)). Let Trx(M) be the set of traces
generated by M in Lx, where x ∈ {HOSC,GOSC,HOS,GOS}.

M1
∼=x M2 if and only if Trx(M1) = Trx(M2).

2

q0 q1 q2 q3 q4
O P O P O

q0 q1 q2 q3 a1
O P O P O

q0 q1 q2 q3 a3 ?(f, h, c) f̄(x, c1) x(g1, c2) h̄((), c3) c3(())
O P O P O O P O P O

q0 q1 q2 q3 a3
O P O P O

q0 q1 q2 q3 a3

?(f, h, c) f̄(x, c1) x(g1, c2) h̄((), c3) c3(())

O P O P O
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LTS

t1 = f̄(x, c1) x(g1, c2) h̄((), c3) x(g2, c4) h̄((), c5)
t2 = f̄(x, c1) x(g1, c2) h̄((), c3) c3(()) ḡ1((), c4) c1(()) c̄(↵)
t3 = f̄(x, c1) x(g1, c2) h̄((), c3) c3(()) ḡ1((), c4) c4(()) c̄2(()) c1(()) c̄(tt)

Fig. 5. NO-traces for NO = {f : ((Unit ! Unit) ! Unit) ! Unit, h : Unit ! Unit, c : Bool}

VisO(t c̄(A)) = ⌫(A) c 2 NO

VisO(t f̄(A0, c) t0 c̄(A)) = VisO(t) [ ⌫(A)
VisO(t f̄(A, c)) = ⌫(A) [ {c} f 2 NO

VisO(t f 0(A0, c0) t0 f̄(A, c)) = VisO(t) [ ⌫(A) [ {c} f 2 ⌫(A0)
VisO(t c0(A0) t0 f̄(A, c)) = VisO(t) [ ⌫(A) [ {c} f 2 ⌫(A0)

TopO(t c̄(A)) = ; c 2 NO

TopO(t f(A
0, c) t0 c̄(A)) = TopO(t)

TopO(t f̄(A, c)) = {c}

Fig. 6. O-visible names VisO(t) and top continuation name TopO(t).

f 2 FNames�!�0

⌃;� ` f : � ! �0
⌃;� ` K : � ! �0 c 2 CNames�0

⌃;� ` cont� (K, c) : cont �

(M,h) ! (M 0, h0)

(M, c, h) ! (M 0, c, h0)

(K[call/cc
⌧
(x.M)], c, h) ! (K[M{cont⌧ (K, c)/x}], c, h)

(K[throw⌧ V to cont⌧ (K 0, c0)], c, h) ! (K 0[V ], c0, h)

Fig. 7. Modifications of HOSC syntax for use in Lx

(P⌧) hM, c, �,�, h,HF , HCi
⌧

��! hN, c0, �,�, h0, HF , HCi

when (M, c, h) ! (N, c0, h0)

(PA) hV, c, �,�, h,HF , HCi
c̄(A)
���! h� · �0,� ] ⌫(A), h,HF , HC , Fx

PA ] ⌫(A), Cx
PAi

when c : �, (A, �0) 2 AVal�(V )

(PQ) hK[fV ], c, �,�, h,HF , HCi
f̄(A,c

0)
����! h� · �0

· [c0 7! (K, c)],� ] �0, h,HF , HC , Fx
PQ ] ⌫(A), Cx

PQ ] {c0})i
when f : � ! �0, (A, �0) 2 AVal�(V ), c0 : �0 and �0 = ⌫(A) ] {c0}

(OA) h�,�, h,HF , HC ,Fn,Cni
c(A)
���! hK[A], c0, �,� ] ⌫(A), h,HF · [⌫(A) 7! Fn], HC · [⌫(A) 7! Cn]i

when c 2 Cn, c : �, A : �, �(c) = (K, c0)

(OQ) h�,�, h,HF , HC ,Fn,Cni
f(A,c)
����! hV A, c, �,� ] �0, h,HF · [�0

7! Fn], HC · [�0
7! Cn]i

when f 2 Fn, f : � ! �0, A : �, c : �0, �(f) = V and �0 = ⌫(A) ] {c}

Given N ✓ Names, [N 7! V] stands for the map [n 7! V |n 2 N ].

Fig. 8. Lx transition rules

represents the set of function P-names currently available to
O, while HF contains historical information about availability.
HF is a function from all O-names encountered so far to sets
of function P-names. The LTS will maintain the invariant that
dom(HF ) is the set of all O-names played so far and, for
each such O-name o, HF (o) consists of function P-names
that were available to O when o was first used. Similarly, Cn
represents the set of currently available continuation P-names
and HC plays a role analogous to HF , recording historical
information about availability of continuation P-names.

