On Higher-Order Cryptography

Ugo Dal Lago
(Based on joint work with Boaz Barak and Raphaglle Crubillé)

ALMA MATER STUDIORUM Informatiques s mothématiques

UNIVERSITA DI BOLOGNA W

$1EE
A e
il

Meeting of the IFIP Working Group 2.2
September 20th, 2021

Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

» By contraposition, this amounts to prove that:

(3B € PPT.(B Breaks V)) = (3A € PPT.(A Breaks ®))

Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

» By contraposition, this amounts to prove that:

(3B € PPT.(B Breaks V)) = (3A € PPT.(A Breaks ®))

» Proofs are usually constructive:

_.A

-]

v

B

—»

Reduction : TypeOf (B) — TypeOf (A)

Cryptographic Reductions and Higher-Order Computation

» Security of ¥ in the computational model:

(VA € PPT.—(A Breaks ¢)) = (VB € PPT.—(B Breaks V))

» By contraposition, this amounts to prove that:

(3B € PPT.(B Breaks V)) = (3A € PPT.(A Breaks ®))

» Proofs are usually constructive:

—» A -
. —»
—»

Reduction : TypeOf (B) — TypeOf (A)

» Reduction is a complexity preserving higher-order function.

An Example from [KatzLindell2008|

DEFINITION 3.25 Let F : {0,1}* x {0,1}* — {0,1}* be an efficient,
length-preserving, keyed function. F is a pseudorandom function if for all
probabilistic polynomial-time distinguishers D, there is a negligible function
negl such that:

Pr[DF*0)(17) = 1] — Pr[DfO)(1") = 1]| < negl(n),
where the first probability is taken over uniform choice of k € {0,1}" and the

randomness of D, and the second probability is taken over uniform choice of
f € Func, and the randomness of D.

An Example from [KatzLindell2008|

DEFINITION 3.25 Let F : {0,1}* x {0,1}* — {0,1}* be an efficient,
length-preserving, keyed function. F is a pseudorandom function if for all
probabilistic polynomial-time distinguishers D, there is a negligible function
negl such that:

Pr[DF0)(17) = 1] = Pr[D/O(1") = 1]| < negl(n),——===, D Breaks F |

where the first probability is taken over uniform choice of k € {0,1}" and the
randomness of D, and the second probability is taken over uniform choice of
f € Func,, and the randomness of D.

An Example from [KatzLindell2008|

DEFINITION 3.25 Let F : {0,1}* x {0,1}* — {0,1}* be an efficient,
length-preserving, keyed function. F is a pseudorandom function if for all
probabilistic polynomial-time distinguishers D, there is a negligible function
negl such that:

Pr[DF0)(17) = 1] = Pr[D{)(1") = 1]| < negl(n),——===x, D Breaks F |

iform choice of k € {0,1}™ and the
it g ver uniform choice of

where the first probability is taken over
randomness of D, and thg
f € Func,, and the randor| D accesses f as an oracle

An Example from [KatzLindell2008|

The first parameter is fixed to be k [< {0:1}* = {0,1}" be an efficient,
! 5 - a pseudorandom function if for all
probabilistic polynor| Jal-time distinguishers D, there is a negligible function
negl such that:

Pr[DF0)(17) = 1] = Pr[D{)(1") = 1]| < negl(n),——===x, D Breaks F |

where the first probability is taken over
randomness of D, and thg
f € Func,, and the randor| D accesses f as an oracle

iform choice of k € {0,1}™ and the
it g ver uniform choice of

The Cryptographer’s Notion of Efficiency [KatzLindell2008]

We equate “efficient adversaries” with randomized (i.e., probabilistic)
algorithms running in time polynomial in n. This means there is some
polynomial p such that the adversary runs for time at most p(n) when
the security parameter is n. We also require—for real-world efficiency—
that honest parties run in polynomial time, although we stress that the
adversary may be much more powerful (and run much longer than) the
honest parties.

Equivalence-Preserving Cryptography?

