On Higher-Order Cryptography

Ugo Dal Lago
(Based on joint work with Boaz Barak and Raphaglle Crubillé)

ALMA MATER STUDIORUM Informatiques s mothématiques

UNIVERSITA DI BOLOGNA W

$1EE
A e
il

Meeting of the IFIP Working Group 2.2
September 20th, 2021



Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))



Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

» By contraposition, this amounts to prove that:

(3B € PPT.(B Breaks V)) = (3A € PPT.(A Breaks ®))



Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

» By contraposition, this amounts to prove that:

(3B € PPT.(B Breaks V)) = (3A € PPT.(A Breaks ®))

» Proofs are usually constructive:

_.A

-]

v

B

—»

Reduction : TypeOf (B) — TypeOf (A)




Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

» By contraposition, this amounts to prove that:
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» Proofs are usually constructive:
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Reduction : TypeOf (B) — TypeOf (A)

» Reduction is a complexity preserving higher-order function.



An Example from [KatzLindell2008|

DEFINITION 3.25 Let F : {0,1}* x {0,1}* — {0,1}* be an efficient,
length-preserving, keyed function. F is a pseudorandom function if for all
probabilistic polynomial-time distinguishers D, there is a negligible function
negl such that:

Pr[DF*0)(17) = 1] — Pr[DfO)(1") = 1]| < negl(n),
where the first probability is taken over uniform choice of k € {0,1}" and the

randomness of D, and the second probability is taken over uniform choice of
f € Func, and the randomness of D.
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The first parameter is fixed to be k [< {0:1}* = {0,1}" be an efficient,
! 5 - a pseudorandom function if for all
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The Cryptographer’s Notion of Efficiency [KatzLindell2008]

We equate “efficient adversaries” with randomized (i.e., probabilistic)
algorithms running in time polynomial in n. This means there is some
polynomial p such that the adversary runs for time at most p(n) when
the security parameter is n. We also require—for real-world efficiency—
that honest parties run in polynomial time, although we stress that the
adversary may be much more powerful (and run much longer than) the
honest parties.
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» If two programs P and @ are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:
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» The same argument holds when H; is replaced by Ency, (i.e. encryption) or Macy, (i.e.

authentication).

» Would it be possible to define any cryptographic primitive in such a way as to make it

equivalence preserving?

» That somehow amounts to turning H into a program of type
({0,1}* = {0,1}*) — {0,1}* (rather than {0,1}* — {0,1}").
» E.g., hashing distinct but equivalent programs can be done only once.



This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game
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» Second-order adversaries are everywhere in cryptography.
» Defining the concept of an efficient adversary at order higher-than- 2 instead requires
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1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game
Semantics.
» Second-order adversaries are everywhere in cryptography.
» Defining the concept of an efficient adversary at order higher-than- 2 instead requires
some care.
> Game semantics [AJM00,HO00| offers a way to reduce higher-order computation to
first-order computation.
2. Some Negative and Positive Results on the Feasibility of Higher-Order
Cryptography.
» Results about influential variables in decision trees imply that second-order
pseudorandomness and collision-resistance are not attainable.
» Some positive results can be obtained, but there is an high price to pay.
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» The Player P must react

to every move of the
opponent O.

It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

The length of the
interaction is in principle
arbitrary.

Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.
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Restricted Classes of Games and Strategies

Polynomially Bounded Games: Polytime Computable Strategies:
G such that there exists a polynomial P There exists a polynomial time Turing
with positive coefficients, such that: machine which on input (1%, s) returns
Vn € N,Vs € Lg, |s| < P(n). f(n,s).

Constructing Games

From the games G, H, we can construct more complex games such as:
» G — H, modeling functions from G to H;
> (G ® H, modeling pairs of elements from G and H, respectively;
» |,G modeling ¢(n) copies of G.
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polytime strategy on G — K. Composition is associative.
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Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

» How about randomization?

Randomized Strategies—A First Try NO!
» Games: G = (Og, P, (LE)nen) Randomized polytime
» Randomized Strategies: polytime computable strateglfas. are not stable by
functions f : N x (L% N Odd) — DISTR(Pg) COTIpEETGEL, )
4
Randomized Games—Second Try YES!
> Games: G = (Og, Pg; (Lg)nen) The whole sequence of
» Randomized Strategies on G are taken as probabilistic choices is
deterministic strategies on |,B — G (where B is available, and strategies
the boolean game). compose.
v v
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An family of “objects” { X, }nen is said to be pseudorandom iff X, is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial
time (in n).

Then:
> If X, = {0,1}"(") then the distinguisher is just a polytime TM.
> If X, ={0,1}" — {0,1}", then the distinguisher is a polytime (in n) OTM.
> If X, = ({0,1}" — {0,1}') — {0,1}", then there was no clear answer to this question.

But now we have a model! )

Higher-Order Pseudorandomness?

» Intuitively, it is impossible to build deterministic polytime objects of type
{0,1}" — ({0,1}™ — {0,1}") — {0,1}"

which “look random”: a truly random function “query” its argument exponentially
many times, namely on all the strings in {0, 1}".

» How to turn this into a formal argument in the just introduced model?
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Second-Order Pseudorandomness

» We are now in a position to define what second-order pseudorandomness could look
like.

» The type of a (candidate) pseudorandom function could be
SOFp,q.r = S[n] —!,(S[g] — B) — S[r],
while the type of an adversary for it, being randomized, should be
ADV s 1p,qr =!sB —oli(1,(Slg] — B) — S[r]) - B
We say that a polytime strategy f for the game SOF,, , . is pseoudorandom iff for any
polytime strategy A for the game ADV; , 4, it holds that
|Pr[Ao (f orand) |} 1] — Pr[Ao (rand) | 1]| < e(n)

where ¢ is a negligible function.




The Two Results

Theorem

For every § there is a strategy colls on the game
i (!p(S[n] — B) — S[r]) — (S[n] — B) @ (S[n] — B)

such that for every deterministic strategy f, the composition (!5 f) o colls, with probability
at least 1 — 9, computes two functions g, h such that:

1. H(g,h) > 0.1;
2. fog and f o h behave the same;

3. For every function e on which colls queries its argument, it holds that H(e,g) > 0.1
and H(e,h) > 0.1.
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For every § there is a strategy colls on the game
i (!p(S[n] — B) — S[r]) — (S[n] — B) @ (S[n] — B)

such that for every deterministic strategy f, the composition (!5 f) o colls, with probability
at least 1 — 9, computes two functions g, h such that:

1. H(g,h) > 0.1;
2. fog and f o h behave the same;

3. For every function e on which colls queries its argument, it holds that H(e,g) > 0.1
and H(e,h) > 0.1.

Theorem

If there is a one-way function, then there is a pseudorandom strategy for
S[n] —!n(S[logy(n)] — B) — S[r].
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» Impossibility of building second-order functions having the expected type, (i.e. taking
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Conclusion

Main Contributions

» A novel game-theoretic framework for higher-order, randomized, complexity bounded
computation.

» Impossibility of building second-order functions having the expected type, (i.e. taking
in input characteristic functions on {0, 1}") and having good cryptographic properties.

» FEaxistence, under standard cryptographic assumptions, of secord-order pseudrandom
functions taking in input characteristic functions on {0, 1}1°g2(”).

Future Work
» How about encryption?

» Is it that our game-semantic framework can be seen as a methodology for proving
higher-order cryptographic reduction arguments to be not only complexity
preserving, but even correct?




Thank You!

(Questions?
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