Because of the c 2 Cn and f 2 Fn constraints in rules
(OA), (OQ) respectively, passive configurations may progress
only if O uses one of the currently available names as the
head name. Note how the information stored in HC and HF

is updated at this point to take new O-names into account.
In rules (PA), (PQ), the LTS calculates the Fn,Cn compo-

nents of the successor configuration, deciding which P-names
should be made available to O. Names that are introduced
by P in the current label become immediately available in
each case (as ⌫(A) and {c0} respectively). Other names to
be made available are given by the Fx

PA, C
x
PA, F

x
PQ , Cx

PQ
components according to the table below, where �PF (resp.
�PC stands for all function (resp. continuation) P-names, i.e.
�PF = dom(�) \ FNames and �PC = dom(�) \ CNames.
The table is designed in such a way that the components
enforce the game-semantic conditions corresponding to x, as
listed below. This is the only part of Lx that really depends
on x. For x = HOSC, all P-names are being made available
to the next configuration. In other cases, the updates follow
the definition of VisO(t) and TopO(t), as applicable. Note that
occurrences in the table of HF , HC correspond to following
justification pointers. The Lx LTS amounts to a uniform
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LTS INSTANTIATION

x Fx
PA Cx

PA Fx
PQ Cx

PQ

HOSC �PF �PC �PF �PC

GOSC HF (c) HC(c) HF (f) HC(f)
HOS �PF HC(c) �PF ;

GOS HF (c) HC(c) HF (f) ;

Fig. 9. Specification of components Fx
PA, C

x
PA, F

x
PQ , Cx

PQ

x (context) O-questions O-answers
HOSC unrestricted unrestricted
GOSC O-visibility O-visibility
HOS unrestricted O-bracketing
GOS O-visibility O-bracketing

Fig. 10. x-contexts and corresponding constraints

presentation of the series of LTSs, called x[HOSC], from [7].
By design, LHOSC produces the same traces as the LTS
HOSC[HOSC] from [7]. For other x, it produces only those
traces from HOSC[HOSC] that satisfy the restrictions relevant
to x. Consequently, in each case, the traces produced by Lx

are the same as those of x[HOSC].
Let us write Trx(C) for the set of traces produced by Lx

started in configuration C. To state the full abstraction result
for Lx, we need to specify initial configurations. Let � ` M :
⌧ be a cr-free HOSC term such that � = {x1 : �1, · · · , xk :
�k}. A �-assignment ⇢ is a map from {x1, · · · , xk} to the set
of abstract values such that, for all 1  i 6= j  k, we have
⇢(xi) : �i and ⌫(⇢(xi)) \ ⌫(⇢(xj)) = ;. ⇢ simply creates a
supply of names corresponding to the context. Let c : ⌧ and
NO = ⌫(⇢)[ {c}. Then the active initial configuration C⇢,c

M
is

defined to be hM{⇢}, c, ;, NO, ;, [NO 7! ;], [NO 7! ;]i.

Definition 16. Let x 2 {HOSC,GOSC,HOS,GOS}. The x
trace semantics of a cr-free HOSC term � ` M : ⌧ is defined
to be Trx(� ` M : ⌧) , {((⇢, c), t) | ⇢ is a �-assignment, c :
⌧, t 2 Trx(C

⇢,c

M
)}.

We can then restate the full abstraction results from [7] as
follows. They establish an exact correspondence between ciu-
equivalence and trace equivalence.

Theorem 17. For any cr-free HOSC terms � ` M1,M2 :
⌧ , � ` M1

⇠=
x(ciu)
err M2 iff Trx(� ` M1 : ⌧) =

Trx(� ` M2 : ⌧).

From Lemma 5, we deduce an exact correspondence be-
tween contextual equivalence and trace equivalence, in the
symmetric setting.

Corollary 18. For any cr-free x-terms � ` M1,M2 : ⌧ , � `

M1
⇠=x

err M2 iff Trx(� ` M1 : ⌧) = Trx(� ` M2 : ⌧).

Example 19. We revisit the terms � ` Mi (i = 1, 2, 3) from
Figure 3 and traces ti from Figure 5. Let ⇢ = [f 7! f, h 7! h]
(for simplicity, we conflate variable names with function
names) and c : Bool. Then we have t1 62 TrHOS(C

⇢,c

M1
)

but t1 2 TrHOS(C
⇢,c

M2
) and t1 2 TrHOS(C

⇢,c

M3
). Hence, by

Theorem 17, � ` M1 6⇠=HOS
err M2 and � ` M1 6⇠=HOS

err M3.
For t2, we have t2 2 TrGOSC(C

⇢,c

M1
) \ TrGOSC(C

⇢,c

M2
), and

t2 62 TrGOSC(C
⇢,c

M3
). Thus, � ` M1 6⇠=GOSC

err M3 and
� ` M2 6⇠=GOSC

err M3. Note that t3 2 TrGOS(C
⇢,c

M1
) \

TrGOS(C
⇢,c

M2
)\TrGOS(C

⇢,c

M3
). In the second half of the paper,

we will establish � ` M1
⇠=GOSC

err M2, � ` M2
⇠=HOSC

err M3

and � ` M1
⇠=GOS

err M3.

