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Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES:

When assuming atomicity

,

there is no such thing as a correct

speed-independent

mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66])

.

4. POSSIBILITIES:

When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.
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Centralised mutual exclusion

Gatekeeper

protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1|

ME-ProtGatekeeper

|P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2
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e2

r 2 r 2
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Speed independence

Nothing may be assumed about the relative speed of the processes
competing for access to the critical section. [Dijkstra’65]

CCS process (X |Y )\c with X
def
= a.0 + c .X and Y

def
= c̄ .d .e.Y .

c
X

a
‖ Y

c̄

d

e

Here it is possible that a never happens.

If two processes A and B are engaged in a race, and
A has nothing else to do but performing the winning action,
whilst B has a long list of tasks that must be done first,
it may still happen that B wins.
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Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3.

The read and write proceed as scheduled, thus overlapping in time.
“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]
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Impossibility of speed ind. mutual excl. under atomicity

For mutual exclusion to be possible, there must be a variable
ready1 that is written by Proc. 1 to request entry to CS.

ready1 must be read by Proc. 2, before Proc. 2 can enter CS.
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leave CS

It suffices to present a scenario where Proc. 1 is ready to write to ready1 yet

never succeeds in doing so, as that would violate ME 6 or ME 3.
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Drop atomicity or speed-independence.
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enter CS

← spend at least one unit of time in CS

leave CS

This can be neatly formalised in an untimed extension of CCS with timeouts.
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