On Higher-Order Cryptography

Ugo Dal Lago
(Based on joint work with Boaz Barak and Raphaëlle Crubillé)

Meeting of the IFIP Working Group 2.2
September 20th, 2021

Cryptographic Reductions and Higher-Order Computation

- Security of Ψ in the computational model:
$(\forall A \in$ PPT.$\neg(A$ Breaks $\Phi)) \Longrightarrow(\forall B \in$ PPT.$\neg(B$ Breaks $\Psi))$

Cryptographic Reductions and Higher-Order Computation

- Security of Ψ in the computational model:

$$
(\forall A \in \text { PPT. } \neg(A \text { Breaks } \Phi)) \Longrightarrow(\forall B \in \text { PPT. } \neg(B \text { Breaks } \Psi))
$$

- By contraposition, this amounts to prove that:

$$
(\exists B \in \text { PPT. }(B \text { Breaks } \Psi)) \Longrightarrow(\exists A \in \text { PPT. }(A \text { Breaks } \Phi))
$$

Cryptographic Reductions and Higher-Order Computation

- Security of Ψ in the computational model:

$$
(\forall A \in \text { PPT. } \neg(A \text { Breaks } \Phi)) \Longrightarrow(\forall B \in \text { PPT. } \neg(B \text { Breaks } \Psi))
$$

- By contraposition, this amounts to prove that:

$$
(\exists B \in \text { PPT. }(B \text { Breaks } \Psi)) \Longrightarrow(\exists A \in \text { PPT. }(A \text { Breaks } \Phi))
$$

- Proofs are usually constructive:

$$
\text { Reduction : TypeOf }(B) \rightarrow \text { TypeOf }(A)
$$

Cryptographic Reductions and Higher-Order Computation

- Security of Ψ in the computational model:

$$
(\forall A \in \text { PPT. } \neg(A \text { Breaks } \Phi)) \Longrightarrow(\forall B \in \text { PPT. } \neg(B \text { Breaks } \Psi))
$$

- By contraposition, this amounts to prove that:

$$
(\exists B \in \text { PPT. }(B \text { Breaks } \Psi)) \Longrightarrow(\exists A \in \text { PPT. }(A \text { Breaks } \Phi))
$$

- Proofs are usually constructive:

$$
\text { Reduction : TypeOf }(B) \rightarrow \text { TypeOf }(A)
$$

- Reduction is a complexity preserving higher-order function.

An Example from [KatzLindell2008]

DEFINITION 3.25 Let $F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \operatorname{negl}(n)
$$

where the first probability is taken over uniform choice of $k \in\{0,1\}^{n}$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \mathrm{Func}_{n}$ and the randomness of D.

An Example from [KatzLindell2008]

DEFINITION 3.25 Let $F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \operatorname{neg}(n), \longrightarrow D \text { Breaks } F
$$

where the first probability is taken over uniform choice of $k \in\{0,1\}^{n}$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \mathrm{Func}_{n}$ and the randomness of D.

An Example from [KatzLindell2008]

DEFINITION 3.25 Let $F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$
\begin{aligned}
& \left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D \mid{ }^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \operatorname{neg} \mid(n), \longrightarrow D \text { Breaks } F \\
& \text { st probability is taken over } \\
& \text { of } D \text {, and the concond neraha } \\
& \text { nd the randor } D \text { accesses } f \text { as an oracle }
\end{aligned}
$$

An Example from [KatzLindell2008]

The Cryptographer's Notion of Efficiency [KatzLindell2008]

We equate "efficient adversaries" with randomized (i.e., probabilistic) algorithms running in time polynomial in n. This means there is some polynomial p such that the adversary runs for time at most $p(n)$ when the security parameter is n. We also require-for real-world efficiencythat honest parties run in polynomial time, although we stress that the adversary may be much more powerful (and run much longer than) the honest parties.

Equivalence-Preserving Cryptography?

- Programs, e.g. when hashed, are usually treated as strings:

$$
\mathrm{P} \in\{0,1\}^{*} \longrightarrow H_{s} \longrightarrow \mathrm{R} \in\{0,1\}^{*}
$$

Equivalence-Preserving Cryptography?

- Programs, e.g. when hashed, are usually treated as strings:

- If two programs P and Q are perfectly equivalent but distinct, they are thus seen as distinct strings, and mapped to distinct hashes:

Equivalence-Preserving Cryptography?