IV. FROM LTS TO KNFB

Recall that Theorem 17 recasts ⇠=x(ciu)
err -equivalence as trace

equivalence in the respective LTS Lx. Since Lx is determinis-
tic (up to the choice of reference names), this corresponds to
bisimilarity. Based on this observation, we develop a relational
framework for proving bisimilarity in all four cases x. Unfor-
tunately, bisimulations defined directly on configurations of
Lx would be quite complicated, not least due to the growth of
the environment � and evolution of the heap h. To address this
complexity, we introduce Kripke Normal-Form Bisimulations

(KNFB) as a friendlier technique.
• The associated bisimulations will not be defined on

configurations, but directly on terms, evaluation contexts
and values.

• To disentangle the reasoning about the heap from the
reasoning about program evaluation, we will rely on a
notion of transition systems of invariants, following the
work on Kripke Logical Relations [16]. In our case, the
transition system will be equipped with two transition
relations, v

OQ
and v

OA
, introduced to model the avail-

ability of function and continuation names respectively.
Remarkably, the differences between the four fragments
will merely boil down to local conditions controlling
how the two relations have to be maintained during the
proof. As a consequence, we will be able to develop our
techniques simultaneously for all four cases.

• To address the growth of �, whenever values or evalua-
tion contexts would be added to Lx-configurations, we
establish their equivalence upfront. However, as heaps
are evolving, it would not be sound to perform these
checks for the current heaps only. Similarly, it would
be too strong to aim for equivalence with respect to
arbitrary heaps. Thus, to account for all relevant uses (in
an abstract fashion), we will rely on the transition system
of invariants, using v

OQ
for function values and v

OA
for

continuations.
We begin with a formal definition of world transition systems.

Definition 20. A world transition system (WTS) A is a
triple (Worlds,v

OQ
,v

OA
, I), where Worlds is a set of states

(worlds), v
OQ

,v
OA

are binary reflexive relations on Worlds,
and I : Worlds ! P(Heap ⇥ Heap) is the invariant
assignment that associates a set of pairs of heaps to any world.

Intuitively, a world can be seen as an abstraction of (a set
of) LTS configurations, where only the heaps matter (via the
function I). w v

OQ
w0 is meant to capture world evolution

that protects the availability of function names introduced by
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TOWARDS KRIPKE NORMAL-
FORM BISIMULATIONS

• The LTS can be used off the shelf prove equivalences via 
trace equivalence and bisimilarity.

• To achieve robustness, we will employ a combination of 
Kripke-style reasoning about heap invariants (Pitts, Stark, 
Ahmed, Dreyer, Rossberg, Neis, Birkedal) and normal-form/
open bisimulations (Sangiorgi, Stovring, Lassen, Levy, …).

• Uniform treatment of all four languages.



WORLD TRANSITION 
SYSTEMS

Definition. A world transition system (WTS) A is a triple
(Worlds,!OQ,!OA, I), where Worlds is a set of states (worlds), !OQ,
!OA are binary reflexive relations on Worlds, and I : Worlds →
P(Heap × Heap) is the invariant assignment that associates a set
of pairs of heaps to any world.

Two accessibility relations

• w !OQ w′: functions available to O in w are available in w′

• w !OA w′: continuations available to O in w are available in w′

3



A-KBNF: (Vx

A, K
x

A, E
x

A)

• (V1, V2, w,H) ∈ Vx

A

∀w′ #∗
OQ w. ∀A, c (fresh). (V1A, c, V2A, c, w

′,H[ν(A), c $→ w′]) ∈ Ex

A

• (K1, c1, K2, c2, w,H) ∈ Kx

A

∀w′ #∗
OA w. ∀A (fresh). (K1[A], c1, K2[A], c2, w

′,H[ν(A) $→ w′]) ∈ Ex

A

• (M1, c1,M2, c2, w,H) ∈ Ex

A

∀(h1, h2) ∈ I(w). PDiv ∨ PPA ∨ PPQ

PDiv ! (M1, c1, h1) ⇑ ∧ (M2, c2, h2) ⇑

PPA ! ∃V1, V2, c, h′
1
, h′

2
, w′.

(M1, c1, h1) →∗ (V1, c, h′
1) ∧ (M2, c2, h2) →∗ (V2, c, h′

2) ∧
(h′

1
, h′

2
) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧
(w,H) *x

c w′

PPQ ! ∃K1, V1, K2, V2, c′1, c
′
2
, f, w′.

