
Mutual Exclusion:
possibilities and impossibilities

Rob van Glabbeek

Data61, CSIRO, Sydney, Australia

University of New South Wales, Sydney, Australia

21 September 2021



Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES:

When assuming atomicity

,

there is no such thing as a correct

speed-independent

mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66])

.

4. POSSIBILITIES:

When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES:

When assuming atomicity

,
there is no such thing as a correct

speed-independent

mutual exclusion protocol

(defined as in [Dijkstra’65; Knuth’66])

.

4. POSSIBILITIES:

When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES:

When assuming atomicity

,
there is no such thing as a correct

speed-independent

mutual exclusion protocol

(defined as in [Dijkstra’65; Knuth’66])

.

4. POSSIBILITIES:

When dropping either atomicity or speed independence,

Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.

They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES:

When assuming atomicity

,
there is no such thing as a correct

speed-independent

mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES:

When dropping either atomicity or speed independence,

Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.

They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES:

When dropping either atomicity or speed independence,

Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.

They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.

They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS:

A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol.

By means of 6 requirements.
ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious mutex starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious

mutex

starvation uncontroversial debatable
freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6

obvious

mutex starvation

uncontroversial debatable

freedom

← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6
obvious mutex starvation uncontroversial

debatable

freedom

← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6
obvious mutex starvation uncontroversial debatable

freedom

← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6
obvious mutex starvation uncontroversial debatable

freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK:

I introduce Reactive Linear-Time Temporal Logic.

The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6
obvious mutex starvation uncontroversial debatable

freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Mutual exclusion: possibilities and impossibilities
Based on my paper at
http://theory.stanford.edu/~rvg/abstracts.html#156.

1. FRAMEWORK: I introduce Reactive Linear-Time Temporal Logic.
The correctness requirements for mutual exclusion cannot be
formulated in classical temporal logic.

2. DEFINITIONS: A precise and unambiguous definition of what is a
mutual exclusion protocol. By means of 6 requirements.

ME 1 ME 2 ME 3 ME 4 ME 5 ME 6
obvious mutex starvation uncontroversial debatable

freedom← without assuming fairness

3. IMPOSSIBILITIES: When assuming atomicity,
there is no such thing as a correct speed-independent
mutual exclusion protocol (defined as in [Dijkstra’65; Knuth’66]).

4. POSSIBILITIES: When dropping either atomicity or speed independence,
Peterson’s algorithm and Lamport’s bakery are perfectly fine
mutual exclusion protocols.
They can be modelled elegantly in process algebra.

http://theory.stanford.edu/~rvg/abstracts.html#156


Centralised mutual exclusion

Gatekeeper

protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1|

ME-ProtGatekeeper

|P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper

protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1| ME-Prot

Gatekeeper

|P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper

protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1| ME-Prot

Gatekeeper

|P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper

protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1| ME-Prot

Gatekeeper

|P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1|

ME-Prot

Gatekeeper |P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1|

ME-Prot

Gatekeeper |P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1|

ME-Prot

Gatekeeper |P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Centralised mutual exclusion

Gatekeeper protocol

Two processes P1 and P2 compete for access to the critical section.

Pi
def
= Noncriti .requesti .enteri .Criti .`eavei .Pi

(P1|

ME-Prot

Gatekeeper |P2)\{request, enter, `eave}

ME-Proti
def
= requesti .Entry-Protocoli .enteri .`eavei .ME-Proti

ME 6: When a process is ready
to make a request for enter-
ing the critical section, it will
succeed in making that request.

↑
without assuming fairness

noncritical
section

critical
section

entry
protocol

request

enterleave

X Y
r 1 e1 `1

Z

r 1

r 2

e1
e2

r 2 r 2

`1

e2

r 1

`2 `2



Speed independence

Nothing may be assumed about the relative speed of the processes
competing for access to the critical section. [Dijkstra’65]

CCS process (X |Y )\c with X
def
= a.0 + c .X and Y

def
= c̄ .d .e.Y .

c
X

a
‖ Y

c̄

d

e

Here it is possible that a never happens.

If two processes A and B are engaged in a race, and
A has nothing else to do but performing the winning action,
whilst B has a long list of tasks that must be done first,
it may still happen that B wins.



Speed independence

Nothing may be assumed about the relative speed of the processes
competing for access to the critical section. [Dijkstra’65]

CCS process (X |Y )\c with X
def
= a.0 + c .X and Y

def
= c̄ .d .e.Y .

c
X

a
‖ Y

c̄

d

e

Here it is possible that a never happens.

