WG 2.2 and semantics of
programming languages

Peter Mosses
Swansea University, UK

IFIPWG 2.2 Meeting
| 5—18 September 2014, Munich

IFIP WG 2.2 pre-history

1964: IFIP Working Conference, Baden-bei-Wien

FORMAL LANGUAGE
DESCRIPTION LANGUAGES
FOR COMPUTER PROGRAMMING

Proceedings of the
IFIP Working Conference on
Formal Language Description Languages 1966

IFIP WG 2.2 history

1962
» TC 2 — Software: Theory and Practice
1965(!)
» WG 2.2 — Formal Description of Programming Concepts
- chair: T. B. Steel, Jr.
1967
» first WG 2.2 meeting (Alghero, Italy)
1984

» (member)

WG 2.2

AIMS

» The [primary] aim of the Working Group is to explicate
programming concepts through the development,
examination and comparison of various formal models
of these concepts.

SCOPE

» The Working Group will investigate formalisms and
models which represent different approaches to formal
specification of programming concepts. |...]

wg22 labri.fr

http://wg22.labri.fr
http://wg22.labri.fr

Own contributions

early 1980s

» abstract semantic algebras
late 80s — 90s

p» action semantics
late 90s — 2000s

» modular SOS
2010s

» component-based semantics

Further IFIP WGs

WG 1.3 (member since 1994, chair 1998-2003)
» Foundations of system specification

» COFI: Common Framework Initiative for algebraic
specification and development of software

= CASL

Further IFIP WGs

WG 2.11 (member since 201 3)
» Program generation

SCOPE [https://wiki.hh.se/wg2| |/]

» The working group covers the following research areas
(and maybe others):

- programming language design, semantics and
implementation

= program synthesis

- type systems and type theory
- [...]

https://wiki.hh.se/wg211/%5D
https://wiki.hh.se/wg211/%5D

Recent WG 2.2 talks

2010 (Warsaw):
- On bisimulation and modularity
201 | (Paris):

- PLANCOMPS - Programming Language
Components and Specifications

2012 (Amsterdam):
- Component-based semantics
2013 (Lisbon):

- Editor support for formal specifications

This talk

Component-based semantics
» brief recap/overview
- motivation
- main ideas
» PLANCOMPS project
- progress report

- current and planned work

Component-based
semantics

Programming languages
2012 2013

[]
Evolution!
p Tcl/Tk85.11 Tcl/Tk 8.5.12 | Tcl/Tk 8.6.0
november 4, 2011 - july 27,2012 december 20, 2012 "
Python 3.3.0 Python 3.3.2
P> september 29, 2012 > mﬁy 15,2013 — ®
Python 2.7.5
> nay 15,2013 — »
Ada 2012 >
Java 7 update 3 Java 7 update 7 december 15,2012 Java 7 update 25
february 15,2012 P> august 30,2012 P> iune 18,2013

C#5.0

ISO/IEC C (C11) august 15,2012
december 8, 2011 —

[Eric Lévénez]

http://www.levenez.com/email.html
http://www.levenez.com/email.html

Component-based semantics

Fundamental programming
constructs (funcons) -

Translation
(reduction)

Components-off-the-shelf
(digital library)

"L T Programming L.anguagé‘“

Evolving languages

12

Reusable components

Fundamental constructs (funcons)
» correspond to programming constructs
- directly (if-true), or
- special case (apply), or
- implicit (bound-value)
» and have (when validated and released)

- fixed notation, and

- fixed behaviour, and specified/proved
once and for all!
- fixed algebraic properties

13

Component reuse

Language construct:
b exp i=exp ? exp s exp
Translation to funcons:

» expr[E;1 2 E; s E3] =
if-true(exprl E; I, exprl E; 1, exprl E3])

For languages with non-Boolean tests:

) eXPI‘[[E]_?Ez : E3]]=
if-true(not(equal(expr] E;], 0)),
expr[[Ez]], expr[[E3]])

14

Component reuse

Language construct:
p stm = if (exp) stm else stm
Translation to funcons:

» comm[1£(E;) S, else S3] =

if=-true(expr E; 1, comm[S; 1, comm([S5 1)

For languages with non-Boolean tests:

» comm[if(E1) S, else S3] =
if-true(not(equal(expr] E;], 0)),
comm[Sy 1, comm[S3 1)

destructive

change

15

Component specification

Notation

if=-true(boolean, comp(T), comp(T)) : comp(T)

Static semantics
E :boolean, X;:TI, X,:T

.f' E’X ’X :T .
if-true(E, X1, X3) specified

. . once and
Dynamic semantics for all!

if-tl’UE(true, X]_, Xz) — X]_

if-tl"UE(false, X]_, Xz) — Xz

16

PLANCOMPS project

PLANCOMPS - foundations

FOSSACS’ | 3:

» bisimilarity
congruence
format

» preservation by
disjoint extension

Modular Bisimulation Theory
for Computations and Values

Martin Churchill and Peter D. Mosses
{m.d.churchill,p.d.mosses}@swansea.ac.uk

Department of Computer Science, Swansea University, Swansea, UK

Abstract. For structural operational semantics (SOS) of process alge-
bras, various notions of bisimulation have been studied, together with
rule formats ensuring that bisimilarity is a congruence. For programming
languages, however, SOS generally involves auxiliary entities (e.g. stores)
and computed values, and the standard bisimulation and rule formats
are not directly applicable.