(M1, c1, h1) →∗ (K1[fV1], c′1, h
′
1) ∧ (M2, c2, h2) →∗ (K2[fV2], c′2, h

′
2) ∧

(h′
1
, h′

2
) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧ (K1, c′1, K2, c′2, w
′,H) ∈ Kx

A ∧
(w,H) *x

f w′

4

A-KNFB: (Vx
A, K

x
A, E

x
A)

• (V1, V2, w,H) 2 V
x
A

8w0
w

⇤
OQ

w. 8A, c (fresh). (V1A, c, V2A, c, w
0,H[⌫(A), c 7! w0]) 2 E

x
A

• (K1, c1, K2, c2, w,H) 2 K
x
A

8w0
w

⇤
OA

w. 8A (fresh). (K1[A], c1, K2[A], c2, w
0,H[⌫(A) 7! w0]) 2 E

x
A

• (M1, c1,M2, c2, w,H) 2 E
x
A

8(h1, h2) 2 I(w). PDiv _ PPA _ PPQ

E
x
A

PDiv , (M1, c1, h1) * ^ (M2, c2, h2) *

PPA , 9V1, V2, c, h0
1, h

0
2, w

0.
(M1, c1, h1) !⇤ (V1, c, h0

1) ^ (M2, c2, h2) !⇤ (V2, c, h0
2) ^

(h0
1, h

0
2) 2 I(w0) ^ (V1, V2, w0,H) 2 V

x
A ^

(w,H) vx
c w0

PPQ , 9K1, V1, K2, V2, c01, c
0
2, f, w

0.
(M1, c1, h1) !⇤ (K1[fV1], c01, h

0
1) ^ (M2, c2, h2) !⇤ (K2[fV2], c02, h

0
2) ^

(h0
1, h

0
2) 2 I(w0) ^ (V1, V2, w0,H) 2 V

x
A ^ (K1, c01, K2, c02, w

0,H) 2 K
x
A ^

(w,H) vx
f w0

Theorem (Jaber, M. (LICS’21)). Let x 2 {HOSC,GOSC,HOS,GOS}.

M1
⇠=x M2

if and only if there exists a WTS A, initial world w0 such that
(;, ;) 2 I(w0) and

(M1, c,M2, c, w0, [c 7! w0]) 2 E
x
A.

4



A-KBNF: (Vx
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A
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A
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1
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2
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1
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2
) ∧

(h′
1, h

′
2) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧
(w,H) *x

c w′

PPQ ! ∃K1, V1, K2, V2, c′1, c
′
2
, f, w′.

(M1, c1, h1) →∗ (K1[fV1], c′1, h
′
1) ∧ (M2, c2, h2) →∗ (K2[fV2], c′2, h

′
2) ∧

(h′
1
, h′

2
) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧ (K1, c′1, K2, c′2, w
′,H) ∈ Kx

A ∧
(w,H) *x

f w′
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A-KBNF: (Vx

A, K
x

A, E
x

A)

• (V1, V2, w,H) ∈ Vx

A

∀w′ #∗
OQ w. ∀A, c (fresh). (V1A, c, V2A, c, w

′,H[ν(A), c $→ w′]) ∈ Ex

A

• (K1, c1, K2, c2, w,H) ∈ Kx

A

∀w′ #∗
OA w. ∀A (fresh). (K1[A], c1, K2[A], c2, w

′,H[ν(A) $→ w′]) ∈ Ex

A

• (M1, c1,M2, c2, w,H) ∈ Ex

A

∀(h1, h2) ∈ I(w). PDiv ∨ PPA ∨ PPQ

PDiv ! (M1, c1, h1) ⇑ ∧ (M2, c2, h2) ⇑

PPA ! ∃V1, V2, c, h′
1, h

′
2, w

′.
(M1, c1, h1) →∗ (V1, c, h′

1
) ∧ (M2, c2, h2) →∗ (V2, c, h′

2
) ∧

(h′
1
, h′

2
) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧
(w,H) *x

c w′

PPQ ! ∃K1, V1, K2, V2, c′1, c
′
2
, f, w′.

(M1, c1, h1) →∗ (K1[fV1], c′1, h
′
1
) ∧ (M2, c2, h2) →∗ (K2[fV2], c′2, h

′
2
) ∧

(h′
1
, h′

2
) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧ (K1, c′1, K2, c′2, w
′,H) ∈ Kx

A ∧
(w,H) *x

f w′
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x (w,H) vx
c
w0 (w,H) vx

f
w0

HOSC w v
OQ

w0
^ w v

OA
w0 w v

OQ
w0

^ w v
OA

w0

GOSC H(c) v
OQ

w0
^ H(c) v

OA
w0

H(f) v
OQ

w0
^ H(f) v

OA
w0

HOS w v
OQ

w0
^ H(c) v

OA
w0 w v

OQ
w0

GOS H(c) v
OQ

w0
^ H(c) v

OA
w0

H(f) v
OQ

w0

Fig. 12. vx
c and vx

f

worlds is required to progress with respect to v
OQ

and v
OA

.
In this spirit, V

x
A and K

x
A advance the game into multiple

futures calculated according to v
OQ

and v
OA

respectively.

Using KNFBs, we can define bisimilarity for HOSC terms.