- Programs, e.g. when hashed, are usually treated as strings:

- If two programs P and Q are perfectly equivalent but distinct, they are thus seen as distinct strings, and mapped to distinct hashes:

- The same argument holds when H_{s} is replaced by $E n c_{k}$ (i.e. encryption) or $M a c_{k}$ (i.e. authentication).

Equivalence-Preserving Cryptography?

- Programs, e.g. when hashed, are usually treated as strings:

- If two programs P and Q are perfectly equivalent but distinct, they are thus seen as distinct strings, and mapped to distinct hashes:

- The same argument holds when H_{s} is replaced by $E n c_{k}$ (i.e. encryption) or $M a c_{k}$ (i.e. authentication).
- Would it be possible to define any cryptographic primitive in such a way as to make it equivalence preserving?
- That somehow amounts to turning H_{s} into a program of type $\left(\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right) \rightarrow\{0,1\}^{*}\left(\right.$ rather than $\left.\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right)$.
- E.g., hashing distinct but equivalent programs can be done only once.

This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game Semantics.

- Second-order adversaries are everywhere in cryptography.
- Defining the concept of an efficient adversary at order higher-than- 2 instead requires some care.
- Game semantics [AJM00,HO00] offers a way to reduce higher-order computation to first-order computation.

This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game Semantics.

- Second-order adversaries are everywhere in cryptography.
- Defining the concept of an efficient adversary at order higher-than- 2 instead requires some care.
- Game semantics [AJM00,HO00] offers a way to reduce higher-order computation to first-order computation.

2. Some Negative and Positive Results on the Feasibility of Higher-Order Cryptography.

- Results about influential variables in decision trees imply that second-order pseudorandomness and collision-resistance are not attainable.
- Some positive results can be obtained, but there is an high price to pay.

An Example: the Game Semantics of a Second-Order Function

$$
\left(\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right) \rightarrow\{0,1\}^{*}
$$

An Example: the Game Semantics of a Second-Order Function

$$
\begin{gathered}
\\
\mathrm{O}
\end{gathered} \quad\left(\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right) \rightarrow \begin{gathered}
\{0,1\}^{*} \\
?
\end{gathered}
$$

An Example: the Game Semantics of a Second-Order Function

$$
\begin{array}{ccccc}
& \left(\{0,1\}^{*}\right. & \rightarrow & \left.\{0,1\}^{*}\right) & \rightarrow
\end{array} \begin{gathered}
\\
\mathrm{O} \\
\mathrm{P}
\end{gathered}
$$

An Example: the Game Semantics of a Second-Order Function

$$
\begin{array}{cccccc}
& \left(\{0,1\}^{*}\right. & \rightarrow & \left.\{0,1\}^{*}\right) & \rightarrow & \{0,1\}^{*} \\
\mathrm{O} & & & (1, ?) & & ? \\
\mathrm{P} & & & (1, ?) & & \\
\mathrm{O} & (1, ?) &
\end{array}
$$

An Example: the Game Semantics of a Second-Order Function

$$
\begin{array}{ccccc}
& \left(\{0,1\}^{*}\right. & \rightarrow & \left.\{0,1\}^{*}\right) & \rightarrow \\
\mathrm{O} & & & \{0,1\}^{*} \\
\mathrm{P} & & & (1, ?) & \\
\mathrm{O} & (1, ?) & & & \\
\mathrm{P} & \left(1, s_{1}\right) & & & \\
?
\end{array}
$$

An Example: the Game Semantics of a Second-Order Function

	$\left(\{0,1\}^{*}\right.$	\rightarrow	$\left.\{0,1\}^{*}\right)$	\rightarrow	$\{0,1\}^{*}$
O					$?$
P			$(1, ?)$		
O	$(1, ?)$				
P	$\left(1, s_{1}\right)$				
O			$\left(1, t_{1}\right)$		

An Example: the Game Semantics of a Second-Order Function

	$\left(\{0,1\}^{*}\right.$	\rightarrow	$\left.\{0,1\}^{*}\right)$	\rightarrow	$\{0,1\}^{*}$
O					
P			$(1, ?)$		$?$
O	$(1, ?)$				
P	$\left(1, s_{1}\right)$				
O			$\left(1, t_{1}\right)$		
		\vdots			
P			$(m, ?)$		
O	$(m, ?)$				
P	$\left(m, s_{m}\right)$				
O			$\left(m, t_{m}\right)$		

