On Higher-Order Cryptography

Ugo Dal Lago (Based on joint work with Boaz Barak and Raphaëlle Crubillé)

Meeting of the IFIP Working Group 2.2 September 20th, 2021

• Security of Ψ in the computational model:

```
(\forall A \in \mathbf{PPT}.\neg(A \text{ } \mathbf{Breaks } \Phi)) \Longrightarrow (\forall B \in \mathbf{PPT}.\neg(B \text{ } \mathbf{Breaks } \Psi))
```

• Security of Ψ in the computational model:

 $(\forall A \in \mathbf{PPT}.\neg(A \text{ } \mathbf{Breaks } \Phi)) \Longrightarrow (\forall B \in \mathbf{PPT}.\neg(B \text{ } \mathbf{Breaks } \Psi))$

▶ By contraposition, this amounts to prove that:

```
(\exists B \in \mathbf{PPT}.(B \ \mathbf{Breaks} \ \Psi)) \Longrightarrow (\exists A \in \mathbf{PPT}.(A \ \mathbf{Breaks} \ \Phi))
```

• Security of Ψ in the computational model:

 $(\forall A \in \mathbf{PPT}. \neg (A \text{ } \mathbf{Breaks } \Phi)) \Longrightarrow (\forall B \in \mathbf{PPT}. \neg (B \text{ } \mathbf{Breaks } \Psi))$

▶ By contraposition, this amounts to prove that:

 $(\exists B \in \mathbf{PPT}.(B \ \mathbf{Breaks} \ \Psi)) \Longrightarrow (\exists A \in \mathbf{PPT}.(A \ \mathbf{Breaks} \ \Phi))$

▶ Proofs are usually *constructive*:

 $\texttt{Reduction}: \mathit{TypeOf}(B) \rightarrow \mathit{TypeOf}(A)$

• Security of Ψ in the computational model:

 $(\forall A \in \mathbf{PPT}.\neg(A \text{ } \mathbf{Breaks } \Phi)) \Longrightarrow (\forall B \in \mathbf{PPT}.\neg(B \text{ } \mathbf{Breaks } \Psi))$

▶ By contraposition, this amounts to prove that:

 $(\exists B \in \mathbf{PPT}.(B \ \mathbf{Breaks} \ \Psi)) \Longrightarrow (\exists A \in \mathbf{PPT}.(A \ \mathbf{Breaks} \ \Phi))$

▶ Proofs are usually *constructive*:

 $\texttt{Reduction}: \, TypeOf(B) \rightarrow \, TypeOf(A)$

▶ Reduction is a *complexity preserving* higher-order function.

DEFINITION 3.25 Let $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \le \operatorname{\mathsf{negl}}(n),$$

where the first probability is taken over uniform choice of $k \in \{0, 1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \text{Func}_n$ and the randomness of D.

DEFINITION 3.25 Let $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$\left|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]\right| \le \operatorname{\mathsf{negl}}(n), \qquad D \text{ Breaks } F$$

where the first probability is taken over uniform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \text{Func}_n$ and the randomness of D.

DEFINITION 3.25 Let $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$\left|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]\right| \le \operatorname{negl}(n), \qquad D \text{ Breaks } F$$

where the first probability is taken over inform choice of $k \in \{0, 1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \operatorname{Func}_n$ and the random D accesses f as an oracle

An Example from [KatzLindell2008]

The first parameter is fixed to be $k \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, rengen preserving, in the first parameter i a pseudorandom function if for all probabilistic polynon al-time distinguishers D, there is a negligible function negl such that:

$$\left|\Pr[D^{F'_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]\right| \le \mathsf{negl}(n), \qquad D \text{ Breaks } F$$

where the first probability is taken over inform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \operatorname{Func}_n$ and the random D accesses f as an oracle

The Cryptographer's Notion of Efficiency [KatzLindell2008]

We equate "efficient adversaries" with randomized (i.e., probabilistic) algorithms running in time *polynomial in n*. This means there is some polynomial p such that the adversary runs for time at most p(n) when the security parameter is n. We also require—for real-world efficiency—that honest parties run in polynomial time, although we stress that the adversary may be much more powerful (and run much longer than) the honest parties.