Definition 25. Two cr-free HOSC terms � ` M1,M2 : ⌧ ,
are x-bisimilar, written � ` M1 ⌘

x M2 : ⌧ , if there
exists a WTS A = (Worlds,v

OQ
,v

OA
, I), an initial world

w0 2 Worlds such that (;, ;) 2 I(w0), and A
x-KNFB

(RV , RK, RE) such that, for any �-assignment ⇢ and c : ⌧ ,
we have (M1{⇢}, c M2{⇢}, c, w0,H0) 2 RE , where H0 =
[⌫(⇢) 7! w0, c 7! w0].

In Section VI, we will establish the following theorem.

Theorem (KNFB Full Abstraction). For any cr-free HOSC
terms � ` M1,M2 : ⌧ , � ` M1 ⌘

x M2 : ⌧ iff � ` M1
⇠=

x(ciu)
err

M2 : ⌧ . Hence, for any cr-free x-terms � ` M1,M2 : ⌧ ,
� ` M1 ⌘

x M2 : ⌧ iff � ` M1
⇠=x

err M2 : ⌧ .

Equivalence proofs based on KNFBs have a compositional
flavour in that they proceed by establishing equivalences for
pairs of subterms in various worlds, and piecing them together
in a way controlled by A.

We shall write (Vx
A,K

x
A, E

x
A) to refer to the greatest A

x-
KNFB. Below, for simplicity, we ignore types in related tuples.

Example 26 (` M isc
1

⇠=HOSC
err M isc

2 [14]).

M isc
1 , let x = ref (0) in �fUnit!Unit.x := 1; f(); !x

M isc
2 , �fUnit!Unit.f(); 1

We use the WTS A shown below, where I(w;) = {(;, ;)},
and I(w`

j
) = {([` 7! j], ;)} for j 2 {0, 1}. Solid lines indicate

v
OA

, dashed ones represent v
OQ

.

w;

for all `
++

for all `
33 w`

0
++
33 w`

1

Given c : Int and H0 = [c 7! w;], we aim to show
(M isc

1 , c,M isc
2 , c, w;,H0) 2 E

HOSC
A .

Let (h1, h2) 2 I(w;). Then (M isc
i

, c, hi) !
⇤ (Vi, c, h0

i
),

where V1 = �f.` := 1; f(); !`, h0
1 = [` 7! 0], V2 =

�f.f(); 1 and h0
2 = ;. Noting that (h0

1, h
0
2) 2 I(w`

0) and
(w;,H0) v

HOSC
c

w`
0 (i.e. w; v

OQ
w`

0 and w; v
OA

w`
0), it

suffices to show (V1, V2, w`
0,H0) 2 V

HOSC
A . For this, consider

w0 with w`
0 v

⇤
OQ

w0, i.e. w0 = w`
0 or w0 = w`

1. Writing f
for A and taking c0 : Unit ! Unit, we then need to show
(V1f, c0, V2f, c0, w0,H1) 2 E

HOSC
A , where H1 = H0 · [f, c0 7!

w0].

Let (h1, h2) 2 I(w0). Observe that (Vif, c0, hi) !
⇤

(Ki[f()], c0, h0
i
) for i = 1, 2, where K1 = •; !`, K2 = •; 1 and

(h0
1, h

0
2) 2 I(w`

1). Noting (w0,H1) vHOSC
f

w`
1, it suffices to

show ((), (), w`
1,H1) 2 V

HOSC
A and (K1, c0,K2, c0, w`

1,H1) 2
K

HOSC
A . The former follows directly from the definition.
To show (K1, c0,K2, c0, w`

1,H1) 2 K
HOSC
A , consider w0

with w`
1 v

⇤
OA

w0, i.e. w0 = w`
1. Hence, it suffices to show

(K1[()], c0,K2[()], c0, w`
1,H1) 2 E

HOSC
A . Taking (h1, h2) 2

I(w`
1), note that (Ki[()], c0, hi) !

⇤ (1, c0, hi). Noting
(w`

1,H1) vHOSC
c0 w`

1, we only need to show (1, 1, w`
1,H1) 2

V
HOSC
A , which follows from the definition.

V. SIMPLIFICATIONS AND FURTHER EXAMPLES

Our KBNF framework does not relate v
OQ

with v
OA

for
the sake of maximum generality and with a view to applying
the same methodology to other languages. However, for the
languages we consider, it is possible to make some simplifying
assumptions without losing completeness. For example, for
x 2 {HOSC,GOSC}, function and continuation names are
propagated in the same way, and v

OQ
and v

OA
can be

assumed to coincide. Formally, this will be demonstrated in
our completeness arguments. Consequently, in these cases we
can restrict the search for world transition systems to those
with a single reflexive relation, i.e. v

OQ
=v

OA
. In HOS, we

will have v
OA

implies v⇤
OQ

, while in GOS, v
OA

implies v
OQ

(this is related to Remark 14). Under these extra assumptions,
the shape of (w,H) vHOSC

c
w0 and (w,H) vHOSC

f
w0 from

Figure 12 could be simplified as follows.

x (w,H) vx
c
w0 (w,H) vx

f
w0 assumption

HOSC w v
OA

w0 w v
OA

w0
v

OA
=v

OQ

GOSC H(c) v
OA

w0
H(f) v

OA
w0

v
OA

=v
OQ

HOS w v
OQ

w0,H(c) v
OA

w0 w v
OQ

w0
v

OA
✓v

⇤
OQ

GOS H(c) v
OA

w0
H(f) v

OQ
w0

v
OA

✓v
OQ

We rely on the simplifications in Examples 27, 28, 29. Full
proofs for the examples are available in the full version of the
paper (along with other examples). Below we only give the
associated WTSs and discuss a single representative step in
each proof.