An Example: the Game Semantics of a Second-Order Function

	$\left(\{0,1\}^{*}\right.$	\rightarrow	$\left.\{0,1\}^{*}\right)$	\rightarrow	$\{0,1\}^{*}$
O					
P			$(1, ?)$		
O	$(1, ?)$				
P	$\left(1, s_{1}\right)$				
O			$\left(1, t_{1}\right)$		
		\vdots			
P			$(m, ?)$		
O	$(m, ?)$				
P	$\left(m, s_{m}\right)$				
O			$\left(m, t_{m}\right)$		
P				v	

An Example: the Game Semantics of a Second-Order Function

$\left(\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right) \rightarrow\{0,1\}^{*}$
O
P
O $(1, ?)$
$\mathrm{P} \quad\left(1, s_{1}\right)$
O

P
O $(m, ?)$
$\mathrm{P} \quad\left(m, s_{m}\right)$
O
$\left(m, t_{m}\right)$

$$
\left(1, t_{1}\right)
$$

\vdots
P $(m, ?)$
?

- The Player P must react to every move of the opponent O.
- It can do so based on the whole history, without any further constraint. This defines a strategy.
- The length of the interaction is in principle arbitrary.
- Multiple moves can be played at the same site, but they somehow need to be distinguished.

Cryptographic Game Semantics - I

Games Parametrized by a Security Parameter

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Strategies: $f: \mathbb{N} \times\left(L_{G}^{n} \cap\right.$ Odd $) \rightarrow P_{G}$

Cryptographic Game Semantics - I

Games Parametrized by a Security Parameter

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right) \quad$ Example (Strings of length $\leq p(n)$)
- Strategies: $f: \mathbb{N} \times\left(L_{G}^{n} \cap \mathrm{Odd}\right) \rightarrow P_{G} \quad \mathbf{S}[p]=\left(\{?\},\{0,1\}^{\star},\left(L_{\mathbf{S}[p]}^{n}\right)_{n \in \mathbb{N}}\right)$ with $L_{\mathbf{S}[p]}^{n}=\{\epsilon, ?\} \cup\{? s| | s \mid \leq p(n)\}$

Cryptographic Game Semantics - I

Games Parametrized by a Security Parameter

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right) \quad$ Example (Strings of length $\leq p(n)$)
- Strategies: $f: \mathbb{N} \times\left(L_{G}^{n} \cap\right.$ Odd $) \rightarrow P_{G}$

$$
\begin{aligned}
& \mathbf{S}[p]=\left(\{?\},\{0,1\}^{\star},\left(L_{\mathbf{S}[p]}^{n}\right)_{n \in \mathbb{N}}\right) \text { with } \\
& L_{\mathbf{S}[p]}^{n}=\{\epsilon, ?\} \cup\{? s| | s \mid \leq p(n)\}
\end{aligned}
$$

Restricted Classes of Games and Strategies

Polynomially Bounded Games:

G such that there exists a polynomial P with positive coefficients, such that:
$\forall n \in \mathbb{N}, \forall s \in L_{G}^{n},|s| \leq P(n)$.

Polytime Computable Strategies: There exists a polynomial time Turing machine which on input $\left(1^{n}, s\right)$ returns $f(n, s)$.

Cryptographic Game Semantics - I

Games Parametrized by a Security Parameter

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right) \quad$ Example (Strings of length $\leq p(n)$)
- Strategies: $f: \mathbb{N} \times\left(L_{G}^{n} \cap\right.$ Odd $) \rightarrow P_{G}$

$$
\begin{aligned}
& \mathbf{S}[p]=\left(\{?\},\{0,1\}^{\star},\left(L_{\mathbf{S}[p]}^{n}\right)_{n \in \mathbb{N}}\right) \text { with } \\
& L_{\mathbf{S}[p]}^{n}=\{\epsilon, ?\} \cup\{? s| | s \mid \leq p(n)\}
\end{aligned}
$$

Restricted Classes of Games and Strategies

Polynomially Bounded Games:

G such that there exists a polynomial P
with positive coefficients, such that:
$\forall n \in \mathbb{N}, \forall s \in L_{G}^{n},|s| \leq P(n)$.

Polytime Computable Strategies:
There exists a polynomial time Turing machine which on input ($1^{n}, s$) returns $f(n, s)$.

Constructing Games

From the games G, H, we can construct more complex games such as:

- $G \multimap H$, modeling functions from G to H;
- $G \otimes H$, modeling pairs of elements from G and H, respectively;
- $!_{q} G$ modeling $q(n)$ copies of G.

