
On Higher-Order Cryptography

Ugo Dal Lago
(Based on joint work with Boaz Barak and Raphaëlle Crubillé)

Meeting of the IFIP Working Group 2.2
September 20th, 2021

Cryptographic Reductions and Higher-Order Computation

I Security of Ψ in the computational model:

(∀A ∈ PPT.¬(A Breaks Φ)) =⇒ (∀B ∈ PPT.¬(B Breaks Ψ))

I By contraposition, this amounts to prove that:

(∃B ∈ PPT.(B Breaks Ψ)) =⇒ (∃A ∈ PPT.(A Breaks Φ))

I Proofs are usually constructive:

BA
...

...

Reduction : TypeOf (B)→ TypeOf (A)

I Reduction is a complexity preserving higher-order function.

Cryptographic Reductions and Higher-Order Computation

I Security of Ψ in the computational model:

(∀A ∈ PPT.¬(A Breaks Φ)) =⇒ (∀B ∈ PPT.¬(B Breaks Ψ))

I By contraposition, this amounts to prove that:

(∃B ∈ PPT.(B Breaks Ψ)) =⇒ (∃A ∈ PPT.(A Breaks Φ))

I Proofs are usually constructive:

BA
...

...

Reduction : TypeOf (B)→ TypeOf (A)

I Reduction is a complexity preserving higher-order function.

Cryptographic Reductions and Higher-Order Computation

I Security of Ψ in the computational model:

(∀A ∈ PPT.¬(A Breaks Φ)) =⇒ (∀B ∈ PPT.¬(B Breaks Ψ))

I By contraposition, this amounts to prove that:

(∃B ∈ PPT.(B Breaks Ψ)) =⇒ (∃A ∈ PPT.(A Breaks Φ))

I Proofs are usually constructive:

BA
...

...

Reduction : TypeOf (B)→ TypeOf (A)

I Reduction is a complexity preserving higher-order function.

Cryptographic Reductions and Higher-Order Computation

I Security of Ψ in the computational model:

(∀A ∈ PPT.¬(A Breaks Φ)) =⇒ (∀B ∈ PPT.¬(B Breaks Ψ))

I By contraposition, this amounts to prove that:

(∃B ∈ PPT.(B Breaks Ψ)) =⇒ (∃A ∈ PPT.(A Breaks Φ))

I Proofs are usually constructive:

BA
...

...

Reduction : TypeOf (B)→ TypeOf (A)

I Reduction is a complexity preserving higher-order function.

An Example from [KatzLindell2008]

D Breaks F

D accesses f as an oracle

The first parameter is fixed to be k

An Example from [KatzLindell2008]

D Breaks F

D accesses f as an oracle

The first parameter is fixed to be k

An Example from [KatzLindell2008]

D Breaks F

D accesses f as an oracle

The first parameter is fixed to be k

An Example from [KatzLindell2008]

D Breaks F

D accesses f as an oracle

The first parameter is fixed to be k

The Cryptographer’s Notion of Efficiency [KatzLindell2008]

Equivalence-Preserving Cryptography?

I Programs, e.g. when hashed, are usually treated as strings:

HsP ∈ {0, 1}∗ R ∈ {0, 1}∗

I If two programs P and Q are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:

HsP1 ∈ {0, 1}∗ R1 ∈ {0, 1}∗

HsP2 ∈ {0, 1}∗ R2 ∈ {0, 1}∗
P1 ≡ P2 R1 6= R2P1 6= P2

I The same argument holds when Hs is replaced by Enck (i.e. encryption) or Mack (i.e.
authentication).

I Would it be possible to define any cryptographic primitive in such a way as to make it
equivalence preserving?
I That somehow amounts to turning Hs into a program of type

({0, 1}∗ → {0, 1}∗) → {0, 1}∗ (rather than {0, 1}∗ → {0, 1}∗).
I E.g., hashing distinct but equivalent programs can be done only once.

Equivalence-Preserving Cryptography?

