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Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by

τ ::= C | ι | C&ι where ι ::= I | ι&I
C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)
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Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as

a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions
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Motivations Translation Conclusions and future work

Game example

interface Flyable { void fly (); }

interface Swimmable { void swim (); }

Players that can do both implement both interfaces.

public class NaviatorDrone implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

public class Pelican implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}
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Game example

public class Game {
public static void goAcrossRavine(XXX player ,boolean unWatObj ){

System.out.println("Reached the ravine");
if (unWatObj) {

player.fly();
player.swim ();
System.out.println("Picked Object");
player.swim ();
player.fly();

} else
player.fly();
System.out.println("Crossed the ravine");

}
// Other methods of the game using the capabilities of players
}

For XXX we need a player implementing Flyable and Swimmable,
which is allowed in our extension

5 / 14
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Game example

Can generic types help?

NO, we can declare player of type X with

<X extends Flyable&Swimmable >

but we cannot declare

Flyable&Swimmable player = new Pelican ();

we can only write

X player = (X) new Pelican ();

this introduces a type cast and exposes the type of a local variable!
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Motivations Translation Conclusions and future work

Discount example

interface Discount { double discount(int price ); }
interface DelPrice {
default double delPrice(int price) {
return (price >30)? 0: 5;

}
}

in our extension

public static double
finalPrice(Discount & DelPrice funPrice , int price){

return funPrice.discount(price)+funPrice.delPrice(price);
}

instead in Java (using var)

public static double finalPrice(int price) {
var funPrice =( Discount & DelPrice )(x->x-((x >100)? x*0.01: 0));
return funPrice.discount(price)+ funPrice.delPrice(price);

}

funPrice is fixed and type casted!
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Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)
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Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

 D :: Γ ` t : τ mtype(m; τ) = −→σ → σ D :: Γ `∗ t : σ
[S-INVK]

Γ ` t.m(
−→t ) : σ

 =

(σ) (([D]).m(
−−→
([D])))
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Compilation of declarations: from declarations in the source
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Constructors:
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−→
|σ|−→g ,
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Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
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Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Methods: Jτm(−→τ −→x ){return t; }KT = |τ |m(
−→
|τ |−→x ){return ([D]); }

where D :: x : −→τ , this : T `∗ t : τ
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Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Implementation done by Stefano Borsatto available at
https://github.com/cplrossi/extendj-dit
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Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

t1 −→S t2 −→S . . . ti −→S . . .
implies

([t1]) −→∗T t′2 −→∗T . . . t′i −→∗T . . .

where ([ti ]) ≈ t′i , i > 1

10 / 14
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Conclusions

We showed that intersections as first-class types

exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types
avoid interface pollution and enable clean code evolution
minimise the use of type casts, enforcing type safety statically
maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics
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