Towards a theory of <u>Decentralized Finance</u>

IFIP WG 2.2 Meeting, Münster/Online, Sept. 20-21, 2021

James Hsin-yu Chiang

Technical University of Denmark

Massimo Bartoletti

University of Cagliari

Alberto Lluch-Lafuente

Technical University of Denmark

Decentralized Finance: Examples

Lending Pools

Crypto-asset Lending

- Borrowers borrow against collateral
- Algorithmic interest rate
- · Current deposits in Compound: \$13.2B

Automatic Market Makers

Crypto-asset Swaps

- Asset swaps without matching orders
- \cdot Algorithmic exchange rate
- · Current deposits in Uniswap: \$7.7B

3 (Algorithmic) Stable Coins

Crypto-asset with pegged price

- \cdot Price stability via algorithmic supply
- \cdot Useful as stable collateral
- Current deposits in <u>MakerDAO</u>: \$9.3B

DeFi algorithms are managing >\$100B worth of funds (~500% yoy)

DeFi: Examples of Vulnerabilities

Slock. it	parity	S	\square			D
Slock.lt	Parity Wallet	Synthetix	MakerDAO	UniSwap	Lendf.me	PolyNetwork
Fundraising Contract	Wallet Library	Synthetic Assets	Stable Coin	AMM	Lending	Cross-chain DeFi
\$ 60 M	\$310M	\$37M	\$8M	\$0.3M	\$25M	\$600M
2016	2017	2019	2020	2020	2020	2021
Smart Contract Vulnerability	Smart Contract Vulnerability	Pricing Oracle Vulnerability	Pricing Oracle Vulnerability	Smart Contract Vulnerability	Smart Contract Vulnerability	Smart Contract Vulnerability

Towards a Formal Theory of DeFi

An overview of our approach

1 Formal Executable Semantics $\int \mathbf{r}_{1} = \mathbf{A}[100:\tau_{0}] \mathbf{B}[100:\tau_{1}] (50:\tau_{0}) (50:\tau_{1}) (100:\tau_{0},100:\tau_{1})] \mathbf{P}$ $\bigcirc \sigma_{n}(\tau) \geq v \quad \textcircled{r}_{n} := \begin{cases} \operatorname{fresh} \notin T_{v} & \textup{if } \tau \notin \operatorname{dom} \pi_{m} \\ \pi_{m}(\tau) & \operatorname{otherwise} \\ \hline \\ \mathbf{r}_{m}(\tau) & \operatorname{conv}(\tau) (\tau) \\ \end{array}$

 $\begin{array}{l} (\underline{)}, \pi_f(\tau) \geq v > 0 \\ (\underline{o}, f_f(\tau) \geq v > 0 \\ (\underline{o}, f_f(\tau) \geq v = 0 \\ (\underline{\sigma}, \tau' := (\pi_f - v : \tau, \pi_1(f_h/h), \pi_m) \\ \sigma' = (\frac{\sigma}{1}, \tau) p \frac{Be_{h}(v : \tau)}{\sigma} \sigma' (\pi^{1+v}(\tau, h) \mid \pi' \mid p) \end{array}$

```
\frac{\pi'_i(\mathsf{A}) := f'_\mathsf{A} \ \text{ if } \mathsf{A} \in \operatorname{dom} \pi_i, \, \text{wher} \ f'_\mathsf{A}(\tau) := (I_\pi(\tau) + 1) \cdot (\pi_i \mathsf{A}) \tau \ \text{ if } \tau \in \operatorname{dom}(\pi_i \mathsf{A})}{\sigma \mid \pi \mid p \ \overset{\operatorname{Int}}{\longrightarrow} \sigma \mid (\pi_f, \pi'_i, \pi_m) \mid p} \ \text{[Ivr]}
```

 $\frac{(\underbrace{\bigcirc}\sigma_{\mathbb{A}}(\tau) \geq v > 0 \quad \textcircled{(2)}(\pi_{l} \ \mathbb{A}) \tau \geq v \quad \textcircled{(3)}\pi_{l}^{\prime} = \pi_{l}\{\pi_{l}^{\Lambda-v:\tau}/\Lambda\}}{\sigma \mid \pi \mid p \xrightarrow{\operatorname{Rep}_{l}(v:\tau)} \sigma\{\sigma_{\mathbb{A}} - v:\tau} \{\Lambda\} \mid (\pi_{f} + v:\tau, \pi_{l}^{\prime}, \pi_{m}) \mid p} \operatorname{[Rep]}$