I Programs, e.g. when hashed, are usually treated as strings:

HsP ∈ {0, 1}∗ R ∈ {0, 1}∗

I If two programs P and Q are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:

HsP1 ∈ {0, 1}∗ R1 ∈ {0, 1}∗

HsP2 ∈ {0, 1}∗ R2 ∈ {0, 1}∗
P1 ≡ P2 R1 6= R2P1 6= P2

I The same argument holds when Hs is replaced by Enck (i.e. encryption) or Mack (i.e.
authentication).

I Would it be possible to define any cryptographic primitive in such a way as to make it
equivalence preserving?
I That somehow amounts to turning Hs into a program of type

({0, 1}∗ → {0, 1}∗) → {0, 1}∗ (rather than {0, 1}∗ → {0, 1}∗).
I E.g., hashing distinct but equivalent programs can be done only once.

Equivalence-Preserving Cryptography?

I Programs, e.g. when hashed, are usually treated as strings:

HsP ∈ {0, 1}∗ R ∈ {0, 1}∗

I If two programs P and Q are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:

HsP1 ∈ {0, 1}∗ R1 ∈ {0, 1}∗

HsP2 ∈ {0, 1}∗ R2 ∈ {0, 1}∗
P1 ≡ P2 R1 6= R2P1 6= P2

I The same argument holds when Hs is replaced by Enck (i.e. encryption) or Mack (i.e.
authentication).

I Would it be possible to define any cryptographic primitive in such a way as to make it
equivalence preserving?
I That somehow amounts to turning Hs into a program of type

({0, 1}∗ → {0, 1}∗) → {0, 1}∗ (rather than {0, 1}∗ → {0, 1}∗).
I E.g., hashing distinct but equivalent programs can be done only once.

Equivalence-Preserving Cryptography?

I Programs, e.g. when hashed, are usually treated as strings:

HsP ∈ {0, 1}∗ R ∈ {0, 1}∗

I If two programs P and Q are perfectly equivalent but distinct, they are thus seen as
distinct strings, and mapped to distinct hashes:

HsP1 ∈ {0, 1}∗ R1 ∈ {0, 1}∗

HsP2 ∈ {0, 1}∗ R2 ∈ {0, 1}∗
P1 ≡ P2 R1 6= R2P1 6= P2

I The same argument holds when Hs is replaced by Enck (i.e. encryption) or Mack (i.e.
authentication).

I Would it be possible to define any cryptographic primitive in such a way as to make it
equivalence preserving?
I That somehow amounts to turning Hs into a program of type

({0, 1}∗ → {0, 1}∗) → {0, 1}∗ (rather than {0, 1}∗ → {0, 1}∗).
I E.g., hashing distinct but equivalent programs can be done only once.

This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game
Semantics.
I Second-order adversaries are everywhere in cryptography.
I Defining the concept of an efficient adversary at order higher-than- 2 instead requires

some care.
I Game semantics [AJM00,HO00] offers a way to reduce higher-order computation to

first-order computation.

2. Some Negative and Positive Results on the Feasibility of Higher-Order
Cryptography.
I Results about influential variables in decision trees imply that second-order

pseudorandomness and collision-resistance are not attainable.
I Some positive results can be obtained, but there is an high price to pay.

This Talk

1. A New Model of Complexity-Bounded Higher-Order Computation Based on Game
Semantics.
I Second-order adversaries are everywhere in cryptography.
I Defining the concept of an efficient adversary at order higher-than- 2 instead requires

some care.
I Game semantics [AJM00,HO00] offers a way to reduce higher-order computation to

first-order computation.
2. Some Negative and Positive Results on the Feasibility of Higher-Order

Cryptography.
I Results about influential variables in decision trees imply that second-order

pseudorandomness and collision-resistance are not attainable.
I Some positive results can be obtained, but there is an high price to pay.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

An Example: the Game Semantics of a Second-Order Function

({0, 1}∗ → {0, 1}∗) → {0, 1}∗

O ?

P (1, ?)

O (1, ?)

P (1, s1)

O (1, t1)

...
P (m, ?)

O (m, ?)

P (m, sm)

O (m, tm)

P v

I The Player P must react
to every move of the
opponent O.

I It can do so based on the
whole history, without any
further constraint. This
defines a strategy.

I The length of the
interaction is in principle
arbitrary.

I Multiple moves can be
played at the same site,
but they somehow need to
be distinguished.