» Programs, e.g. when hashed, are usually treated as strings:

Pe {01} —»

H,

—>

Re {0,1}*

Equivalence-Preserving Cryptography?

» Programs, e.g. when hashed, are usually treated as strings:

Pe{0,1}*—» H, —» Rec{0,1}*

» If two programs P and @ are perfectly equivalent but distinct, they are thus seen as

distinct strings, and mapped to distinct hashes:

P, € {0,1}* —» H,

——»R; € {0,1}*

P]_EPQS
P} # Py

'Ry #Ra

P, e {01} —»f H,

- »R, € {0,1}*

Equivalence-Preserving Cryptography?

» Programs, e.g. when hashed, are usually treated as strings:

Pe{0,1}*—» H, —» Rec{0,1}*

» If two programs P and @ are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:

P, € {0,1} ——» H, ———»R; € {0,1}*
Py =Py :
Py £ Py ‘R # Ry
P, e{0,1} —» H, —» Ry € {0,1}*

» The same argument holds when H; is replaced by Ency, (i.e. encryption) or Macy, (i.e.
authentication).

Equivalence-Preserving Cryptography?

» Programs, e.g. when hashed, are usually treated as strings:

Pe{0,1}*—» H,

——» Rec {01}

» If two programs P and @ are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:

P, € {0,1}* —»

H,

——»R; € {0,1}*

'Ry #Ra

P]_EPQS
P} # Py

P, e {0,1}* —»

H,

- »R, € {0,1}*

» The same argument holds when H; is replaced by Ency, (i.e. encryption) or Macy, (i.e.

authentication).

» Would it be possible to define any cryptographic primitive in such a way as to make it

equivalence preserving?

» That somehow amounts to turning H into a program of type
({0,1}* = {0,1}*) — {0,1}* (rather than {0,1}* — {0,1}").
» E.g., hashing distinct but equivalent programs can be done only once.

This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game
Semantics.
» Second-order adversaries are everywhere in cryptography.
» Defining the concept of an efficient adversary at order higher-than- 2 instead requires

some care.
> Game semantics [AJM00,HO00| offers a way to reduce higher-order computation to
first-order computation.

This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game
Semantics.
» Second-order adversaries are everywhere in cryptography.
» Defining the concept of an efficient adversary at order higher-than- 2 instead requires
some care.
> Game semantics [AJM00,HO00| offers a way to reduce higher-order computation to
first-order computation.
2. Some Negative and Positive Results on the Feasibility of Higher-Order
Cryptography.
» Results about influential variables in decision trees imply that second-order
pseudorandomness and collision-resistance are not attainable.
» Some positive results can be obtained, but there is an high price to pay.

An Example: the Game Semantics of a Second-Order Function

({o,1}* — {o0,1}*) — {0,1}*

An Example: the Game Semantics of a Second-Order Function

({o,1}* — {o0,1}*) — {0,1}*
0) ?

An Example: the Game Semantics of a Second-Order Function

({o,1}* — {o0,1}*) — {0,1}*
0) ?
P (1,7)

An Example: the Game Semantics of a Second-Order Function

({013 = {o,13) — {01}
0 ?
(1,7)

g

An Example: the Game Semantics of a Second-Order Function

({o,1}* — {o0,1}*) — {0,1}*
?

o)
P (1,7)
0
P

An Example: the Game Semantics of a Second-Order Function

({o,1}* — {o0,1}*) — {0,1}*
?

(1,7)

© "o TOo
=
=

An Example: the Game Semantics of a Second-Order Function

fo,13* = {0,1}7) — {0, 1}

0] ?
P (1,7)

0 (1,7)

P (1,s)

0 (1,t1)

P (m,?)

o (m7?)

P (m,sm)

0] (m,tm)

An Example: the Game Semantics of a Second-Order Function

fo,13* = {0,1}7) — {0, 1}

@) ?
P (1,7)

0 (1,7)

P (1,s)

0 (1,t1)

P (m,?)

