Deconfined Intersection Types in Java

= e\

Java

joint work with Paola Giannini and Betti Venneri

IFIP 2.2 meeting 2021, 21 September

https://drops.dagstuhl.de/opus/volltexte/2020/13225/

https://drops.dagstuhl.de/opus/volltexte/2020/13225/

@ Intersection types 7 are defined by

2/14

@ Intersection types 7 are defined by
Tu=C|t|C& e where =1 &l
C is a class name and | is an interface name.

2/14

Intersection types in Java

@ Intersection types 7 are defined by
Tu=Clu]| Céu where L= &l
C is a class name and | is an interface name.
@ Intersection types are not first-class citizens of Java type
system, they can occur only as

2/14

Intersection types in Java

@ Intersection types 7 are defined by
Tu=Clu]| Céu where L= &l
C is a class name and | is an interface name.
@ Intersection types are not first-class citizens of Java type
system, they can occur only as
e bounds of type variables in generic types:
<X extends C & I1 & I2> void m(X x) { ... }

2/14

Intersection types in Java

@ Intersection types 7 are defined by
Tu=Clu]| Céu where Lo=11]1&l
C is a class name and | is an interface name.
@ Intersection types are not first-class citizens of Java type
system, they can occur only as
e bounds of type variables in generic types:
<X extends C & I1 & I2> void m(X x) { ... }

® as types of type-casts and as target types of \-expressions
(I1 & I2) A-expr
is the A-expr with the target type (I1 & I2)

2/14

Intersection types in Java

@ Intersection types 7 are defined by
Tu=Clu]| Céu where Lo=11]1&l
C is a class name and | is an interface name.
@ Intersection types are not first-class citizens of Java type
system, they can occur only as
e bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

® as types of type-casts and as target types of \-expressions

(I1 & I2) A-expr
is the A-expr with the target type (I1 & I2)
@ The target types must be functional, i.e., have

2/14

Motivations Translation Conclusions and future work

Intersection types in Java

@ Intersection types 7 are defined by
Tu=C|]| Clu where L= &l
C is a class name and | is an interface name.
@ Intersection types are not first-class citizens of Java type
system, they can occur only as
e bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

® as types of type-casts and as target types of \-expressions

(I1 & I2) A-expr

is the A-expr with the target type (I1 & I2)

@ The target types must be functional, i.e., have
e exactly one abstract method (implemented by A-expressions)

2/14

Motivations Translation Conclusions and future work

Intersection types in Java

@ Intersection types 7 are defined by
Tu=C|]| Clu where L= &l
C is a class name and | is an interface name.
@ Intersection types are not first-class citizens of Java type
system, they can occur only as
e bounds of type variables in generic types:

<X extends C & I1 & I2> void m(X x) { ... }

® as types of type-casts and as target types of \-expressions

(I1 & I2) A-expr

is the A-expr with the target type (I1 & I2)
@ The target types must be functional, i.e., have
e exactly one abstract method (implemented by A-expressions)
e any number of default methods (with A-expressions as

receivers)
2/14

An intersection type can occur everywhere, i.e. as

3/14

An intersection type can occur everywhere, i.e. as

@ a return type

3/14

An intersection type can occur everywhere, i.e. as
@ a return type

@ a parameter type

3/14

An intersection type can occur everywhere, i.e. as
@ a return type
@ a parameter type

o the explicit type of a variable

3/14

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
@ a return type
@ a parameter type
@ the explicit type of a variable

@ a field type

3/14

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
@ a return type
@ a parameter type
@ the explicit type of a variable
@ a field type
for example we can write I1&I2 m (I3%I4 x)

3/14

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
@ a return type
@ a parameter type
@ the explicit type of a variable
@ a field type
for example we can write I1&I2 m (I3&I4 x)

Advantages:

@ We avoid the use of obscure generic signatures

3/14

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
@ a return type
@ a parameter type
@ the explicit type of a variable
@ a field type
for example we can write I1&I2 m (I3&I4 x)

Advantages:
@ We avoid the use of obscure generic signatures

@ We avoid unsafe type casts

3/14

Our proposal: intersections as first-class types

An intersection type can occur everywhere, i.e. as
@ a return type
@ a parameter type
@ the explicit type of a variable
@ a field type
for example we can write I1&I2 m (I3&I4 x)

Advantages:
@ We avoid the use of obscure generic signatures
@ We avoid unsafe type casts

@ We exploit the polytype nature of \-expressions

3/14

interface Flyable { void fly(); 1}

interface Swimmable { void swim(); }

4/14

interface Flyable { void fly(); 1}

interface Swimmable { void swim(); }

Players that can do both implement both interfaces.