Cryptographic Game Semantics — I

Games Parametrized by a Security Parameter
I Games: G = (OG, PG, (L

n
G)n∈N)

I Strategies: f : N× (LnG ∩Odd)→ PG

Example (Strings of length ≤ p(n))
S[p] = ({?}, {0, 1}?, (LnS[p])n∈N) with
LnS[p] = {ε, ?} ∪ {?s | |s| ≤ p(n)}

Restricted Classes of Games and Strategies
Polynomially Bounded Games:
G such that there exists a polynomial P
with positive coefficients, such that:
∀n ∈ N,∀s ∈ LnG, |s| ≤ P (n).

Polytime Computable Strategies:
There exists a polynomial time Turing
machine which on input (1n, s) returns
f(n, s).

Constructing Games
From the games G,H, we can construct more complex games such as:
I G(H, modeling functions from G to H;
I G⊗H, modeling pairs of elements from G and H, respectively;
I !qG modeling q(n) copies of G.

Cryptographic Game Semantics — I

Games Parametrized by a Security Parameter
I Games: G = (OG, PG, (L

n
G)n∈N)

I Strategies: f : N× (LnG ∩Odd)→ PG

Example (Strings of length ≤ p(n))
S[p] = ({?}, {0, 1}?, (LnS[p])n∈N) with
LnS[p] = {ε, ?} ∪ {?s | |s| ≤ p(n)}

Restricted Classes of Games and Strategies
Polynomially Bounded Games:
G such that there exists a polynomial P
with positive coefficients, such that:
∀n ∈ N,∀s ∈ LnG, |s| ≤ P (n).

Polytime Computable Strategies:
There exists a polynomial time Turing
machine which on input (1n, s) returns
f(n, s).

Constructing Games
From the games G,H, we can construct more complex games such as:
I G(H, modeling functions from G to H;
I G⊗H, modeling pairs of elements from G and H, respectively;
I !qG modeling q(n) copies of G.

Cryptographic Game Semantics — I

Games Parametrized by a Security Parameter
I Games: G = (OG, PG, (L

n
G)n∈N)

I Strategies: f : N× (LnG ∩Odd)→ PG

Example (Strings of length ≤ p(n))
S[p] = ({?}, {0, 1}?, (LnS[p])n∈N) with
LnS[p] = {ε, ?} ∪ {?s | |s| ≤ p(n)}

Restricted Classes of Games and Strategies
Polynomially Bounded Games:
G such that there exists a polynomial P
with positive coefficients, such that:
∀n ∈ N,∀s ∈ LnG, |s| ≤ P (n).

Polytime Computable Strategies:
There exists a polynomial time Turing
machine which on input (1n, s) returns
f(n, s).

Constructing Games
From the games G,H, we can construct more complex games such as:
I G(H, modeling functions from G to H;
I G⊗H, modeling pairs of elements from G and H, respectively;
I !qG modeling q(n) copies of G.

Cryptographic Game Semantics — I

Games Parametrized by a Security Parameter
I Games: G = (OG, PG, (L

n
G)n∈N)

I Strategies: f : N× (LnG ∩Odd)→ PG

Example (Strings of length ≤ p(n))
S[p] = ({?}, {0, 1}?, (LnS[p])n∈N) with
LnS[p] = {ε, ?} ∪ {?s | |s| ≤ p(n)}

Restricted Classes of Games and Strategies
Polynomially Bounded Games:
G such that there exists a polynomial P
with positive coefficients, such that:
∀n ∈ N,∀s ∈ LnG, |s| ≤ P (n).

Polytime Computable Strategies:
There exists a polynomial time Turing
machine which on input (1n, s) returns
f(n, s).

Constructing Games
From the games G,H, we can construct more complex games such as:
I G(H, modeling functions from G to H;
I G⊗H, modeling pairs of elements from G and H, respectively;
I !qG modeling q(n) copies of G.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)
If f, g polytime strategies on G(H and H (K (respectively), one can form g ◦ f as a
polytime strategy on G(K. Composition is associative.

I How about randomization?

Randomized Strategies—A First Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies: polytime computable
functions f : N× (LnG ∩Odd)→ DISTR(PG)

NO!
Randomized polytime
strategies are not stable by
composition.