▶ Programs, e.g. when hashed, are usually treated as strings:

$$\mathbf{P} \in \{0,1\}^* \longrightarrow H_s \qquad \mathbf{R} \in \{0,1\}^*$$

▶ Programs, e.g. when hashed, are usually treated as strings:

• If two programs P and Q are perfectly equivalent but distinct, they are thus seen as distinct strings, and mapped to distinct hashes:

▶ Programs, e.g. when hashed, are usually treated as strings:

• If two programs P and Q are perfectly equivalent but distinct, they are thus seen as distinct strings, and mapped to distinct hashes:

▶ The same argument holds when H_s is replaced by Enc_k (i.e. encryption) or Mac_k (i.e. authentication).

▶ Programs, e.g. when hashed, are usually treated as strings:

• If two programs P and Q are perfectly equivalent but distinct, they are thus seen as distinct strings, and mapped to distinct hashes:

- ▶ The same argument holds when H_s is replaced by Enc_k (i.e. encryption) or Mac_k (i.e. authentication).
- Would it be possible to define any cryptographic primitive in such a way as to make it *equivalence preserving*?
 - ▶ That somehow amounts to turning H_s into a program of type $(\{0,1\}^* \to \{0,1\}^*) \to \{0,1\}^*$ (rather than $\{0,1\}^* \to \{0,1\}^*$).
 - E.g., hashing distinct but equivalent programs can be done *only once*.

This Talk

- 1. A **New Model** of Complexity-Bounded Higher-Order Computation Based on *Game Semantics*.
 - Second-order adversaries are everywhere in cryptography.
 - Defining the concept of an *efficient adversary* at order higher-than- 2 instead requires some care.
 - Game semantics [AJM00,HO00] offers a way to reduce higher-order computation to first-order computation.

This Talk

- 1. A **New Model** of Complexity-Bounded Higher-Order Computation Based on *Game Semantics*.
 - Second-order adversaries are everywhere in cryptography.
 - Defining the concept of an *efficient adversary* at order higher-than- 2 instead requires some care.
 - ▶ Game semantics [AJM00,HO00] offers a way to reduce higher-order computation to first-order computation.
- 2. Some *Negative* and *Positive* Results on the Feasibility of **Higher-Order Cryptography**.
 - Results about influential variables in decision trees imply that second-order pseudorandomness and collision-resistance are not attainable.
 - Some positive results can be obtained, but there is an high price to pay.

 $(\{0,1\}^* \quad \rightarrow \quad \{0,1\}^*) \quad \rightarrow \quad \{0,1\}^*$

$$(\{0,1\}^* \to \{0,1\}^*) \to \{0,1\}^*$$

O ?

 $(\{0,1\}^* \to \{0,1\}^*) \to \{0,1\}^*$? Ο (1, ?)Ρ Ο (1,?) $(1, s_1)$ Ρ $(1, t_1)$ Ο ÷ Р (m, ?)(m, ?)0 Р (m, s_m) (m, t_m) Ο

 $(\{0,1\}^* \to \{0,1\}^*) \to \{0,1\}^*$? Ο (1, ?)Ρ Ο (1,?) $(1, s_1)$ Ρ $(1, t_1)$ Ο ÷ Р (m, ?)(m, ?)0 Р (m, s_m) (m, t_m) Ο Р v

	$(\{0,1\}^*$	\rightarrow	$\{0,1\}^*)$	\rightarrow	$\{0,1\}^*$
Ο					?
Р			(1,?)		
0	(1,?)				
Р	$(1, s_1)$				
0			$(1, t_1)$		
		÷			
Р			(m,?)		
0	(m,?)				
Р	(m, s_m)				
0			(m, t_m)		
Р					v

- The Player P must react to every move of the opponent O.
- It can do so based on the whole history, without any further constraint. This defines a strategy.
- The *length* of the interaction is in principle arbitrary.
- Multiple moves can be played at the same site, but they somehow need to be distinguished.