 $\begin{array}{l} (\widehat{v} \ \sigma_h(\tau) \geq v > 0 \quad v' := v \cdot ER_{\tau}(u_{\tau}(\tau)) \quad (\widehat{v} \ \pi_h(u_{\tau}(\tau)) \geq v' \\ (\widehat{v} \ \exists^{-1}_{\tau}(\pi_h)h' > 0 \Rightarrow \mathcal{O}_{\tau_{\tau}(w_{\tau})}(h) \land \mathcal{O}_{mm} \quad \sigma_h := \sigma_h - v : \tau + v' : u_{\tau}(\tau) \\ \pi_h' := \pi_h(v') : u_{\tau}(\tau) \quad \pi_h' := \pi_h(v'') \cdot v_{\tau}(\tau) \quad \text{where} (\tau, v'') := \pi_m(u_{\tau}(\tau)) \\ \widehat{\sigma} \ | \tau | = \frac{86m_{\tau}(v) \cdot \tau}{2} \quad \mathcal{O}_{\tau}(h) \land \widehat{\sigma} \ | \pi_{\tau} \mid \pi_h' \mid \widehat{\sigma} \ \| f(\pi_{\tau}, \pi_h, \pi_h') \| p \end{array}$ [Bund]

 $\begin{array}{ll} (1) \sigma_{\mathbf{A}}(\boldsymbol{\tau}') \geq v & (2) (\pi, \mathbb{B}) \boldsymbol{\tau} \geq v & (3) \boldsymbol{\tau}' \in \mathbb{T}_{\pi} \\ (2) \sigma_{\mathbf{A}}(\boldsymbol{\tau}') \geq v' & (2) = v - \pi_{\mathbf{A}}^{(2)}(\boldsymbol{\tau}') \cdot \mathbf{T}_{\mathbf{A}} \\ (3) \sigma_{\mathbf{A}}(\boldsymbol{\tau}_{\mathbf{B}}(\mathbb{B}) \in \mathcal{S}_{\min}) & (2) \sigma_{\mathbf{A}}(\boldsymbol{\tau}_{\mathbf{A}}(\mathbf{T}) \cdot \mathbf{T}_{\mathbf{A}}(\mathbf{T})) \cdot \mathbf{T}_{\mathbf{A}} \\ (3) \sigma_{\mathbf{A}}^{*} := \pi, \mathbb{B} - v : \tau & (0) \sigma_{\mathbf{A}}^{*} := \sigma_{\mathbf{A}} - v : \tau + v' : \tau' & (0) \sigma_{\mathbf{B}}^{*} := \sigma_{\mathbf{B}} - v' : \tau' \\ \sigma \mid \pi \mid p \frac{\operatorname{Un}(\mathbb{B}, v; v, v')}{\sigma} \sigma(\boldsymbol{\tau}_{\mathbf{A}}') \{\boldsymbol{\tau}_{\mathbf{B}}'\} \mid (\pi, \pi', \pi', \pi) \mid p \end{array}$ [Leq]

 $\frac{\sigma_{\mathsf{A}}(\tau) \geq v \quad \tau \in \mathsf{T}_{\pi} \quad \sigma' = \sigma\{_{\sigma_{\mathsf{A}} - v:\tau/\mathsf{A}}\}_{\sigma_{\mathsf{B}} + v:\tau/\mathsf{B}} \quad C_{\sigma' | \pi | p}(\mathsf{A}) \geq C_{\min}}{\sigma \mid \pi \mid p \xrightarrow{\mathsf{Met}_{\mathsf{A}}(\mathsf{B}, v:\tau)} \sigma' \mid \pi \mid p} \text{ [Minif]}$

2 Foundational Properties

Lending Pools

- · Increasing exchange rate $ER_{\tau}(\{\tau\})$
- · Preservation of token supply
- ·ε-collateralization (loan recoverability)