Randomized Games—Second Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies on G are taken as
deterministic strategies on !pB (G (where B is
the boolean game).

YES!
The whole sequence of
probabilistic choices is
available, and strategies
compose.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)
If f, g polytime strategies on G(H and H (K (respectively), one can form g ◦ f as a
polytime strategy on G(K. Composition is associative.

I How about randomization?

Randomized Strategies—A First Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies: polytime computable
functions f : N× (LnG ∩Odd)→ DISTR(PG)

NO!
Randomized polytime
strategies are not stable by
composition.

Randomized Games—Second Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies on G are taken as
deterministic strategies on !pB (G (where B is
the boolean game).

YES!
The whole sequence of
probabilistic choices is
available, and strategies
compose.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)
If f, g polytime strategies on G(H and H (K (respectively), one can form g ◦ f as a
polytime strategy on G(K. Composition is associative.

I How about randomization?

Randomized Strategies—A First Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies: polytime computable
functions f : N× (LnG ∩Odd)→ DISTR(PG)

NO!
Randomized polytime
strategies are not stable by
composition.

Randomized Games—Second Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies on G are taken as
deterministic strategies on !pB (G (where B is
the boolean game).

YES!
The whole sequence of
probabilistic choices is
available, and strategies
compose.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)
If f, g polytime strategies on G(H and H (K (respectively), one can form g ◦ f as a
polytime strategy on G(K. Composition is associative.

I How about randomization?

Randomized Strategies—A First Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies: polytime computable
functions f : N× (LnG ∩Odd)→ DISTR(PG)

NO!
Randomized polytime
strategies are not stable by
composition.

Randomized Games—Second Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies on G are taken as
deterministic strategies on !pB (G (where B is
the boolean game).

YES!
The whole sequence of
probabilistic choices is
available, and strategies
compose.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)
If f, g polytime strategies on G(H and H (K (respectively), one can form g ◦ f as a
polytime strategy on G(K. Composition is associative.

I How about randomization?

Randomized Strategies—A First Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies: polytime computable
functions f : N× (LnG ∩Odd)→ DISTR(PG)

NO!
Randomized polytime
strategies are not stable by
composition.

Randomized Games—Second Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies on G are taken as
deterministic strategies on !pB (G (where B is
the boolean game).

YES!
The whole sequence of
probabilistic choices is
available, and strategies
compose.

Cryptographic Game Semantics — II

Proposition (Compositing Strategies)
If f, g polytime strategies on G(H and H (K (respectively), one can form g ◦ f as a
polytime strategy on G(K. Composition is associative.

I How about randomization?

Randomized Strategies—A First Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies: polytime computable
functions f : N× (LnG ∩Odd)→ DISTR(PG)

NO!
Randomized polytime
strategies are not stable by
composition.

Randomized Games—Second Try
I Games: G = (OG, PG, (L

n
G)n∈N)

I Randomized Strategies on G are taken as
deterministic strategies on !pB (G (where B is
the boolean game).

YES!
The whole sequence of
probabilistic choices is
available, and strategies
compose.

An Example: a Simple Randomized Strategy

!1B (!2(S[n] (B) (B

O ?

P (1, ?)

O (1, b)

P (1, ?)

O (1, ?)

P (1, bn)

O (1, c)

P (2, ?)

O (2, ?)

P (2, (¬b)n)

O (2, d)

P ¬c ∧ d

An Example: a Simple Randomized Strategy

!1B (!2(S[n] (B) (B

O ?

P (1, ?)

O (1, b)

P (1, ?)

O (1, ?)

P (1, bn)

O (1, c)

P (2, ?)

O (2, ?)

P (2, (¬b)n)

O (2, d)

P ¬c ∧ d

An Example: a Simple Randomized Strategy

!1B (!2(S[n] (B) (B

O ?

P (1, ?)

O (1, b)

P (1, ?)

O (1, ?)

P (1, bn)

O (1, c)

P (2, ?)

O (2, ?)

P (2, (¬b)n)

O (2, d)

P ¬c ∧ d

An Example: a Simple Randomized Strategy

!1B (!2(S[n] (B) (B

O ?

P (1, ?)

O (1, b)

P (1, ?)