Example 27 (� ` M1
⇠=GOSC

err M2 (Example 7)). Let
⇢ = [f 7! f, h 7! h] be a �-assignment and c : Bool. The
relevant A is displayed below, where I(w;) = {(;, ;)} and
I(w`1,`2

b1,b2
) = {([`1 7! b1], [`2 7! b2])} for b1, b2 2 {↵ , tt}.
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and v
OA

.
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A and K
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futures calculated according to v
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and v
OA

respectively.

Using KNFBs, we can define bisimilarity for HOSC terms.

Definition 25. Two cr-free HOSC terms � ` M1,M2 : ⌧ ,
are x-bisimilar, written � ` M1 ⌘

x M2 : ⌧ , if there
exists a WTS A = (Worlds,v
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, I), an initial world

w0 2 Worlds such that (;, ;) 2 I(w0), and A
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(RV , RK, RE) such that, for any �-assignment ⇢ and c : ⌧ ,
we have (M1{⇢}, c M2{⇢}, c, w0,H0) 2 RE , where H0 =
[⌫(⇢) 7! w0, c 7! w0].

In Section VI, we will establish the following theorem.

Theorem (KNFB Full Abstraction). For any cr-free HOSC
terms � ` M1,M2 : ⌧ , � ` M1 ⌘

x M2 : ⌧ iff � ` M1
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x(ciu)
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M2 : ⌧ . Hence, for any cr-free x-terms � ` M1,M2 : ⌧ ,
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x M2 : ⌧ iff � ` M1
⇠=x

err M2 : ⌧ .

Equivalence proofs based on KNFBs have a compositional
flavour in that they proceed by establishing equivalences for
pairs of subterms in various worlds, and piecing them together
in a way controlled by A.

We shall write (Vx
A,K

x
A, E

x
A) to refer to the greatest A

x-
KNFB. Below, for simplicity, we ignore types in related tuples.
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M isc
1 , let x = ref (0) in �fUnit!Unit.x := 1; f(); !x

M isc
2 , �fUnit!Unit.f(); 1

We use the WTS A shown below, where I(w;) = {(;, ;)},
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) = {([` 7! j], ;)} for j 2 {0, 1}. Solid lines indicate
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Given c : Int and H0 = [c 7! w;], we aim to show
(M isc
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2 , c, w;,H0) 2 E

HOSC
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Let (h1, h2) 2 I(w;). Then (M isc
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, c, hi) !
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),

where V1 = �f.` := 1; f(); !`, h0
1 = [` 7! 0], V2 =

�f.f(); 1 and h0
2 = ;. Noting that (h0
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0) and
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suffices to show (V1, V2, w`
0,H0) 2 V
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A . For this, consider

w0 with w`
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⇤
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1. Writing f
for A and taking c0 : Unit ! Unit, we then need to show
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HOSC
A , where H1 = H0 · [f, c0 7!
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1, it suffices to

show ((), (), w`
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A . The former follows directly from the definition.
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1, we only need to show (1, 1, w`
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A , which follows from the definition.

V. SIMPLIFICATIONS AND FURTHER EXAMPLES

Our KBNF framework does not relate v
OQ

with v
OA

for
the sake of maximum generality and with a view to applying
the same methodology to other languages. However, for the
languages we consider, it is possible to make some simplifying
assumptions without losing completeness. For example, for
x 2 {HOSC,GOSC}, function and continuation names are
propagated in the same way, and v

OQ
and v

OA
can be

assumed to coincide. Formally, this will be demonstrated in
our completeness arguments. Consequently, in these cases we
can restrict the search for world transition systems to those
with a single reflexive relation, i.e. v

OQ
=v

OA
. In HOS, we

will have v
OA

implies v⇤
OQ

, while in GOS, v
OA

implies v
OQ

(this is related to Remark 14). Under these extra assumptions,
the shape of (w,H) vHOSC

c
w0 and (w,H) vHOSC
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w0 from

Figure 12 could be simplified as follows.

x (w,H) vx
c
w0 (w,H) vx

f
w0 assumption

HOSC w v
OA

w0 w v
OA

w0
v

OA
=v

OQ

GOSC H(c) v
OA

w0
H(f) v

OA
w0

v
OA

=v
OQ

HOS w v
OQ

w0,H(c) v
OA

w0 w v
OQ

w0
v

OA
✓v

⇤
OQ

GOS H(c) v
OA

w0
H(f) v

OQ
w0

v
OA

✓v
OQ

We rely on the simplifications in Examples 27, 28, 29. Full
proofs for the examples are available in the full version of the
paper (along with other examples). Below we only give the
associated WTSs and discuss a single representative step in
each proof.

