
Deconfined Intersection Types in Java
&

& λ

joint work with Paola Giannini and Betti Venneri

IFIP 2.2 meeting 2021, 21 September

https://drops.dagstuhl.de/opus/volltexte/2020/13225/

https://drops.dagstuhl.de/opus/volltexte/2020/13225/

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by

τ ::= C | ι | C&ι where ι ::= I | ι&I
C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.

Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)

The target types must be functional, i.e., have
exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)

any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Intersection types in Java

Intersection types τ are defined by
τ ::= C | ι | C&ι where ι ::= I | ι&I

C is a class name and I is an interface name.
Intersection types are not first-class citizens of Java type
system, they can occur only as

bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

as types of type-casts and as target types of λ-expressions

(I1 & I2) λ-expr

is the λ-expr with the target type (I1 & I2)
The target types must be functional, i.e., have

exactly one abstract method (implemented by λ-expressions)
any number of default methods (with λ-expressions as
receivers)

2 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as

a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type

a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type

the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type
the explicit type of a variable

a field type
for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures

We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts

We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
a return type
a parameter type
the explicit type of a variable
a field type

for example we can write I1&I2 m (I3&I4 x)

Advantages:
We avoid the use of obscure generic signatures
We avoid unsafe type casts
We exploit the polytype nature of λ-expressions

3 / 14

Motivations Translation Conclusions and future work

Game example

interface Flyable { void fly (); }

interface Swimmable { void swim (); }

Players that can do both implement both interfaces.

public class NaviatorDrone implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

public class Pelican implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

4 / 14

Motivations Translation Conclusions and future work

Game example

interface Flyable { void fly (); }

interface Swimmable { void swim (); }

Players that can do both implement both interfaces.

public class NaviatorDrone implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

public class Pelican implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

4 / 14

Motivations Translation Conclusions and future work

Game example

interface Flyable { void fly (); }

interface Swimmable { void swim (); }

Players that can do both implement both interfaces.

public class NaviatorDrone implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

public class Pelican implements Flyable , Swimmable {
public void fly() { ... }
public void swim() { ... };

}

4 / 14

Motivations Translation Conclusions and future work

Game example

public class Game {
public static void goAcrossRavine(XXX player ,boolean unWatObj){

System.out.println("Reached the ravine");
if (unWatObj) {

player.fly();
player.swim ();
System.out.println("Picked Object");
player.swim ();
player.fly();

} else
player.fly();
System.out.println("Crossed the ravine");

}
// Other methods of the game using the capabilities of players
}

For XXX we need a player implementing Flyable and Swimmable,
which is allowed in our extension

5 / 14

Motivations Translation Conclusions and future work

Game example

public class Game {
public static void goAcrossRavine(XXX player ,boolean unWatObj){

System.out.println("Reached the ravine");
if (unWatObj) {

player.fly();
player.swim ();
System.out.println("Picked Object");
player.swim ();
player.fly();

} else
player.fly();
System.out.println("Crossed the ravine");

}
// Other methods of the game using the capabilities of players
}

For XXX we need a player implementing Flyable and Swimmable,
which is allowed in our extension

5 / 14

Motivations Translation Conclusions and future work

Game example

Can generic types help?

NO, we can declare player of type X with

<X extends Flyable&Swimmable >

but we cannot declare

Flyable&Swimmable player = new Pelican ();

we can only write

X player = (X) new Pelican ();

this introduces a type cast and exposes the type of a local variable!

6 / 14

Motivations Translation Conclusions and future work

Game example

Can generic types help?
NO, we can declare player of type X with

<X extends Flyable&Swimmable >

but we cannot declare

Flyable&Swimmable player = new Pelican ();

we can only write

X player = (X) new Pelican ();

this introduces a type cast and exposes the type of a local variable!

6 / 14

Motivations Translation Conclusions and future work

Game example

Can generic types help?
NO, we can declare player of type X with

<X extends Flyable&Swimmable >

but we cannot declare

Flyable&Swimmable player = new Pelican ();

we can only write

X player = (X) new Pelican ();

this introduces a type cast and exposes the type of a local variable!