Cryptographic Game Semantics - II

Proposition (Compositing Strategies)
If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a polytime strategy on $G \multimap K$. Composition is associative.

Cryptographic Game Semantics - II

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a polytime strategy on $G \multimap K$. Composition is associative.

- How about randomization?

Cryptographic Game Semantics - II

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a polytime strategy on $G \multimap K$. Composition is associative.

- How about randomization?

Randomized Strategies-A First Try

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Randomized Strategies: polytime computable functions $f: \mathbb{N} \times\left(L_{G}^{n} \cap \operatorname{Odd}\right) \rightarrow \operatorname{DISTR}\left(P_{G}\right)$

Cryptographic Game Semantics - II

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a polytime strategy on $G \multimap K$. Composition is associative.

- How about randomization?

Randomized Strategies-A First Try

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Randomized Strategies: polytime computable functions $f: \mathbb{N} \times\left(L_{G}^{n} \cap \operatorname{Odd}\right) \rightarrow \operatorname{DISTR}\left(P_{G}\right)$

NO!

Randomized polytime strategies are not stable by composition.

Cryptographic Game Semantics - II

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a polytime strategy on $G \multimap K$. Composition is associative.

- How about randomization?

Randomized Strategies-A First Try

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Randomized Strategies: polytime computable functions $f: \mathbb{N} \times\left(L_{G}^{n} \cap \mathrm{Odd}\right) \rightarrow \operatorname{DISTR}\left(P_{G}\right)$

Randomized Games - Second Try

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Randomized Strategies on G are taken as deterministic strategies on $!_{p} \mathbf{B} \multimap G$ (where \mathbf{B} is the boolean game).

NO!

Randomized polytime strategies are not stable by composition.

Cryptographic Game Semantics - II

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a polytime strategy on $G \multimap K$. Composition is associative.

How about randomization?

Randomized Strategies-A First Try

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Randomized Strategies: polytime computable functions $f: \mathbb{N} \times\left(L_{G}^{n} \cap \operatorname{Odd}\right) \rightarrow \operatorname{DISTR}\left(P_{G}\right)$

Randomized Games - Second Try

- Games: $G=\left(O_{G}, P_{G},\left(L_{G}^{n}\right)_{n \in \mathbb{N}}\right)$
- Randomized Strategies on G are taken as deterministic strategies on $!_{p} \mathbf{B} \multimap G$ (where \mathbf{B} is the boolean game).

NO!

Randomized polytime strategies are not stable by composition.

YES!

The whole sequence of probabilistic choices is available, and strategies compose.

An Example: a Simple Randomized Strategy

$$
!_{1} \mathbf{B} \quad \multimap \quad!_{2}(\mathbf{S}[n] \quad \multimap \quad \mathbf{B}) \quad \multimap \quad \mathbf{B}
$$

An Example: a Simple Randomized Strategy

$$
\begin{array}{llllllll}
& !_{1} \mathbf{B} & \multimap & !_{2}(\mathbf{S}[n] & \multimap & \mathbf{B}) & \multimap & \mathbf{B} \\
\mathrm{O} & & & & & & & ? \\
\mathrm{P} & (1, ?) & & & & & & \\
\mathrm{O} & (1, b) & & & & & &
\end{array}
$$

An Example: a Simple Randomized Strategy

	$!{ }_{1} \mathbf{B}$	\bigcirc	$!_{2}(\mathbf{S}[n]$	\bigcirc	B)	\bigcirc
O						
P	$(1, ?)$					
O	$(1, b)$					
P					$(1, ?)$	
O			$(1, ?)$			
P			$\left(1, b^{n}\right)$			
O					$(1, c)$	

An Example: a Simple Randomized Strategy

	$!{ }_{1} \mathbf{B}$	\bigcirc	$!_{2}(\mathbf{S}[n]$	\bigcirc	B)	\bigcirc	B
O							?
P	$(1, ?)$						
O	$(1, b)$						
P					$(1, ?)$		
O			$(1, ?)$				
P			$\left(1, b^{n}\right)$				
O					$(1, c)$		
P					$(2, ?)$		
O			(2, ?)				
P			(2, $\left.(\neg b)^{n}\right)$				
O					$(2, d)$		

An Example: a Simple Randomized Strategy

	$!{ }_{1}$ B	\bigcirc	$!_{2}(\mathbf{S}[n]$	\bigcirc	B)	\bigcirc	B
O							?
P	$(1, ?)$						
O	$(1, b)$						
P					$(1, ?)$		
O			$(1, ?)$				
P			$\left(1, b^{n}\right)$				
O					$(1, c)$		
P					$(2, ?)$		
O			$(2, ?)$				
P			$\left(2,(\neg b)^{n}\right)$				
O					$(2, d)$		
P							$\neg c \wedge d$

An Example: Pseudorandomness

An family of "objects" $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is said to be pseudorandom iff X_{n} is indistinguishable from a genuinely random object of the same type, by distinguishers working in polynomial time (in n).