O (1, ?)

P (1, bn)

O (1, c)

P (2, ?)

O (2, ?)

P (2, (¬b)n)

O (2, d)

P ¬c ∧ d

An Example: a Simple Randomized Strategy

!1B (!2(S[n] (B) (B

O ?

P (1, ?)

O (1, b)

P (1, ?)

O (1, ?)

P (1, bn)

O (1, c)

P (2, ?)

O (2, ?)

P (2, (¬b)n)

O (2, d)

P ¬c ∧ d

An Example: Pseudorandomness

An family of “objects” {Xn}n∈N is said to be pseudorandom iff Xn is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial
time (in n).

Then:
I If Xn = {0, 1}r(n), then the distinguisher is just a polytime TM.
I If Xn = {0, 1}n → {0, 1}n, then the distinguisher is a polytime (in n) OTM.
I If Xn = ({0, 1}n → {0, 1}1)→ {0, 1}n, then there was no clear answer to this question.

But now we have a model!

Higher-Order Pseudorandomness?
I Intuitively, it is impossible to build deterministic polytime objects of type

{0, 1}n → ({0, 1}n → {0, 1}1)→ {0, 1}n

which “look random”: a truly random function “query” its argument exponentially
many times, namely on all the strings in {0, 1}n.

I How to turn this into a formal argument in the just introduced model?

An Example: Pseudorandomness

An family of “objects” {Xn}n∈N is said to be pseudorandom iff Xn is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial
time (in n).

Then:
I If Xn = {0, 1}r(n), then the distinguisher is just a polytime TM.
I If Xn = {0, 1}n → {0, 1}n, then the distinguisher is a polytime (in n) OTM.
I If Xn = ({0, 1}n → {0, 1}1)→ {0, 1}n, then there was no clear answer to this question.

But now we have a model!

Higher-Order Pseudorandomness?
I Intuitively, it is impossible to build deterministic polytime objects of type

{0, 1}n → ({0, 1}n → {0, 1}1)→ {0, 1}n

which “look random”: a truly random function “query” its argument exponentially
many times, namely on all the strings in {0, 1}n.

I How to turn this into a formal argument in the just introduced model?

An Example: Pseudorandomness

An family of “objects” {Xn}n∈N is said to be pseudorandom iff Xn is indistinguishable
from a genuinely random object of the same type, by distinguishers working in polynomial
time (in n).

Then:
I If Xn = {0, 1}r(n), then the distinguisher is just a polytime TM.
I If Xn = {0, 1}n → {0, 1}n, then the distinguisher is a polytime (in n) OTM.
I If Xn = ({0, 1}n → {0, 1}1)→ {0, 1}n, then there was no clear answer to this question.

But now we have a model!

Higher-Order Pseudorandomness?
I Intuitively, it is impossible to build deterministic polytime objects of type

{0, 1}n → ({0, 1}n → {0, 1}1)→ {0, 1}n

which “look random”: a truly random function “query” its argument exponentially
many times, namely on all the strings in {0, 1}n.

I How to turn this into a formal argument in the just introduced model?

Second-Order Pseudorandomness

I We are now in a position to define what second-order pseudorandomness could look
like.

I The type of a (candidate) pseudorandom function could be

SOF p,q,r = S[n] (!p(S[q] (B) (S[r],

while the type of an adversary for it, being randomized, should be

ADV s,t,p,q,r =!sB (!t(!p(S[q] (B) (S[r]) (B

We say that a polytime strategy f for the game SOF p,q,r is pseoudorandom iff for any
polytime strategy A for the game ADV s,t,p,q,r it holds that

|Pr[A ◦ (f ◦ rand) ⇓ 1]− Pr[A ◦ (rand) ⇓ 1]| ≤ ε(n)

where ε is a negligible function.

Second-Order Pseudorandomness

I We are now in a position to define what second-order pseudorandomness could look
like.