Example 27 (� ` M1
⇠=GOSC

err M2 (Example 7)). Let
⇢ = [f 7! f, h 7! h] be a �-assignment and c : Bool. The
relevant A is displayed below, where I(w;) = {(;, ;)} and
I(w`1,`2

b1,b2
) = {([`1 7! b1], [`2 7! b2])} for b1, b2 2 {↵ , tt}.
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x Fx
PA Cx

PA Fx
PQ Cx

PQ

HOSC �PF �PC �PF �PC

GOSC HF (c) HC(c) HF (f) HC(f)
HOS �PF HC(c) �PF ;

GOS HF (c) HC(c) HF (f) ;

Fig. 9. Specification of components Fx
PA, C

x
PA, F

x
PQ , Cx

PQ

x (context) O-questions O-answers
HOSC unrestricted unrestricted
GOSC O-visibility O-visibility
HOS unrestricted O-bracketing
GOS O-visibility O-bracketing

Fig. 10. x-contexts and corresponding constraints

presentation of the series of LTSs, called x[HOSC], from [7].
By design, LHOSC produces the same traces as the LTS
HOSC[HOSC] from [7]. For other x, it produces only those
traces from HOSC[HOSC] that satisfy the restrictions relevant
to x. Consequently, in each case, the traces produced by Lx

are the same as those of x[HOSC].
Let us write Trx(C) for the set of traces produced by Lx

started in configuration C. To state the full abstraction result
for Lx, we need to specify initial configurations. Let � ` M :
⌧ be a cr-free HOSC term such that � = {x1 : �1, · · · , xk :
�k}. A �-assignment ⇢ is a map from {x1, · · · , xk} to the set
of abstract values such that, for all 1  i 6= j  k, we have
⇢(xi) : �i and ⌫(⇢(xi)) \ ⌫(⇢(xj)) = ;. ⇢ simply creates a
supply of names corresponding to the context. Let c : ⌧ and
NO = ⌫(⇢)[ {c}. Then the active initial configuration C⇢,c

M
is

defined to be hM{⇢}, c, ;, NO, ;, [NO 7! ;], [NO 7! ;]i.

Definition 16. Let x 2 {HOSC,GOSC,HOS,GOS}. The x
trace semantics of a cr-free HOSC term � ` M : ⌧ is defined
to be Trx(� ` M : ⌧) , {((⇢, c), t) | ⇢ is a �-assignment, c :
⌧, t 2 Trx(C

⇢,c

M
)}.

We can then restate the full abstraction results from [7] as
follows. They establish an exact correspondence between ciu-
equivalence and trace equivalence.

Theorem 17. For any cr-free HOSC terms � ` M1,M2 :
⌧ , � ` M1

⇠=
x(ciu)
err M2 iff Trx(� ` M1 : ⌧) =

Trx(� ` M2 : ⌧).

From Lemma 5, we deduce an exact correspondence be-
tween contextual equivalence and trace equivalence, in the
symmetric setting.

Corollary 18. For any cr-free x-terms � ` M1,M2 : ⌧ , � `

M1
⇠=x

err M2 iff Trx(� ` M1 : ⌧) = Trx(� ` M2 : ⌧).

Example 19. We revisit the terms � ` Mi (i = 1, 2, 3) from
Figure 3 and traces ti from Figure 5. Let ⇢ = [f 7! f, h 7! h]
(for simplicity, we conflate variable names with function
names) and c : Bool. Then we have t1 62 TrHOS(C

⇢,c

M1
)

but t1 2 TrHOS(C
⇢,c

M2
) and t1 2 TrHOS(C

⇢,c

M3
). Hence, by

Theorem 17, � ` M1 6⇠=HOS
err M2 and � ` M1 6⇠=HOS

err M3.
For t2, we have t2 2 TrGOSC(C

⇢,c

M1
) \ TrGOSC(C

⇢,c

M2
), and

t2 62 TrGOSC(C
⇢,c

M3
). Thus, � ` M1 6⇠=GOSC

err M3 and
� ` M2 6⇠=GOSC

err M3. Note that t3 2 TrGOS(C
⇢,c

M1
) \

TrGOS(C
⇢,c

M2
)\TrGOS(C

⇢,c

M3
). In the second half of the paper,

we will establish � ` M1
⇠=GOSC

err M2, � ` M2
⇠=HOSC

err M3

and � ` M1
⇠=GOS

err M3.

IV. FROM LTS TO KNFB

Recall that Theorem 17 recasts ⇠=x(ciu)
err -equivalence as trace

equivalence in the respective LTS Lx. Since Lx is determinis-
tic (up to the choice of reference names), this corresponds to
bisimilarity. Based on this observation, we develop a relational
framework for proving bisimilarity in all four cases x. Unfor-
tunately, bisimulations defined directly on configurations of
Lx would be quite complicated, not least due to the growth of
the environment � and evolution of the heap h. To address this
complexity, we introduce Kripke Normal-Form Bisimulations

(KNFB) as a friendlier technique.
• The associated bisimulations will not be defined on

configurations, but directly on terms, evaluation contexts
and values.