Games Parametrized by a Security Parameter

- Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$
- ▶ Strategies: $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to P_G$

Games Parametrized by a Security Parameter

• Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$

► Strategies:
$$f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to P_G$$

Example (Strings of length $\leq p(n)$) $\mathbf{S}[p] = (\{?\}, \{0, 1\}^*, (L^n_{\mathsf{S}[n]})_{n \in \mathbb{N}})$ with

$$L^{n}_{\mathbf{S}[p]} = \{\epsilon, ?\} \cup \{?s \mid |s| \le p(n)\}$$

Games Parametrized by a Security Parameter

- Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$
- ▶ Strategies: $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to P_G$

Example (Strings of length $\leq p(n)$) $\mathbf{S}[p] = (\{?\}, \{0, 1\}^{\star}, (L^{n}_{\mathbf{S}[p]})_{n \in \mathbb{N}})$ with $L^{n}_{\mathbf{S}[p]} = \{\epsilon, ?\} \cup \{?s \mid |s| \leq p(n)\}$

Restricted Classes of Games and Strategies

Polynomially Bounded Games:

G such that there exists a polynomial Pwith positive coefficients, such that: $\forall n \in \mathbb{N}, \forall s \in L_G^n, |s| \leq P(n).$ Polytime Computable Strategies: There exists a polynomial time Turing machine which on input $(1^n, s)$ returns f(n, s).

Games Parametrized by a Security Parameter

- Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$
- ▶ Strategies: $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to P_G$

Example (Strings of length $\leq p(n)$) $\mathbf{S}[p] = (\{?\}, \{0, 1\}^{\star}, (L^{n}_{\mathbf{S}[p]})_{n \in \mathbb{N}})$ with $L^{n}_{\mathbf{S}[p]} = \{\epsilon, ?\} \cup \{?s \mid |s| \leq p(n)\}$

Restricted Classes of Games and Strategies

Polynomially Bounded Games: G such that there exists a polynomial P with positive coefficients, such that: $\forall n \in \mathbb{N}, \forall s \in L_G^n, |s| \leq P(n).$ Polytime Computable Strategies: There exists a polynomial time Turing machine which on input $(1^n, s)$ returns f(n, s).

Constructing Games

From the games G, H, we can construct more complex games such as:

- $G \multimap H$, modeling functions from G to H;
- ▶ $G \otimes H$, modeling pairs of elements from G and H, respectively;
- $!_q G$ modeling q(n) copies of G.

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a **polytime** strategy on $G \multimap K$. Composition is associative.

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a **polytime** strategy on $G \multimap K$. Composition is associative.

▶ How about randomization?

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a **polytime** strategy on $G \multimap K$. Composition is associative.

▶ How about randomization?

Randomized Strategies—A First Try

• Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$

▶ Randomized Strategies: polytime computable functions $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to \mathsf{DISTR}(P_G)$

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a **polytime** strategy on $G \multimap K$. Composition is associative.

► How about randomization?

Randomized Strategies—A First Try

• Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$

▶ Randomized Strategies: polytime computable functions $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to \mathsf{DISTR}(P_G)$

NO!

Randomized *polytime* strategies *are not* stable by composition.

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a **polytime** strategy on $G \multimap K$. Composition is associative.

► How about randomization?

Randomized Strategies—A First Try

• Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$

▶ Randomized Strategies: polytime computable functions $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to \mathsf{DISTR}(P_G)$

Randomized Games—Second Try

• Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$

▶ Randomized Strategies on G are taken as deterministic strategies on $!_p \mathbf{B} \multimap G$ (where \mathbf{B} is the boolean game).

NO!

Randomized *polytime* strategies *are not* stable by composition.