6 / 14

Motivations Translation Conclusions and future work

Game example

Can generic types help?
NO, we can declare player of type X with

<X extends Flyable&Swimmable >

but we cannot declare

Flyable&Swimmable player = new Pelican ();

we can only write

X player = (X) new Pelican ();

this introduces a type cast and exposes the type of a local variable!
6 / 14

Motivations Translation Conclusions and future work

Discount example

interface Discount { double discount(int price); }
interface DelPrice {
default double delPrice(int price) {
return (price >30)? 0: 5;

}
}

in our extension

public static double
finalPrice(Discount & DelPrice funPrice , int price){

return funPrice.discount(price)+funPrice.delPrice(price);
}

instead in Java (using var)

public static double finalPrice(int price) {
var funPrice =(Discount & DelPrice)(x->x-((x >100)? x*0.01: 0));
return funPrice.discount(price)+ funPrice.delPrice(price);

}

funPrice is fixed and type casted!

7 / 14

Motivations Translation Conclusions and future work

Discount example

interface Discount { double discount(int price); }
interface DelPrice {
default double delPrice(int price) {
return (price >30)? 0: 5;

}
}

in our extension

public static double
finalPrice(Discount & DelPrice funPrice , int price){

return funPrice.discount(price)+funPrice.delPrice(price);
}

instead in Java (using var)

public static double finalPrice(int price) {
var funPrice =(Discount & DelPrice)(x->x-((x >100)? x*0.01: 0));
return funPrice.discount(price)+ funPrice.delPrice(price);

}

funPrice is fixed and type casted!

7 / 14

Motivations Translation Conclusions and future work

Discount example

interface Discount { double discount(int price); }
interface DelPrice {
default double delPrice(int price) {
return (price >30)? 0: 5;

}
}

in our extension

public static double
finalPrice(Discount & DelPrice funPrice , int price){

return funPrice.discount(price)+funPrice.delPrice(price);
}

instead in Java (using var)

public static double finalPrice(int price) {
var funPrice =(Discount & DelPrice)(x->x-((x >100)? x*0.01: 0));
return funPrice.discount(price)+ funPrice.delPrice(price);

}

funPrice is fixed and type casted!
7 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms

different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy

replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components

recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Translation aerial view

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

Source calculus versus Target calculus

same sets of terms
different types in declarations

Compilation strategy
replace intersections with their most relevant components
recover the lost type information inserting downcasts (essential
to preserve the target types of λ-expressions)

8 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

convention: the first interface in intersections of interfaces is
functional, if any

|T[&ι]| = T

the erasure maps functional intersections into functional interfaces
(essential to preserve target types of λ-expressions)

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

convention: the first interface in intersections of interfaces is
functional, if any

|T[&ι]| = T

the erasure maps functional intersections into functional interfaces
(essential to preserve target types of λ-expressions)

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

convention: the first interface in intersections of interfaces is
functional, if any

|T[&ι]| = T

the erasure maps functional intersections into functional interfaces
(essential to preserve target types of λ-expressions)

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

 D :: Γ ` t : τ mtype(m; τ) = −→σ → σ D :: Γ `∗ t : σ
[S-INVK]

Γ ` t.m(
−→t) : σ

 =

(σ) (([D]).m(
−−→
([D])))

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Headers: Jτm(−→τ −→x)K = |τ |m(
−→
|τ |−→x)

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Constructors:
JC(−→σ−→g ,−→τ

−→
f){super(−→g); this.f = f; }K = C(

−→
|σ|−→g ,

−→
|τ |
−→
f){super(−→g); this.f = f; }

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Methods: Jτm(−→τ −→x){return t; }KT = |τ |m(
−→
|τ |−→x){return ([D]); }

where D :: x : −→τ , this : T `∗ t : τ

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Classes: Jclass C extendsD implements
−→
I {τ f;KS MS}K =

class C extendsD implements
−→
I {|τ | f; JKSK JMSKC}

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Interfaces: Jinterface I extends
−→
I {HS ;MS}K =

interface I extends
−→
I {JHSK; JMSKI}

9 / 14

Motivations Translation Conclusions and future work

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Implementation done by Stefano Borsatto available at
https://github.com/cplrossi/extendj-dit