An Example: Pseudorandomness

An family of "objects" $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is said to be pseudorandom iff X_{n} is indistinguishable from a genuinely random object of the same type, by distinguishers working in polynomial time (in n).

Then:

- If $X_{n}=\{0,1\}^{r(n)}$, then the distinguisher is just a polytime TM.
- If $X_{n}=\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, then the distinguisher is a polytime (in n) OTM.
- If $X_{n}=\left(\{0,1\}^{n} \rightarrow\{0,1\}^{1}\right) \rightarrow\{0,1\}^{n}$, then there was no clear answer to this question. But now we have a model!

An Example: Pseudorandomness

An family of "objects" $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is said to be pseudorandom iff X_{n} is indistinguishable from a genuinely random object of the same type, by distinguishers working in polynomial time (in n).

Then:

- If $X_{n}=\{0,1\}^{r(n)}$, then the distinguisher is just a polytime TM.
- If $X_{n}=\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, then the distinguisher is a polytime (in n) OTM.
- If $X_{n}=\left(\{0,1\}^{n} \rightarrow\{0,1\}^{1}\right) \rightarrow\{0,1\}^{n}$, then there was no clear answer to this question. But now we have a model!

Higher-Order Pseudorandomness?

- Intuitively, it is impossible to build deterministic polytime objects of type

$$
\{0,1\}^{n} \rightarrow\left(\{0,1\}^{n} \rightarrow\{0,1\}^{1}\right) \rightarrow\{0,1\}^{n}
$$

which "look random": a truly random function "query" its argument exponentially many times, namely on all the strings in $\{0,1\}^{n}$.

- How to turn this into a formal argument in the just introduced model?

Second-Order Pseudorandomness

- We are now in a position to define what second-order pseudorandomness could look like.

Second-Order Pseudorandomness

- We are now in a position to define what second-order pseudorandomness could look like.
- The type of a (candidate) pseudorandom function could be

$$
S O F_{p, q, r}=\mathbf{S}[n] \multimap!_{p}(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r],
$$

while the type of an adversary for it, being randomized, should be

$$
A D V_{s, t, p, q, r}=!_{s} \mathbf{B} \multimap!_{t}\left(!_{p}(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r]\right) \multimap \mathbf{B}
$$

Second-Order Pseudorandomness

- We are now in a position to define what second-order pseudorandomness could look like.
- The type of a (candidate) pseudorandom function could be

$$
S O F_{p, q, r}=\mathbf{S}[n] \multimap!_{p}(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r],
$$

while the type of an adversary for it, being randomized, should be

$$
A D V_{s, t, p, q, r}=!_{s} \mathbf{B} \multimap!_{t}\left(!_{p}(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r]\right) \multimap \mathbf{B}
$$

We say that a polytime strategy f for the game $S O F_{p, q, r}$ is pseoudorandom iff for any polytime strategy \mathcal{A} for the game $A D V_{s, t, p, q, r}$ it holds that

$$
\mid \operatorname{Pr}[\mathcal{A} \circ(f \circ \text { rand }) \Downarrow 1]-\operatorname{Pr}[\mathcal{A} \circ(\text { rand }) \Downarrow 1] \mid \leq \varepsilon(n)
$$

where ε is a negligible function.

The Two Results

Theorem

For every δ there is a strategy coll δ on the game

$$
!_{t}\left(!_{p}(\mathbf{S}[n] \multimap \mathbf{B}) \multimap \mathbf{S}[r]\right) \multimap(\mathbf{S}[n] \multimap \mathbf{B}) \otimes(\mathbf{S}[n] \multimap \mathbf{B})
$$

such that for every deterministic strategy f, the composition $\left(!_{s} f\right) \circ$ coll $_{\delta}$, with probability at least $1-\delta$, computes two functions g, h such that:

1. $H(g, h) \geq 0.1$;
2. $f \circ g$ and $f \circ h$ behave the same;
3. For every function e on which colld queries its argument, it holds that $H(e, g) \geq 0.1$ and $H(e, h) \geq 0.1$.