Proposition (Compositing Strategies)

If f, g polytime strategies on $G \multimap H$ and $H \multimap K$ (respectively), one can form $g \circ f$ as a **polytime** strategy on $G \multimap K$. Composition is associative.

► How about randomization?

Randomized Strategies—A First Try

• Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$

▶ Randomized Strategies: polytime computable functions $f : \mathbb{N} \times (L_G^n \cap \text{Odd}) \to \mathsf{DISTR}(P_G)$

Randomized Games—Second Try

- Games: $G = (O_G, P_G, (L_G^n)_{n \in \mathbb{N}})$
- ▶ Randomized Strategies on G are taken as deterministic strategies on $!_p \mathbf{B} \multimap G$ (where \mathbf{B} is the boolean game).

NO!

Randomized *polytime* strategies *are not* stable by composition.

YES!

The whole sequence of probabilistic choices is available, and strategies compose. An Example: a Simple Randomized Strategy

$$!_1\mathbf{B} \multimap !_2(\mathbf{S}[n] \multimap \mathbf{B}) \multimap \mathbf{B}$$

$$\begin{array}{cccc} !_1 \mathbf{B} & \multimap & !_2(\mathbf{S}[n] & \multimap & \mathbf{B}) & \multimap & \mathbf{B} \\ \mathbf{O} & & & & ? \\ \mathbf{P} & (1,?) & & & \\ \mathbf{O} & (1,b) & & & \end{array}$$

	$!_1\mathbf{B}$	_0	$!_2(\mathbf{S}[n]$	—0	$\mathbf{B})$	—o	в
0							?
Р	(1, ?)						
0	(1,b)						
Р					(1, ?)		
0			(1,?)				
Р			$(1, b^n)$				
Ο					(1, c)		
Р					(2, ?)		
Ο			(2,?)				
Р			$(2, (\neg b)^n)$				
0					(2, d)		

	$!_1\mathbf{B}$	<u> </u>	$!_2(\mathbf{S}[n]$	—0	$\mathbf{B})$	0	В
0							?
Р	(1, ?)						
0	(1,b)						
Р					(1, ?)		
0			(1,?)				
Р			$(1, b^n)$				
0					(1, c)		
Р					(2, ?)		
0			(2,?)				
Р			$(2, (\neg b)^n)$				
0					(2, d)		
Р							$\neg c \wedge d$

An Example: Pseudorandomness

An family of "objects" $\{X_n\}_{n \in \mathbb{N}}$ is said to be **pseudorandom** iff X_n is indistinguishable from a genuinely random object of the same type, by distinguishers working in polynomial time (in n).

An Example: Pseudorandomness

An family of "objects" $\{X_n\}_{n \in \mathbb{N}}$ is said to be **pseudorandom** iff X_n is indistinguishable from a genuinely random object of the same type, by distinguishers working in polynomial time (in n).

Then:

- If $X_n = \{0, 1\}^{r(n)}$, then the distinguisher is just a polytime TM.
- If $X_n = \{0, 1\}^n \to \{0, 1\}^n$, then the distinguisher is a polytime (in n) OTM.
- ▶ If $X_n = (\{0, 1\}^n \to \{0, 1\}^1) \to \{0, 1\}^n$, then there was no clear answer to this question. But now we have a model!

An Example: Pseudorandomness

An family of "objects" $\{X_n\}_{n \in \mathbb{N}}$ is said to be **pseudorandom** iff X_n is indistinguishable from a genuinely random object of the same type, by distinguishers working in polynomial time (in n).

Then:

- If $X_n = \{0, 1\}^{r(n)}$, then the distinguisher is just a polytime TM.
- If $X_n = \{0, 1\}^n \to \{0, 1\}^n$, then the distinguisher is a polytime (in n) OTM.
- ▶ If $X_n = (\{0, 1\}^n \to \{0, 1\}^1) \to \{0, 1\}^n$, then there was no clear answer to this question. But now we have a model!

Higher-Order Pseudorandomness?