0o (m7?)

P (m,sm)

0] (m,tm)

P v

An Example: the Game Semantics of a Second-Order Function

S w o w O

v O YO

({0, 1}

(1,7)
(1, 81)

(m,?)

(m, Sm)

- {0,1}7)

(1,7)

(1,t1)

(m,?)

(m, tm)

—

{0, 1}~

?

» The Player P must react

to every move of the
opponent O.

It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

The length of the
interaction is in principle
arbitrary.

Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

Cryptographic Game Semantics — |

Games Parametrized by a Security Parameter i
> Games: G = (Og, Pa, (L%)nen) Example (Strings of length < p(n))
> Strategies: f: N x (Lg N0Odd) — Pg S[p] = ({7}, {0, 1}*, (L})nen) with

Lgpy = {67 U{?s | [s| < p(n)}

Cryptographic Game Semantics — I

Games Parametrized by a Security Parameter
> Games: G = (Og, Pe, (L%)nen) Example (Strings of length < p(n))

> Strategies: f: N x (L% NOdd) — Pg S[p] = ({7}, {0, 1}*, (L})nen) with
Ly ={& 73 U{?s | [s| <p(n)}

Restricted Classes of Games and Strategies
Polytime Computable Strategies:

There exists a polynomial time Turing
machine which on input (1%, s) returns

Polynomially Bounded Games:
G such that there exists a polynomial P
with positive coefficients, such that:
Vn € N,Vs € Lg, |s| < P(n). f(n,s).

Cryptographic Game Semantics — [

Games Parametrized by a Security Parameter

> Games: G = (Og, Pg, (L%)nen) Example (Strings of length < p(n))
> Strategies: f: N x (Lg NOdd) — Pg S[p] = ({7}, {0, 1}*, (L})nen) with
Ly = {67 U{?s | [s| < p(n)}

Restricted Classes of Games and Strategies

Polynomially Bounded Games: Polytime Computable Strategies:
G such that there exists a polynomial P There exists a polynomial time Turing
with positive coefficients, such that: machine which on input (1%, s) returns
Vn € N,Vs € Lg, |s| < P(n). f(n,s).

Constructing Games

From the games G, H, we can construct more complex games such as:
» G — H, modeling functions from G to H;
> (G ® H, modeling pairs of elements from G and H, respectively;
» |,G modeling ¢(n) copies of G.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

» How about randomization?

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

» How about randomization?

Randomized Strategies—A First Try
» Games: G = (Og, P, (LE)nen)

» Randomized Strategies: polytime computable
functions f : N x (L% N Odd) — DISTR(Pg)

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

» How about randomization?

Randomized Strategies—A First Try NO!

» Games: G = (Og, P, (LE)nen) Randomized polytime

» Randomized Strategies: polytime computable strategies are not stable by

functions f : N x (L% N Odd) — DISTR(Pg) composition.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

» How about randomization?

Randomized Strategies—A First Try NO!

» Games: G = (Og, P, (LE)nen) Randomized polytime

» Randomized Strategies: polytime computable strategies are not stable by

functions f: N x (L% N Odd) — DISTR(Pg) composition.
4

Randomized Games—Second Try

» Games: G = (Og,Pg, (Lg)nEN)

» Randomized Strategies on G are taken as
deterministic strategies on |,B — G (where B is
the boolean game).

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)

If f, g polytime strategies on G — H and H — K (respectively), one can form go f as a
polytime strategy on G — K. Composition is associative.

» How about randomization?