4/14

Game example - ﬂ

interface Flyable { void fly(); 1}

interface Swimmable { void swim(); }

Players that can do both implement both interfaces.

public class NaviatorDrone implements Flyable, Swimmable {

public void fly() { ... }

public void swim() { ... };

}
public class Pelican implements Flyable, Swimmable {
public void fly() { ... }

public void swim() { ... };

}

4/14

Game example

public class Game {
public static void goAcrossRavine (XXX player ,boolean unWatObj){
System.out.println("Reached the ravine");
if (unWatObj) {
player.f1ly () ;
player.swim();
System.out.println("Picked Object");
player.swim();
player.fly ();
} else
player.fly();
System.out.println("Crossed the ravine");
}
// Other methods of the game using the capabilities of players
}

5/14

Game example

public class Game {
public static void goAcrossRavine (XXX player ,boolean unWatObj){
System.out.println("Reached the ravine");
if (unWatObj) {
player.f1ly () ;
player.swim();
System.out.println("Picked Object");
player.swim();
player.fly ();
} else
player.fly();
System.out.println("Crossed the ravine");
}
// Other methods of the game using the capabilities of players
}

For XXX we need a player implementing Flyable and Swimmable,
which is allowed in our extension

5/14

Can generic types help?

6/14

Can generic types help?
NO, we can declare player of type X with

<X extends Flyable&Swimmable>

6/14

Game example

Can generic types help?
NO, we can declare player of type X with

<X extends Flyable&Swimmable>

but we cannot declare

Flyable&Swimmable player = new Pelican();

6/14

Game example - ﬂ

Can generic types help?
NO, we can declare player of type X with

<X extends Flyable&Swimmable>

but we cannot declare

Flyable&Swimmable player = new Pelican();

we can only write

X player = (X) new Pelican();

this introduces a type cast and exposes the type of a local variable!
6/14

interface Discount { double discount(int price); }
interface DelPrice {
default double delPrice(int price) {
return (price>30)?7 0: 5;
}
¥

7/14

Discount example

interface Discount { double discount(int price); }
interface DelPrice {
default double delPrice(int price) {
return (price>30)7 0: 5;
}
}

in our extension

public static double
finalPrice(Discount & DelPrice funPrice, int price){
return funPrice.discount(price)+funPrice.delPrice(price);

}

7/14

Motivations Translation Conclusions and future work

Discount example

interface Discount { double discount(int price); }
interface DelPrice {
default double delPrice(int price) {
return (price>30)?7 0: 5;
}
}

in our extension

public static double
finalPrice (Discount & DelPrice funPrice, int price){
return funPrice.discount(price)+funPrice.delPrice(price);

}

instead in Java (using var)

public static double finalPrice(int price) {
var funPrice=(Discount & DelPrice) (x->x-((x>100)? x*0.01: 0));
return funPrice.discount (price)+funPrice.delPrice(price);

}

funPrice is fixed and type casted!
7/14

Source calculus: Java with deconfined intersection types

8/14

Source calculus: Java with deconfined intersection types

Target calculus: standard Java

8/14

Source calculus: Java with deconfined intersection types
Target calculus: standard Java

Source calculus versus Target calculus

8/14

Source calculus: Java with deconfined intersection types
Target calculus: standard Java

Source calculus versus Target calculus

@ same sets of terms

8/14

Translation aerial view

Source calculus: Java with deconfined intersection types
Target calculus: standard Java

Source calculus versus Target calculus

@ same sets of terms

o different types in declarations

8/14

Translation aerial view

Source calculus: Java with deconfined intersection types
Target calculus: standard Java

Source calculus versus Target calculus

@ same sets of terms

o different types in declarations

Compilation strategy

8/14

Translation aerial view

Source calculus: Java with deconfined intersection types
Target calculus: standard Java

Source calculus versus Target calculus

@ same sets of terms

o different types in declarations

Compilation strategy

@ replace intersections with their most relevant components

8/14

Translation aerial view

Source calculus: Java with deconfined intersection types
Target calculus: standard Java

Source calculus versus Target calculus

@ same sets of terms

o different types in declarations

Compilation strategy
@ replace intersections with their most relevant components

@ recover the lost type information inserting downcasts (essential
to preserve the target types of A-expressions)

8/14

Erasure of types: from intersection types to nominal types

9/14

Erasure of types: from intersection types to nominal types

convention: the first interface in intersections of interfaces is
functional, if any

9/14

Three mappings

Erasure of types: from intersection types to nominal types

convention: the first interface in intersections of interfaces is
functional, if any