▶ Intuitively, it is **impossible** to build deterministic polytime objects of type

$$\{0,1\}^n \to (\{0,1\}^n \to \{0,1\}^1) \to \{0,1\}^n$$

which "look random": a truly random function "query" its argument exponentially many times, namely on all the strings in $\{0, 1\}^n$.

▶ How to turn this into a formal argument in the just introduced model?

Second-Order Pseudorandomness

• We are now in a position to **define** what second-order pseudorandomness could look like.

Second-Order Pseudorandomness

- ▶ We are now in a position to **define** what second-order pseudorandomness could look like.
- ▶ The *type* of a (candidate) **pseudorandom function** could be

$$SOF_{p,q,r} = \mathbf{S}[n] \multimap !_p(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r],$$

while the type of an **adversary** for it, being randomized, should be

$$ADV_{s,t,p,q,r} = !_{s}\mathbf{B} \multimap !_{t}(!_{p}(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r]) \multimap \mathbf{B}$$

Second-Order Pseudorandomness

- ▶ We are now in a position to **define** what second-order pseudorandomness could look like.
- ▶ The *type* of a (candidate) **pseudorandom function** could be

$$SOF_{p,q,r} = \mathbf{S}[n] \multimap !_p(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r],$$

while the type of an **adversary** for it, being randomized, should be

$$ADV_{s,t,p,q,r} = !_{s} \mathbf{B} \multimap !_{t} (!_{p}(\mathbf{S}[q] \multimap \mathbf{B}) \multimap \mathbf{S}[r]) \multimap \mathbf{B}$$

We say that a polytime strategy f for the game $SOF_{p,q,r}$ is **pseoudorandom** iff for any polytime strategy \mathcal{A} for the game $ADV_{s,t,p,q,r}$ it holds that

$$|Pr[\mathcal{A} \circ (f \circ rand) \Downarrow 1] - Pr[\mathcal{A} \circ (rand) \Downarrow 1]| \le \varepsilon(n)$$

where ε is a negligible function.

The Two Results

Theorem

For every δ there is a strategy $coll_{\delta}$ on the game

$$!_t(!_p(\mathbf{S}[n]\multimap \mathbf{B})\multimap \mathbf{S}[r])\multimap (\mathbf{S}[n]\multimap \mathbf{B})\otimes (\mathbf{S}[n]\multimap \mathbf{B})$$

such that for every deterministic strategy f, the composition $(!_s f) \circ coll_{\delta}$, with probability at least $1 - \delta$, computes two functions g, h such that:

- 1. $H(g,h) \ge 0.1;$
- 2. $f \circ g$ and $f \circ h$ behave the same;
- 3. For every function e on which $coll_{\delta}$ queries its argument, it holds that $H(e,g) \ge 0.1$ and $H(e,h) \ge 0.1$.

The Two Results

Theorem

For every δ there is a strategy $coll_{\delta}$ on the game

$$!_t(!_p(\mathbf{S}[n]\multimap \mathbf{B})\multimap \mathbf{S}[r])\multimap (\mathbf{S}[n]\multimap \mathbf{B})\otimes (\mathbf{S}[n]\multimap \mathbf{B})$$

such that for every deterministic strategy f, the composition $(!_s f) \circ coll_{\delta}$, with probability at least $1 - \delta$, computes two functions g, h such that:

- 1. $H(g,h) \ge 0.1;$
- 2. $f \circ g$ and $f \circ h$ behave the same;
- 3. For every function e on which $coll_{\delta}$ queries its argument, it holds that $H(e,g) \ge 0.1$ and $H(e,h) \ge 0.1$.