Randomized Strategies—A First Try NO!
» Games: G = (Og, P, (LE)nen) Randomized polytime
» Randomized Strategies: polytime computable strateglfas. are not stable by
functions f : N x (L% N Odd) — DISTR(Pg) COTIpEETGEL,)
4
Randomized Games—Second Try YES!
> Games: G = (Og, Pg; (Lg)nen) The whole sequence of
» Randomized Strategies on G are taken as probabilistic choices is
deterministic strategies on |,B — G (where B is available, and strategies
the boolean game). compose.
v v

An Example: a Simple Randomized Strategy

An Example: a Simple Randomized Strategy

An Example: a Simple Randomized Strategy

o)

P (1,7

0o (1,b)

P (L,7)
o) (1,7)

P (1,0™)

o) (1,0)

An Example: a Simple Randomized Strategy

o)

P (1,7

0o (1,b)

P (L,7)
o) (1,7)

P (1,0™)

o) (1,0)
P (2,7)
o) (2,7)

P (2, (b))

o) (2,d)

An Example: a Simple Randomized Strategy

o) ?
P (1,7

0o (1,b)

P (L,7)

o) (1,7)

P (1,0™)

o) (1,0)

P (2,7)

o) (2,7)

P (2, (b))

o) (2,d)

P —cAd

An Example: Pseudorandomness

An family of “objects” {X,, }nen is said to be pseudorandom iff X, is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial
time (in n).

An Example: Pseudorandomness

An family of “objects” { X, }nen is said to be pseudorandom iff X, is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial

time (in n).)

Then:
> If X,, = {0,1}"(™) then the distinguisher is just a polytime TM.
» If X,, = {0,1}™ — {0,1}", then the distinguisher is a polytime (in n) OTM.

> If X, = ({0,1}™ — {0,1}!) — {0,1}", then there was no clear answer to this question.
But now we have a model!

v

An Example: Pseudorandomness

An family of “objects” { X, }nen is said to be pseudorandom iff X, is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial
time (in n).

Then:
> If X, = {0,1}"(") then the distinguisher is just a polytime TM.
> If X, ={0,1}" — {0,1}", then the distinguisher is a polytime (in n) OTM.
> If X, = ({0,1}" — {0,1}') — {0,1}", then there was no clear answer to this question.

But now we have a model!)

Higher-Order Pseudorandomness?

» Intuitively, it is impossible to build deterministic polytime objects of type
{0,1}" — ({0,1}™ — {0,1}") — {0,1}"

which “look random”: a truly random function “query” its argument exponentially
many times, namely on all the strings in {0, 1}".

» How to turn this into a formal argument in the just introduced model?

Second-Order Pseudorandomness

» We are now in a position to define what second-order pseudorandomness could look
like.

Second-Order Pseudorandomness

» We are now in a position to define what second-order pseudorandomness could look
like.

» The type of a (candidate) pseudorandom function could be
SOF, 4.r = S[n] —!,(S[g] — B) — S[r],
while the type of an adversary for it, being randomized, should be

ADV i pgr ='sB =l (1,(S[g] = B) — S[r]) - B

Second-Order Pseudorandomness

» We are now in a position to define what second-order pseudorandomness could look
like.

» The type of a (candidate) pseudorandom function could be
SOFp,q.r = S[n] —!,(S[g] — B) — S[r],
while the type of an adversary for it, being randomized, should be
ADV s 1p,qr =!sB —oli(1,(Slg] — B) — S[r]) - B
We say that a polytime strategy f for the game SOF,, , . is pseoudorandom iff for any
polytime strategy A for the game ADV; , 4, it holds that
|Pr[Ao (f orand) |} 1] — Pr[Ao (rand) | 1]| < e(n)

where ¢ is a negligible function.

The Two Results

Theorem

For every § there is a strategy colls on the game
i (!p(S[n] — B) — S[r]) — (S[n] — B) @ (S[n] — B)

such that for every deterministic strategy f, the composition (!5 f) o colls, with probability
at least 1 — 9, computes two functions g, h such that:

1. H(g,h) > 0.1;
2. fog and f o h behave the same;

3. For every function e on which colls queries its argument, it holds that H(e,g) > 0.1
and H(e,h) > 0.1.

The Two Results

Theorem

For every § there is a strategy colls on the game
i (!p(S[n] — B) — S[r]) — (S[n] — B) @ (S[n] — B)

such that for every deterministic strategy f, the composition (!5 f) o colls, with probability
at least 1 — 9, computes two functions g, h such that:

1. H(g,h) > 0.1;
2. fog and f o h behave the same;

3. For every function e on which colls queries its argument, it holds that H(e,g) > 0.1
and H(e,h) > 0.1.

Theorem

If there is a one-way function, then there is a pseudorandom strategy for
S[n] —!n(S[logy(n)] — B) — S[r].