• To disentangle the reasoning about the heap from the
reasoning about program evaluation, we will rely on a
notion of transition systems of invariants, following the
work on Kripke Logical Relations [16]. In our case, the
transition system will be equipped with two transition
relations, v

OQ
and v

OA
, introduced to model the avail-

ability of function and continuation names respectively.
Remarkably, the differences between the four fragments
will merely boil down to local conditions controlling
how the two relations have to be maintained during the
proof. As a consequence, we will be able to develop our
techniques simultaneously for all four cases.

• To address the growth of �, whenever values or evalua-
tion contexts would be added to Lx-configurations, we
establish their equivalence upfront. However, as heaps
are evolving, it would not be sound to perform these
checks for the current heaps only. Similarly, it would
be too strong to aim for equivalence with respect to
arbitrary heaps. Thus, to account for all relevant uses (in
an abstract fashion), we will rely on the transition system
of invariants, using v

OQ
for function values and v

OA
for

continuations.
We begin with a formal definition of world transition systems.

Definition 20. A world transition system (WTS) A is a
triple (Worlds,v

OQ
,v

OA
, I), where Worlds is a set of states

(worlds), v
OQ

,v
OA

are binary reflexive relations on Worlds,
and I : Worlds ! P(Heap ⇥ Heap) is the invariant
assignment that associates a set of pairs of heaps to any world.

Intuitively, a world can be seen as an abstraction of (a set
of) LTS configurations, where only the heaps matter (via the
function I). w v

OQ
w0 is meant to capture world evolution

that protects the availability of function names introduced by
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FULL ABSTRACTION

A-KBNF: (Vx

A, K
x

A, E
x

A)

• (V1, V2, w,H) ∈ Vx

A

∀w′ #∗
OQ w. ∀A, c (fresh). (V1A, c, V2A, c, w

′,H[ν(A), c $→ w′]) ∈ Ex

A

• (K1, c1, K2, c2, w,H) ∈ Kx

A

∀w′ #∗
OA w. ∀A (fresh). (K1[A], c1, K2[A], c2, w

′,H[ν(A) $→ w′]) ∈ Ex

A

• (M1, c1,M2, c2, w,H) ∈ Ex

A

∀(h1, h2) ∈ I(w). PDiv ∨ PPA ∨ PPQ

Ex

A

PDiv ! (M1, c1, h1) ⇑ ∧ (M2, c2, h2) ⇑

PPA ! ∃V1, V2, c, h′
1
, h′

2
, w′.

(M1, c1, h1) →∗ (V1, c, h′
1) ∧ (M2, c2, h2) →∗ (V2, c, h′

2) ∧
(h′

1, h
′
2) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧
(w,H) *x

c w′

PPQ ! ∃K1, V1, K2, V2, c′1, c
′
2, f, w

′.
(M1, c1, h1) →∗ (K1[fV1], c′1, h

′
1
) ∧ (M2, c2, h2) →∗ (K2[fV2], c′2, h

′
2
) ∧

(h′
1
, h′

2
) ∈ I(w′) ∧ (V1, V2, w′,H) ∈ Vx

A ∧ (K1, c′1, K2, c′2, w
′,H) ∈ Kx

A ∧
(w,H) *x

f w′

Theorem (Jaber, M. (LICS’21)). Let x ∈ {HOSC,GOSC,HOS,GOS}.

M1
∼=x M2

if and only if there exists a WTS A, initial world w0 such that
(∅, ∅) ∈ I(w0) and

(M1, c,M2, c, w0, [c $→ w0]) ∈ Ex

A.

4



Comparison with Kripke logical relations: 
Dreyer, Neis, Birkedal (ICFP’10, JFP 2012)

restriction GS KLR KBNF

ground store O-visibility backtracking
no control O-bracketing private/public OQ vs OA

HOSC

!!
!!
!!
!!
!!
!!

GOSC
GS: O-visibility

KLR: backtracking
KBNF: H(n) !OQ w′, H(n) !OA w′

HOS
GS: O-bracketing

"
"
"
"
"
"
"
"
"
"
"

GOSC HOS

game semantics O-visibility O-bracketing

Kripke logical relations backtracking private vs public

Kripke nf-bisimulations H(n) !OQ w′ w !OQ w′

H(n) !OA w′ H(c) !OA w′

(Q vs A)

KLR: Dreyer, Neis, Birkedal (JFP 2012)
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SUMMARY
• Relational techniques derived from game models 

in a uniform fashion

• Soundness and completeness (without 
biorthogonal closure)

• Abstraction, compositionality, direct style, 
lightweight quantification

• Scope for automation and generalisation