AMMs

- Concurrency theory
- · Preservation of supply, net-wealth
- · Liquidity of deposited funds
- · Game-based value extraction & incentives

3 ... and more coming

Current and future Work

- · Composed security/vulnerabilities
- New designs with less vulnerabilities, e.g. MPC to mitigate front-running
 A DSL for DeFi

Related papers

SoK: Lending Pools in Decentralized Finance • <u>https://arxiv.org/abs/2012.13230</u>

A theory of Automated Market Makers in DeFi • https://arxiv.org/abs/2102.11350

Maximizing Extractable Value from Automated Market Makers http://arxiv.org/abs/2106.018700

* LP transition rules shown

DeFi as a Labeled Transition System (LTS)

Composition? (e.g. AMM as price oracle for LP)

LP: A Disintermediated Loan Market

LP: Borrows B: dep(100:τ₁) **B** : **bor**(50: τ_0) LP $A[25:\tau_0, 100:\{\tau_0\}]$ **Β**[100:τ₁] Γ₁: $(100:\tau_{0})$ $A[25:\tau_0, 100:\{\tau_0\}]$ $(100:\tau_0) | (100:\tau_1)$ **B**[100:{ τ_1 }] Γ, : **B**[**50**: τ_0 ,100:{ τ_1 }] $A[25:\tau_0, 100:\{\tau_0\}]$ Γ, : $(50:\tau_0, \{B:50\}) | (100:\tau_1)$ (**#loan**) (**#held**) B's minted tokens **100:**{**\u03c4**, } serve as collateral. They are not free!

Collateralization of Loans

Collateralization Safety

Value of Usr's loan

LP: Collateralization Safety

LP: Collateralization Safety

Collateralization safety depends on

- Price stability: e.g. Stable-coins
- Effectiveness of liquidation incentive
- Trusted price oracle

Lending (LP) Swaps (AMM)

Composition? (e.g. AMM as price oracle for LP)

AMM: A Disintermediated Market Marker

An example trace: deposit

Reserve T

Reserve T

An example trace: redeem

Reserve T₀

AMM: Arbitrage Game

For any incentive-consistent <u>I</u>

- There exists a unique arbitrage sol'n
- ... consisting of a swap action
- ... at any global price
- ⇒ AMM trails global exchange rate

Can we use AMM as price oracles? (No trusted third party)

AMM: <u>Miner Extractable Value</u>

Adversarial Miner finalizes action sequence

- Can select user actions from tx-pool
- Can inject miner actions
- Also known as "front-running" by miner

"Sandwich" attack transfers user value to miner

- Miner actions <u>alter</u> algorithmic exchange rate
- Rational miner is <u>incentivized</u> to extract value
- However, current descriptions are <u>incomplete</u>!

Miner-Extractable-Value (Sandwich Attack)

User obtains a lower exchange rate (Miner earns profit)

Miner-Extractable-Value (Sandwich Attack)

User obtains a lower exchange rate (Miner earns profit)

Composition? (e.g. AMM as price oracle for LP)

"Profitable" for M

DeFi: Open Challenges

1 Agent Strategies

Concurrency of DeFi actions

- MEV: Miner-extractable value
- · Miner exploits TX ordering privileges

2 Cryptographic Composition

Privacy protocols

 \cdot DeFi with secure computation (MPC)

3 Domain Specific Languages

A formal DeFi Calculus?

- · Abstract away implementation details
- \cdot Composed of common DeFi semantics
- \cdot Towards a formal theory of DeFi

1. SoK: Lending Pools in Decentralized Finance [WTSC'21]

- M. Bartoletti, J. Hsin-yu Chiang, A. Lluch-Lafuente
- <u>https://arxiv.org/abs/2012.13230</u>

2. A theory of Automated Market Makers in DeFi [COORDINATION'21]

- M. Bartoletti, J. Hsin-yu Chiang, A. Lluch-Lafuente
- https://arxiv.org/abs/2102.11350
- 3. Maximizing Extractable Value from Automated Market Makers
- M. Bartoletti, J. Hsin-yu Chiang, A. Lluch-Lafuente
- http://arxiv.org/abs/2106.01870