Conclusion

Main Contributions
» A novel game-theoretic framework for higher-order, randomized, complexity bounded
computation.
» Impossibility of building second-order functions having the expected type, (i.e. taking
in input characteristic functions on {0, 1}") and having good cryptographic properties.
» FEaxistence, under standard cryptographic assumptions, of secord-order pseudrandom
functions taking in input characteristic functions on {0, 1}10%2(”).

Conclusion

Main Contributions

» A novel game-theoretic framework for higher-order, randomized, complexity bounded
computation.

» Impossibility of building second-order functions having the expected type, (i.e. taking
in input characteristic functions on {0, 1}") and having good cryptographic properties.

» FEaxistence, under standard cryptographic assumptions, of secord-order pseudrandom
functions taking in input characteristic functions on {0, 1}1°g2(”).

Future Work
» How about encryption?

» Is it that our game-semantic framework can be seen as a methodology for proving
higher-order cryptographic reduction arguments to be not only complexity
preserving, but even correct?

Thank You!

(Questions?

Example
F:{0,1}™ — {0,1}7(™ a one-way function.

Example
F:{0,1}* = {0,1}7(a one-way function.

g1 —S[X] f S[X]— S[P] @ S[X]
7= gt e— 7
2%\//2% L7 S F(x)*
1T - - T [
-
(

zt

Example
F:{0,1}* = {0,1}7(a one-way function.

g:1—S[X] f S[X]— S[P] © S[X]
7= gt e— 7
%m/f:%" L7 __ S F@)*t
r1x2- - - x
4
o
(
+

xT

fog:1— S[P]@S[X]
Pt

P/ P2
vl ous -
Ll

T 7T
A NG
ot af o

Example
F:{0,1}* = {0,1}7(a one-way function.

g:1—S[X] f S[X]— S[P] © S[X]
7= gt e— 7
%/j:%n L7 __ S F@)*t
1T - -
I
-
(
n

xT

fog:1— S[P]@S[X]
Pt

P/ P2
vl ous -

G
1 T 7T 9
NOGZ N\
ot af -

Compute f o g(?y;)
boils down to
finding an element
in F~1(y;).

Example
F:{0,1}* = {0,1}7(a one-way function.

g9 :1 —oS[X] f S[X]— S[P] © S[X] fog:1— S[P]@S[X]
r e P/ P2
/] m L7,/>F(96)Jr vl ous -
e / Lol
7 LT T,
(G2\, a3
s xt af
Compute f o g(?y;) » f. g are polytime computable
boils down to functions on bounded games.

finding an element
in F~1(y;).

Example
F:{0,1}* = {0,1}7(a one-way function.

g9 :1 —oS[X] f S[X]— S[P] © S[X] fog:1— S[P]@S[X]
r e P/ P2
/] m L7,/>F(96)Jr vl ous -
e / Lol
7 LT T,
(G2\, a3
s xt af
Compute f o g(?y;) » f. g are polytime computable
boils down to functions on bounded games.

finding an element
in F~1(y;).

Example
F:{0,1}* = {0,1}7(a one-way function.

g9 :1 —oS[X] f S[X]— S[P] © S[X] fog:1— S[P]@S[X]
. AR AT
) 1 2
2%//2% L,,aF(x)Jr yif— y;—
T1T2- - - T [I I
7 L LT,
(G2\, a3
at zf a
Compute f o g(?y;) » f. g are polytime computable
boils down to functions on bounded games.
finding an element » fog:1— S[P] @ S[X] is not

in F~1(y;). polytime computable.