9 / 14

https://github.com/cplrossi/extendj-dit

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

problems:

some casts are still unreduced in the translated terms (for
instance, they appear in the body of λ-expressions)
the translation of a value is not a value, in general

solution: an equivalence relation on terms which
ignores casts on terms different from λ-expressions
uses casts on λ-expressions as target types

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

problems:
some casts are still unreduced in the translated terms (for
instance, they appear in the body of λ-expressions)

the translation of a value is not a value, in general
solution: an equivalence relation on terms which

ignores casts on terms different from λ-expressions
uses casts on λ-expressions as target types

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

problems:
some casts are still unreduced in the translated terms (for
instance, they appear in the body of λ-expressions)
the translation of a value is not a value, in general

solution: an equivalence relation on terms which
ignores casts on terms different from λ-expressions
uses casts on λ-expressions as target types

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

problems:
some casts are still unreduced in the translated terms (for
instance, they appear in the body of λ-expressions)
the translation of a value is not a value, in general

solution: an equivalence relation on terms which

ignores casts on terms different from λ-expressions
uses casts on λ-expressions as target types

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

problems:
some casts are still unreduced in the translated terms (for
instance, they appear in the body of λ-expressions)
the translation of a value is not a value, in general

solution: an equivalence relation on terms which
ignores casts on terms different from λ-expressions

uses casts on λ-expressions as target types

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

problems:
some casts are still unreduced in the translated terms (for
instance, they appear in the body of λ-expressions)
the translation of a value is not a value, in general

solution: an equivalence relation on terms which
ignores casts on terms different from λ-expressions
uses casts on λ-expressions as target types

10 / 14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a

program with the same type in the target calculus

Semantic preservation

t1 −→S t2 −→S . . . ti −→S . . .
implies

([t1]) −→∗T t′2 −→∗T . . . t′i −→∗T . . .

where ([ti]) ≈ t′i , i > 1

10 / 14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types

exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types
avoid interface pollution and enable clean code evolution
minimise the use of type casts, enforcing type safety statically
maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics

11 / 14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types
exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types

avoid interface pollution and enable clean code evolution
minimise the use of type casts, enforcing type safety statically
maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics

11 / 14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types
exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types
avoid interface pollution and enable clean code evolution

minimise the use of type casts, enforcing type safety statically
maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics

11 / 14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types
exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types
avoid interface pollution and enable clean code evolution
minimise the use of type casts, enforcing type safety statically

maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics

11 / 14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types
exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types
avoid interface pollution and enable clean code evolution
minimise the use of type casts, enforcing type safety statically
maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics

11 / 14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types
exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types
avoid interface pollution and enable clean code evolution
minimise the use of type casts, enforcing type safety statically
maximise code reuse by exploiting the polytype nature of
λ-expressions

We gave a compilation of typed programs in Java with deconfined
intersection types into Java typed programs preserving typing and
semantics

11 / 14

Motivations Translation Conclusions and future work

Future work

translate functional interfaces with many abstract methods
into functional interfaces with exactly one abstract method

investigate a light notion of traits for Java that can express
combinations of traits as intersection types
and compile this notion of traits into Java

12 / 14

Motivations Translation Conclusions and future work

Future work

translate functional interfaces with many abstract methods
into functional interfaces with exactly one abstract method
investigate a light notion of traits for Java that can express
combinations of traits as intersection types

and compile this notion of traits into Java

12 / 14

Motivations Translation Conclusions and future work

Future work

translate functional interfaces with many abstract methods
into functional interfaces with exactly one abstract method
investigate a light notion of traits for Java that can express
combinations of traits as intersection types
and compile this notion of traits into Java

12 / 14

Motivations Translation Conclusions and future work

Take home message

13 / 14

Motivations Translation Conclusions and future work

Thank you

14 / 14

	Motivations
	Translation
	Conclusions and future work