I The type of a (candidate) pseudorandom function could be

SOF p,q,r = S[n] (!p(S[q] (B) (S[r],

while the type of an adversary for it, being randomized, should be

ADV s,t,p,q,r =!sB (!t(!p(S[q] (B) (S[r]) (B

We say that a polytime strategy f for the game SOF p,q,r is pseoudorandom iff for any
polytime strategy A for the game ADV s,t,p,q,r it holds that

|Pr[A ◦ (f ◦ rand) ⇓ 1]− Pr[A ◦ (rand) ⇓ 1]| ≤ ε(n)

where ε is a negligible function.

Second-Order Pseudorandomness

I We are now in a position to define what second-order pseudorandomness could look
like.

I The type of a (candidate) pseudorandom function could be

SOF p,q,r = S[n] (!p(S[q] (B) (S[r],

while the type of an adversary for it, being randomized, should be

ADV s,t,p,q,r =!sB (!t(!p(S[q] (B) (S[r]) (B

We say that a polytime strategy f for the game SOF p,q,r is pseoudorandom iff for any
polytime strategy A for the game ADV s,t,p,q,r it holds that

|Pr[A ◦ (f ◦ rand) ⇓ 1]− Pr[A ◦ (rand) ⇓ 1]| ≤ ε(n)

where ε is a negligible function.

The Two Results

Theorem
For every δ there is a strategy collδ on the game

!t(!p(S[n] (B) (S[r]) ((S[n] (B)⊗ (S[n] (B)

such that for every deterministic strategy f , the composition (!sf) ◦ collδ, with probability
at least 1− δ, computes two functions g, h such that:
1. H(g, h) ≥ 0.1;
2. f ◦ g and f ◦ h behave the same;
3. For every function e on which collδ queries its argument, it holds that H(e, g) ≥ 0.1

and H(e, h) ≥ 0.1.

Theorem
If there is a one-way function, then there is a pseudorandom strategy for
S[n] (!n(S[log2(n)] (B) (S[r].

The Two Results

Theorem
For every δ there is a strategy collδ on the game

!t(!p(S[n] (B) (S[r]) ((S[n] (B)⊗ (S[n] (B)

such that for every deterministic strategy f , the composition (!sf) ◦ collδ, with probability
at least 1− δ, computes two functions g, h such that:
1. H(g, h) ≥ 0.1;
2. f ◦ g and f ◦ h behave the same;
3. For every function e on which collδ queries its argument, it holds that H(e, g) ≥ 0.1

and H(e, h) ≥ 0.1.

Theorem
If there is a one-way function, then there is a pseudorandom strategy for
S[n] (!n(S[log2(n)] (B) (S[r].

Conclusion

Main Contributions
I A novel game-theoretic framework for higher-order, randomized, complexity bounded

computation.
I Impossibility of building second-order functions having the expected type, (i.e. taking

in input characteristic functions on {0, 1}n) and having good cryptographic properties.
I Existence, under standard cryptographic assumptions, of secord-order pseudrandom

functions taking in input characteristic functions on {0, 1}log2(n).

Future Work
I How about encryption?
I Is it that our game-semantic framework can be seen as a methodology for proving

higher-order cryptographic reduction arguments to be not only complexity
preserving, but even correct?

Conclusion

Main Contributions
I A novel game-theoretic framework for higher-order, randomized, complexity bounded

computation.
I Impossibility of building second-order functions having the expected type, (i.e. taking

in input characteristic functions on {0, 1}n) and having good cryptographic properties.
I Existence, under standard cryptographic assumptions, of secord-order pseudrandom

functions taking in input characteristic functions on {0, 1}log2(n).

Future Work
I How about encryption?
I Is it that our game-semantic framework can be seen as a methodology for proving

higher-order cryptographic reduction arguments to be not only complexity
preserving, but even correct?

Thank You!

Questions?

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

Example
F : {0, 1}n → {0, 1}P (n) a one-way function.

g : 1 S[X](

?−

x1x2. . .

1
2n

1
2n

f :S[X] S[P]� S[X](
?−

?+

x− F (x)+

?−

x+

f ◦ g :1 S[P]� S[X](
?−

y+1 y+2
. . .

?− ?−

x+
1 x+

2
. . .

p1 p2

q11 q12q21 q22

Compute f ◦ g(?yi)
boils down to
finding an element
in F−1(yi).

I f , g are polytime computable
functions on bounded games.

I f ◦ g : 1 (S[P]� S[X] is not
polytime computable.