Theorem

If there is a one-way function, then there is a pseudorandom strategy for $\mathbf{S}[n] \multimap !_n (\mathbf{S}[\log_2(n)] \multimap \mathbf{B}) \multimap \mathbf{S}[r].$

Conclusion

Main Contributions

- A novel *game-theoretic framework* for higher-order, randomized, complexity bounded computation.
- Impossibility of building second-order functions having the expected type, (i.e. taking in input characteristic functions on $\{0,1\}^n$) and having good cryptographic properties.
- Existence, under standard cryptographic assumptions, of second-order pseudrandom functions taking in input characteristic functions on $\{0, 1\}^{\log_2(n)}$.

Conclusion

Main Contributions

- ▶ A novel *game-theoretic framework* for higher-order, randomized, complexity bounded computation.
- Impossibility of building second-order functions having the expected type, (i.e. taking in input characteristic functions on $\{0,1\}^n$) and having good cryptographic properties.
- Existence, under standard cryptographic assumptions, of second-order pseudrandom functions taking in input characteristic functions on $\{0, 1\}^{\log_2(n)}$.

Future Work

▶ How about **encryption**?

► Is it that our game-semantic framework can be seen as a methodology for proving higher-order cryptographic **reduction arguments** to be not only *complexity preserving*, but even *correct*?

Thank You!

Questions?

Example $F: \{0,1\}^n \to \{0,1\}^{P(n)} \text{ a one-way function}.$

$F: \{0,1\}^n \to \{0,1\}^{P(n)}$	a one-way function.
$g: 1 \multimap \mathbf{S}[X]$	$f: \mathbf{S}[X] \to \mathbf{S}[P] \oslash \mathbf{S}[X]$
?-	?+ ← ?-
$\frac{\frac{1}{2^n}}{x_1 x_2 \cdots}$	$ \underbrace{\downarrow}_{x^{-}} \longrightarrow F(x)^{+} $
$x_1 x_2 \cdots$	л Ц
	?-
	Ĺ
	x^+

$F: \{0,1\}^n \to \{0,1\}^F$	$P^{(n)}$ a one-way function.	
$g:1\multimap \mathbf{S}[X]$	$f : \mathbf{S}[X] \to \mathbf{S}[P] \oslash \mathbf{S}[X]$	$f \circ g :_{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$
$\begin{array}{c}?^-\\\frac{1}{2^n}\swarrow\frac{1}{2^n}\\x_1x_2\ldots\end{array}$	$\begin{array}{c} ?^+ & \longleftarrow ?^- \\ \downarrow \\ x^- & \longrightarrow F(x)^+ \\ & \downarrow \\ ?^- \\ \downarrow \\ & \uparrow \\ x^+ \end{array}$	$\begin{array}{c} ?^- \\ p_1 \swarrow \downarrow p_2 \\ y_1^+ y_2^+ \cdots \\ \downarrow \downarrow \\ q_1^+ \swarrow q_2^- ?^- ?^- \\ q_1^1 \swarrow q_2^2 \swarrow q_2^+ \searrow q_2^2 \\ x_1^+ \cdots \end{array}$

$F: \{0,1\}^n \to \{0,1\}^h$	$P^{(n)}$ a one-way function.	
$g: 1 \multimap \mathbf{S}[X]$	$f: \mathbf{S}[X] \to \mathbf{S}[P] \oslash \mathbf{S}[X]$	$f \circ g :_{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$
$\frac{?}{\frac{1}{2^n}} \sqrt[]{\frac{1}{2^n}} \\ x_1 x_2 \cdots$	$\begin{array}{c} ?^+ \longleftarrow ?^- \\ \downarrow \\ x^- \longrightarrow F(x)^+ \\ \downarrow \\ ?^- \end{array}$	$\begin{array}{c} ?^- \ p_1 \swarrow \downarrow p_2 \ y_1^+ \ y_2^+ \ \cdots \ \downarrow \ y_2^- \ z_2^- \ z_2^- \end{array}$
	$\overset{\cdot}{\overset{\cdot}{\zeta}}_{x^+}$	$q_1^1 \sqrt{q_2^2} \sqrt{q_2^2} \qquad \searrow q_2^2 \ x_1^+ \qquad \qquad$

Compute $f \circ g(?y_i)$ boils down to finding an element in $F^{-1}(y_i)$.

