

Limit-Average Properties of pVASS & Optimal Strategies in Patrolling Games

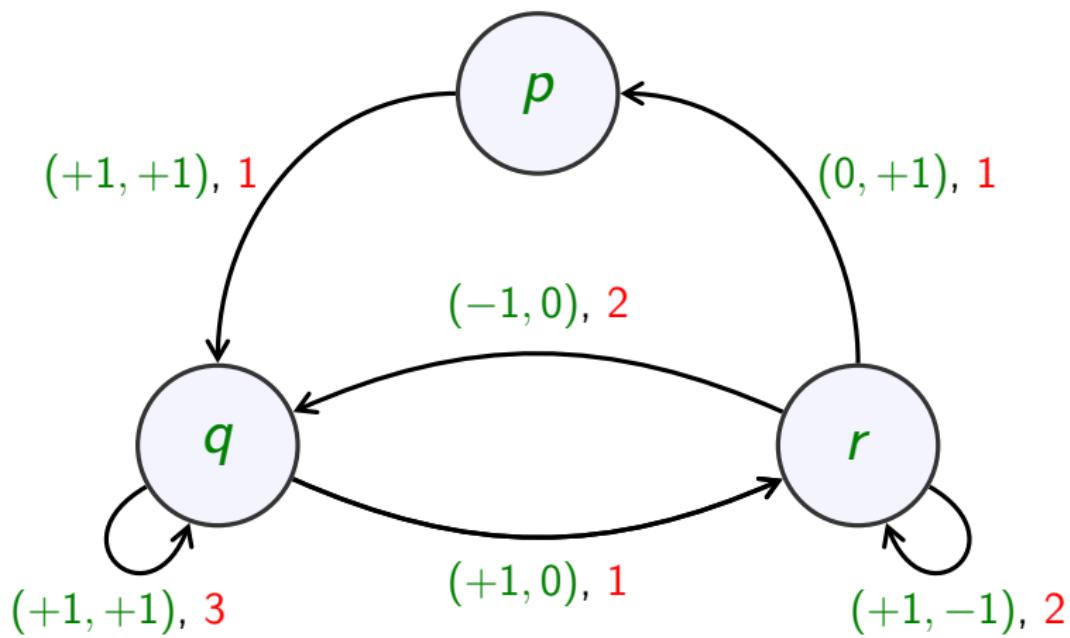
Tomáš Brázdil Stefan Kiefer Antonín Kučera
Petr Novotný Joost-Pieter Katoen

&

Tomáš Brázdil Petr Hliněný Antonín Kučera Vojtěch Řehák

IFIP WG 2.2 Meeting, Muchich 2014

Probabilistic VASS (pVASS)



Limit-Average Properties of pVASS

- A *pattern* is a tuple of the form $p(+, 0, +, 0, 0, +)$.
- Let w be a pVASS run.
- We define the vector $\mathcal{F}(w)$ of *limit pattern frequencies*:

$$\mathcal{F}(w) = \lim_{n \rightarrow \infty} \text{Freq}_n(w)$$

If this limit does not exist, we put $\mathcal{F}(w) = \perp$.

The Problems

Let $p\vec{v}$ be a configuration of a d -dimensional pVASS. Then \mathcal{F} is a random variable over the runs initiated in $p\vec{v}$.

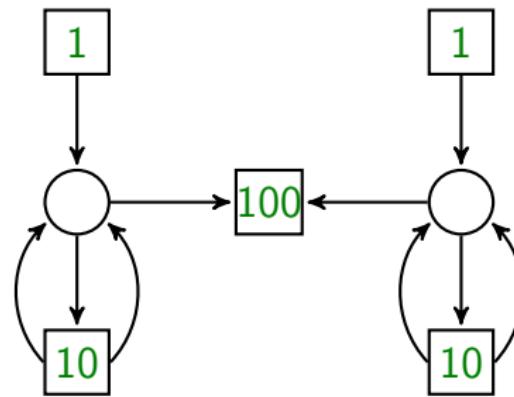
- Do we have $\mathcal{P}[\mathcal{F}=\perp] = 0$?
- Is \mathcal{F} a discrete random variable ?
- If so, is the set of admissible values finite ?
- Can we compute/approximate these values and the associated probabilities?