Here, we first introduce a notion of bisimulation based on the distinction
between computations and values, with a corresponding liberal congruence
format. We then provide metatheory for a modular variant of SOS (MSOS)
which provides a systematic treatment of auxiliary entities. This is based
on a higher order form of bisimulation, and we formulate an appropriate
congruence format. Finally, we show how algebraic laws can be proved
sound for bisimulation with reference only to the (M)SOS rules defining
the programming constructs involved in them. Such laws remain sound
for languages that involve further constructs.

18

PLANCOMPS - foundations

SLE’| 3:

» addressing
deficiency of
disambiguation
annotations in

SDF, Rascal,
Spoofax

Ali Afroozeh®, Mark van den Brand?®, Adrian Johnstone*, Elizabeth Scott?,

and Jurgen Vinju'-?

! Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands

2 INRIA Lille Nord Europe, France
{ali.afroozeh, jurgen.vinju}@cwi.nl

3 Eindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl

* Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

{a.johnstone,e.scott}@rhul.ac.uk

Abstract. In this paper we present an approach to specifying opera-
tor precedence based on declarative disambiguation constructs and an
implementation mechanism based on grammar rewriting. We identify a
problem with existing generalized context-free parsing and disambigua-
tion technology: generating a correct parser for a language such as OCaml
using declarative precedence specification is not possible without resort-
ing to some manual grammar transformation. Our approach provides a
fully declarative solution to operator precedence specification for context-
free grammars, is independent of any parsing technology, and is safe in
that it guarantees that the language of the resulting grammar will be the
same as the language of the specification grammar. We evaluate our new
approach by specifying the precedence rules from the OCaml reference
manual against the highly ambiguous reference grammar and validate
the output of our generated parser.

Safe Specification of Operator Precedence Rules

19

PLANCOMPS - foundations

ESOP’ 1 4: Deriving Pretty-Big-Step Semantics
from Small-Step Semantics

» refocusing
small-step

M SOS I Department of Computer Science, Swansea University, Swansea, UK,
cscbp@swansea.ac.uk, p.d.mosses@swansea.ac.u
ruies bp@ k, p.d Q k

Casper Bach Poulsen and Peter D. Mosses

Abstract. Big-step semantics for languages with abrupt termination
and /or divergence suffer from a serious duplication problem, addressed by
the novel ‘pretty-big-step’ style presented by Charguéraud at ESOP’13.
Such rules are less concise than corresponding small-step rules, but they
have the same advantages as big-step rules for program correctness proofs.
Here, we show how to automatically derive pretty-big-step rules directly
from small-step rules by ‘refocusing’. This gives the best of both worlds:
we only need to write the relatively concise small-step specifications,
but our reasoning can be big-step as well as small-step. The use of
strictness annotations to derive small-step congruence rules gives further
conciseness.

20

PLANCOMPS - mini case study

MODULARITY’ | 4:

» component-based semantics of Caml Light
» partially validated (by empirical testing)
» detailed introduction to the approach

» preliminary tool support

Reusable Components of Semantic Specifications

Martin Churchill Peter D. Mosses Paolo Torrini

21

PLANCOMPS - tool support

Preliminary tool chain:
» SPOOFAX
- parsing programs (SDF3, disambiguation,AST creation)
- translating ASTs to funcon terms (SDF3, Stratego-1.2)

- browsing and editing component-based specifications
(SDF3, NaBL, Stratego-1.2)

» PROLOG
- translating MSOS rules for funcons to PROLOG

- running funcon terms

22

PLANCOMPS - current, planned

Case studies:
» C# (started), Java

Improved tool support:
» generating SDF3 and Prolog from CBS
» refocusing MSOS rules

Digital library:

» historic semantics documents (Cliff Jones, Newcastle)
- ALGOL 60 in various frameworks (scan, OCR to PDF)

» browsing and searching an open-access repository

23

Conclusion

Component-based semantics
» translating programs to funcons
» specifying funcons in (I-)MSOS
PLANCOMPS project (2011-2015)
foundations
case studies

tool support

vV v vV v

digital library

24