$F: \{0,1\}^n \to \{0,1\}^n$	P(n) a one-way function.	
$g: 1 \multimap \mathbf{S}[X]$	$f: \mathbf{S}[X] \to \mathbf{S}[P] \oslash \mathbf{S}[X]$	$f \circ g :_{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$
$\frac{\frac{1}{2^n}}{x_1 x_2 \cdots} \sqrt[2^-]{\frac{1}{2^n}}$	$\begin{array}{c} ?^+ & \longleftarrow ?^- \\ \downarrow \\ x^- & \longrightarrow F(x)^+ \\ & \downarrow \\ ?^- \\ \downarrow \\ & \downarrow \end{array}$	$\begin{array}{c} ?^{-} \\ p_{1}\swarrow\downarrow p_{2} \\ y_{1}^{+} y_{2}^{+} \cdots \\ \downarrow \downarrow \\ q_{1}^{+} q_{2}^{-} q_{2}^{-} \\ \downarrow q_{2}^{2} \end{array} \downarrow q_{2}^{2} \end{array}$
	x^+	x_1^+ x_2^+ \cdots

Compute $f \circ g(?y_i)$ boils down to finding an element in $F^{-1}(y_i)$. f, g are polytime computable functions on bounded games.

$F: \{0,1\}^n \to \{0,1\}^n$	P(n) a one-way function.	
$g: 1 \multimap \mathbf{S}[X]$	$f: \mathbf{S}[X] \to \mathbf{S}[P] \oslash \mathbf{S}[X]$	$f \circ g :_{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$
$\frac{\frac{1}{2^n}}{x_1 x_2 \cdots} \sqrt[2^-]{\frac{1}{2^n}}$	$\begin{array}{c} ?^+ & \longleftarrow ?^- \\ \downarrow \\ x^- & \longrightarrow F(x)^+ \\ & \downarrow \\ ?^- \\ \downarrow \\ & \downarrow \end{array}$	$\begin{array}{c} ?^{-} \\ p_{1}\swarrow\downarrow p_{2} \\ y_{1}^{+} y_{2}^{+} \cdots \\ \downarrow \downarrow \\ q_{1}^{+} q_{2}^{-} q_{2}^{-} \\ \downarrow q_{2}^{2} \end{array} \downarrow q_{2}^{2} \end{array}$
	x^+	x_1^+ x_2^+ \cdots

Compute $f \circ g(?y_i)$ boils down to finding an element in $F^{-1}(y_i)$. f, g are polytime computable functions on bounded games.

$F: \{0,1\}^n \to \{$	$\{0,1\}^{P(n)}$ a one-way function.	
$g:1\multimap\mathbf{S}[X]$	$f : \mathbf{S}[X] \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$	$f \circ g : 1 \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$
$\frac{?^{-}}{\frac{1}{2^{n}}} \bigvee \frac{1}{2^{n}} \frac{1}{x_{1}} x_{2} \cdots$	$\begin{array}{c} ?^+ \longleftarrow ?^- \\ \downarrow \\ x^- \longrightarrow F(x)^+ \\ \downarrow \\ ?^- \\ \downarrow \\ x^+ \end{array}$	$\begin{array}{c} ?^{-} \\ p_{1}\swarrow \downarrow p_{2} \\ y_{1}^{+} y_{2}^{+} \cdots \\ \downarrow & \downarrow \\ q_{1}^{+} q_{2}^{2} q_{1}^{2} \\ x_{1}^{+} \end{array} \downarrow q_{2}^{2} q_{2}^{2} \\ x_{2}^{+} \cdots$

Compute $f \circ g(?y_i)$ boils down to finding an element in $F^{-1}(y_i)$.

- f, g are polytime computable functions on bounded games.
- $f \circ g : \mathbf{1} \multimap \mathbf{S}[P] \oslash \mathbf{S}[X]$ is not polytime computable.