Te]| =T

9/14

Three mappings

Erasure of types: from intersection types to nominal types

convention: the first interface in intersections of interfaces is
functional, if any

Te]| =T

the erasure maps functional intersections into functional interfaces
(essential to preserve target types of \-expressions)

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

D Tkt:7 mtype(m;7)=0 =0 D = TF*t:5
[s-INVK] || =

r t‘m(?) to

() ((P)-m((D1))

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Headers: [rm(7%)] = |7Im(]7|X)

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Constructors:
[C(TE, 7 F){super(T); this.F = F; }] = C(io| T, [7] T){super(8); this.f = F; }

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Methods: [rm(7 %){return t;}]T = |7|m([7|%){return (D)}

where D x: 7, this: TH t: 7

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Classes: [class C extends D impleﬂents T {FHKSMS)] =
class C extends D implements 1" {|7|f; [K°] [MS]¢}

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Interfaces: [interface| e>gends_|> {HS; MS}] =
interface | extends | {[H3]; [MS]'}

9/14

Three mappings

Erasure of types: from intersection types to nominal types

Compilation of terms: from type derivations for terms of the source
calculus to terms of the target calculus

Compilation of declarations: from declarations in the source
calculus to declarations in the target calculus

Implementation done by Stefano Borsatto available at
https://github.com/cplrossi/extendj-dit

9/14

https://github.com/cplrossi/extendj-dit

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

10/ 14

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

10/ 14

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

problems:

10/ 14

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

problems:

@ some casts are still unreduced in the translated terms (for
instance, they appear in the body of A-expressions)

10/14

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

problems:

@ some casts are still unreduced in the translated terms (for
instance, they appear in the body of A-expressions)

@ the translation of a value is not a value, in general

10/14

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

problems:

@ some casts are still unreduced in the translated terms (for
instance, they appear in the body of A-expressions)

@ the translation of a value is not a value, in general

solution: an equivalence relation on terms which

10/14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

problems:

@ some casts are still unreduced in the translated terms (for
instance, they appear in the body of A-expressions)

@ the translation of a value is not a value, in general
solution: an equivalence relation on terms which

@ ignores casts on terms different from \-expressions

10/14

Motivations Translation Conclusions and future work

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation

problems:

@ some casts are still unreduced in the translated terms (for
instance, they appear in the body of A-expressions)

@ the translation of a value is not a value, in general
solution: an equivalence relation on terms which

@ ignores casts on terms different from \-expressions

@ uses casts on A-expressions as target types

10/14

Properties of the translation

Type preservation
The translation of a typed program in the source calculus is a
program with the same type in the target calculus

Semantic preservation
ti —stoy —s ...t —s ...
implies
(t) —5t, —% ...t —% ...
where (ti) =~ t}, i > 1

10/ 14

We showed that intersections as first-class types

11/14

Conclusions

We showed that intersections as first-class types

@ exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types

11/14

Conclusions

We showed that intersections as first-class types

@ exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types

@ avoid interface pollution and enable clean code evolution

11/14

Conclusions

We showed that intersections as first-class types

@ exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types

@ avoid interface pollution and enable clean code evolution

e minimise the use of type casts, enforcing type safety statically

11/14

Conclusions

We showed that intersections as first-class types

@ exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types

@ avoid interface pollution and enable clean code evolution
e minimise the use of type casts, enforcing type safety statically

@ maximise code reuse by exploiting the polytype nature of
A-expressions

11/14

Motivations Translation Conclusions and future work

Conclusions

We showed that intersections as first-class types

@ exploit the use of interfaces (with default methods) as pieces of
code that can be differently mixed to express compound types

@ avoid interface pollution and enable clean code evolution

e minimise the use of type casts, enforcing type safety statically

@ maximise code reuse by exploiting the polytype nature of
A-expressions

We gave a compilation of typed programs in Java with deconfined

intersection types into Java typed programs preserving typing and
semantics

11/14

@ translate functional interfaces with many abstract methods
into functional interfaces with exactly one abstract method

12/14

Future work

@ translate functional interfaces with many abstract methods
into functional interfaces with exactly one abstract method

@ investigate a light notion of traits for Java that can express
combinations of traits as intersection types

12/14

Future work

@ translate functional interfaces with many abstract methods
into functional interfaces with exactly one abstract method

@ investigate a light notion of traits for Java that can express
combinations of traits as intersection types

@ and compile this notion of traits into Java

12/14

Take home message

vaccinated intersection types
can go everywhere

13/14

Motivations

Thank you

Translation

Conclusions and future work

	Motivations
	Translation
	Conclusions and future work