If two processes A and B are engaged in a race, and
A has nothing else to do but performing the winning action,
whilst B has a long list of tasks that must be done first,
it may still happen that B wins.



Speed independence

Nothing may be assumed about the relative speed of the processes
competing for access to the critical section. [Dijkstra’65]

CCS process (X |Y )\c with X
def
= a.0 + c .X and Y

def
= c̄ .d .e.Y .

c
X

a
‖ Y

c̄

d

e

Here it is possible that a never happens.

If two processes A and B are engaged in a race, and
A has nothing else to do but performing the winning action,
whilst B has a long list of tasks that must be done first,
it may still happen that B wins.



Speed independence

Nothing may be assumed about the relative speed of the processes
competing for access to the critical section. [Dijkstra’65]

CCS process (X |Y )\c with X
def
= a.0 + c .X and Y

def
= c̄ .d .e.Y .

c
X

a
‖ Y

c̄

d

e

Here it is possible that a never happens.

If two processes A and B are engaged in a race, and
A has nothing else to do but performing the winning action,
whilst B has a long list of tasks that must be done first,
it may still happen that B wins.



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3.

The read and write proceed as scheduled, thus overlapping in time.
“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap.

(Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3.

The read and write proceed as scheduled, thus overlapping in time.
“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3.

The read and write proceed as scheduled, thus overlapping in time.
“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3.

The read and write proceed as scheduled, thus overlapping in time.
“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3.

The read and write proceed as scheduled, thus overlapping in time.
“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1.

The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2.

The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1. The register cannot handle a read and a write at the same time

;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2. The register cannot handle a read and a write at the same time

,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1. The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2. The register cannot handle a read and a write at the same time

,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.

3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1. The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2. The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.
3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1. The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2. The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This

aborts

interrupts the read, which can

restart

resume after the write is terminated.
3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1. The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2. The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.
3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Read and write actions on a shared memory
Fact: Read and write actions on a shared register take time.

Assumption: A read operation not concurrent with any write
returns the value written by the latest write operation, provided
the last two writes did not overlap. (Safe register [Lamport’86])

Note: Without safe registers, or the possibility to simulate them, one

cannot make a mutual exclusion protocol.

Question: What happens when one process tries to write on a
register when another is busy reading it?

1. The register cannot handle a read and a write at the same time;
as the read started first, the writing process will need to await the
termination of the read action before the write can commence.

2. The register cannot handle a read and a write at the same time,
but the write takes precedence and occurs when scheduled. This
aborts

interrupts

the read, which can restart

resume

after the write is terminated.
3. The read and write proceed as scheduled, thus overlapping in time.

“No assumption is made about the value obtained by a read that
overlaps a write” [Lamport’86]



Atomicity

blocking reading

atomicity :
a second memory access can take place only after a first is completed

non-blocking reading



Question: What happens when one process tries to
write on a register when another is busy reading it?

1. The register cannot handle a read and a write
at the same time;
as the read started first, the writing process
needs to await the termination of the read
action before the write can commence.

2. The register cannot handle a read and a write
at the same time,
but the write takes precedence and occurs
when scheduled. This aborts the read, which
can restart after the write is terminated.

3. The read and write proceed as scheduled, thus
overlapping in time. “No assumption is made
about the value obtained by a read that
overlaps a write” [Lamport’86]



Atomicity

blocking reading

atomicity :
a second memory access can take place only after a first is completed

non-blocking reading



Question: What happens when one process tries to
write on a register when another is busy reading it?

1. The register cannot handle a read and a write
at the same time;
as the read started first, the writing process
needs to await the termination of the read
action before the write can commence.

2. The register cannot handle a read and a write
at the same time,
but the write takes precedence and occurs
when scheduled. This aborts the read, which
can restart after the write is terminated.

3. The read and write proceed as scheduled, thus
overlapping in time. “No assumption is made
about the value obtained by a read that
overlaps a write” [Lamport’86]



Atomicity

blocking reading

atomicity

:
a second memory access can take place only after a first is completed

non-blocking reading



Question: What happens when one process tries to
write on a register when another is busy reading it?

1. The register cannot handle a read and a write
at the same time;
as the read started first, the writing process
needs to await the termination of the read
action before the write can commence.

2. The register cannot handle a read and a write
at the same time,
but the write takes precedence and occurs
when scheduled. This aborts the read, which
can restart after the write is terminated.