The Two Results

Theorem

For every δ there is a strategy coll δ on the game

$$
!_{t}\left(!_{p}(\mathbf{S}[n] \multimap \mathbf{B}) \multimap \mathbf{S}[r]\right) \multimap(\mathbf{S}[n] \multimap \mathbf{B}) \otimes(\mathbf{S}[n] \multimap \mathbf{B})
$$

such that for every deterministic strategy f, the composition $\left(!_{s} f\right) \circ \operatorname{coll}_{\delta}$, with probability at least $1-\delta$, computes two functions g, h such that:

1. $H(g, h) \geq 0.1$;
2. $f \circ g$ and $f \circ h$ behave the same;
3. For every function e on which coll cheries $^{\text {its argument, it holds that } H(e, g) \geq 0.1}$ and $H(e, h) \geq 0.1$.

Theorem

If there is a one-way function, then there is a pseudorandom strategy for $\mathbf{S}[n] \multimap!_{n}\left(\mathbf{S}\left[\log _{2}(n)\right] \multimap \mathbf{B}\right) \multimap \mathbf{S}[r]$.

Conclusion

Main Contributions

- A novel game-theoretic framework for higher-order, randomized, complexity bounded computation.
- Impossibility of building second-order functions having the expected type, (i.e. taking in input characteristic functions on $\{0,1\}^{n}$) and having good cryptographic properties.
- Existence, under standard cryptographic assumptions, of secord-order pseudrandom functions taking in input characteristic functions on $\{0,1\}^{\log _{2}(n)}$.

Conclusion

Main Contributions

- A novel game-theoretic framework for higher-order, randomized, complexity bounded computation.
- Impossibility of building second-order functions having the expected type, (i.e. taking in input characteristic functions on $\{0,1\}^{n}$) and having good cryptographic properties.
- Existence, under standard cryptographic assumptions, of secord-order pseudrandom functions taking in input characteristic functions on $\{0,1\}^{\log _{2}(n)}$.

Future Work

- How about encryption?
- Is it that our game-semantic framework can be seen as a methodology for proving higher-order cryptographic reduction arguments to be not only complexity preserving, but even correct?

Thank You!

Questions?

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.
$g: \mathbf{1} \multimap \mathbf{S}[X]$ $f: \mathbf{S}[X] \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$

$$
\begin{aligned}
& f \circ g: \mathbf{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]
\end{aligned}
$$

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.

$$
\begin{aligned}
& f \circ g: \mathbf{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]
\end{aligned}
$$

Compute $f \circ g\left(? y_{i}\right)$ boils down to
finding an element in $F^{-1}\left(y_{i}\right)$.

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.
$g: \mathbf{1} \multimap \mathbf{S}[X]$

$$
\begin{aligned}
& ?^{-} \\
& \frac{1}{2^{n}} / / \frac{1}{2^{n}} \\
& x_{1} x_{2} \cdots
\end{aligned}
$$ $f: \mathbf{S}[X] \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$

Compute $f \circ g\left(? y_{i}\right)$ boils down to finding an element in $F^{-1}\left(y_{i}\right)$.

- f, g are polytime computable functions on bounded games.

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.
$g: \mathbf{1} \multimap \mathbf{S}[X]$

$$
\begin{aligned}
& ?^{-} \\
& \frac{1}{2^{n}} / / \frac{1}{2^{n}} \\
& x_{1} x_{2} \cdots
\end{aligned}
$$ $f: \mathbf{S}[X] \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$

Compute $f \circ g\left(? y_{i}\right)$ boils down to finding an element in $F^{-1}\left(y_{i}\right)$.

- f, g are polytime computable functions on bounded games.

Example
$F:\{0,1\}^{n} \rightarrow\{0,1\}^{P(n)}$ a one-way function.
$g: \mathbf{1} \multimap \mathbf{S}[X]$

$$
\frac{1}{2^{n}} / \stackrel{?-}{x_{1}} \frac{1}{2^{n}}
$$ $f: \mathbf{S}[X] \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$

Compute $f \circ g\left(? y_{i}\right)$ boils down to finding an element in $F^{-1}\left(y_{i}\right)$.

- f, g are polytime computable functions on bounded games.
$-f \circ g: \mathbf{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$ is not polytime computable.