3. The read and write proceed as scheduled, thus
overlapping in time. “No assumption is made
about the value obtained by a read that
overlaps a write” [Lamport’86]



Atomicity

blocking reading

atomicity :
a second memory access can take place only after a first is completed

non-blocking reading



Question: What happens when one process tries to
write on a register when another is busy reading it?

1. The register cannot handle a read and a write
at the same time;
as the read started first, the writing process
needs to await the termination of the read
action before the write can commence.

2. The register cannot handle a read and a write
at the same time,
but the write takes precedence and occurs
when scheduled. This aborts the read, which
can restart after the write is terminated.

3. The read and write proceed as scheduled, thus
overlapping in time. “No assumption is made
about the value obtained by a read that
overlaps a write” [Lamport’86]



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.

Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.

Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.

He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.

Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.

Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write

non-

overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Read/write non-overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.

For then there is no speed-independent mutual exclusion protocol.



Read/write non-overlap: the more challenging assumption

Early work on mutual exclusion did not consider read/write overlap.
Hence each read returns the value of the last write.

Lamport’74 does allow read/write overlap.
Hence also spurious values may be read.
He implies that this makes the problem harder.
Even so, he shows that his Bakery protocol work’s perfectly well.
Moreover, the Bakery protocol is speed independent.

My claim is that atomicity is the more challenging assumption.
For then there is no speed-independent mutual exclusion protocol.



Impossibility of speed ind. mutual excl. under atomicity

For mutual exclusion to be possible, there must be a variable
ready1 that is written by Proc. 1 to request entry to CS.

ready1 must be read by Proc. 2, before Proc. 2 can enter CS.

Proc. 1
writes

Proc. 2
reads

enter CS

leave CS

It suffices to present a scenario where Proc. 1 is ready to write to ready1 yet

never succeeds in doing so, as that would violate ME 6 or ME 3.



Impossibility of speed ind. mutual excl. under atomicity

For mutual exclusion to be possible, there must be a variable
ready1 that is written by Proc. 1 to request entry to CS.

ready1 must be read by Proc. 2, before Proc. 2 can enter CS.

Proc. 1
writes

Proc. 2
reads

enter CS

leave CS

It suffices to present a scenario where Proc. 1 is ready to write to ready1 yet

never succeeds in doing so, as that would violate ME 6 or ME 3.



Impossibility of speed ind. mutual excl. under atomicity

For mutual exclusion to be possible, there must be a variable
ready1 that is written by Proc. 1 to request entry to CS.

ready1 must be read by Proc. 2, before Proc. 2 can enter CS.

Proc. 1
writes

Proc. 2
reads

enter CS

leave CS

It suffices to present a scenario where Proc. 1 is ready to write to ready1 yet

never succeeds in doing so, as that would violate ME 6 or ME 3.



Impossibility of speed ind. mutual excl. under atomicity

For mutual exclusion to be possible, there must be a variable
ready1 that is written by Proc. 1 to request entry to CS.

ready1 must be read by Proc. 2, before Proc. 2 can enter CS.

Proc. 1
writes

Proc. 2
reads

enter CS

leave CS

It suffices to present a scenario where Proc. 1 is ready to write to ready1 yet

never succeeds in doing so, as that would violate ME 6 or ME 3.



Impossibility of speed ind. mutual excl. under atomicity

For mutual exclusion to be possible, there must be a variable
ready1 that is written by Proc. 1 to request entry to CS.

ready1 must be read by Proc. 2, before Proc. 2 can enter CS.

Proc. 1
writes

Proc. 2
reads

enter CS

leave CS

It suffices to present a scenario where Proc. 1 is ready to write to ready1 yet

never succeeds in doing so, as that would violate ME 6 or ME 3.



Solution

Drop atomicity or speed-independence.

Proc. 1
writes

Proc. 2
reads

enter CS

← spend at least one unit of time in CS

leave CS

This can be neatly formalised in an untimed extension of CCS with timeouts.



Solution

Drop atomicity or speed-independence.

Proc. 1
writes

Proc. 2
reads

enter CS

← spend at least one unit of time in CS

leave CS

This can be neatly formalised in an untimed extension of CCS with timeouts.



Solution

Drop atomicity or speed-independence.

Proc. 1
writes

Proc. 2
reads

enter CS

← spend at least one unit of time in CS

leave CS

This can be neatly formalised in an untimed extension of CCS with timeouts.