Theorem 1 (Florin and Natkin, 1989)

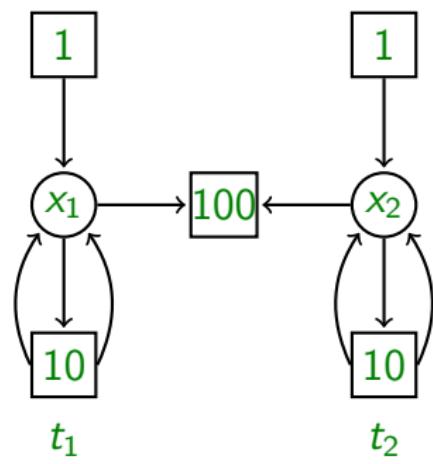
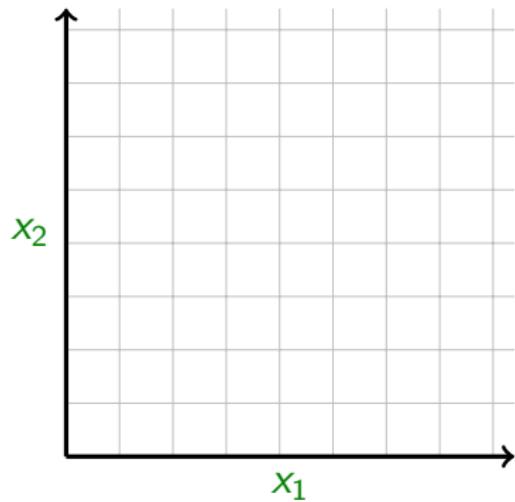
If a given SPN with an initial marking M_1 has a strongly connected graph of reachable configurations, then for every transition t there is a frequency $f \in \mathbb{R}$ such that for almost every run $M_1, t_1, M_2, t_2, M_3, \dots$ we have that

$$\lim_{n \rightarrow \infty} \frac{\#_t(t_1, \dots, t_n)}{n} = f .$$

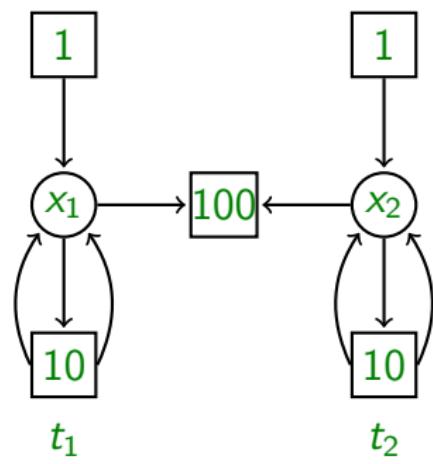
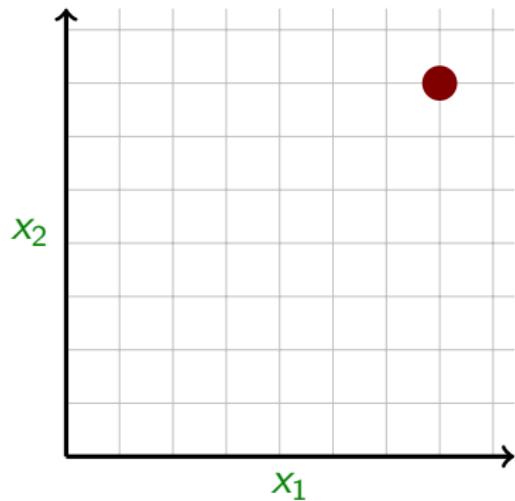
A Counterexample to Theorem 1



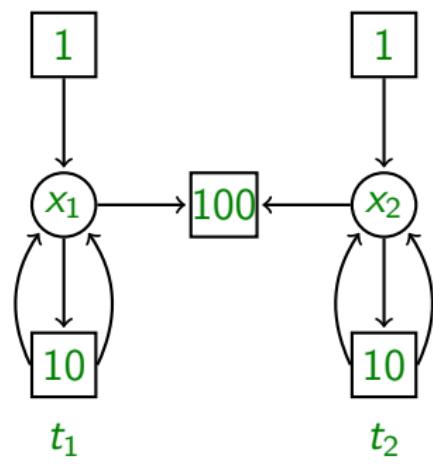
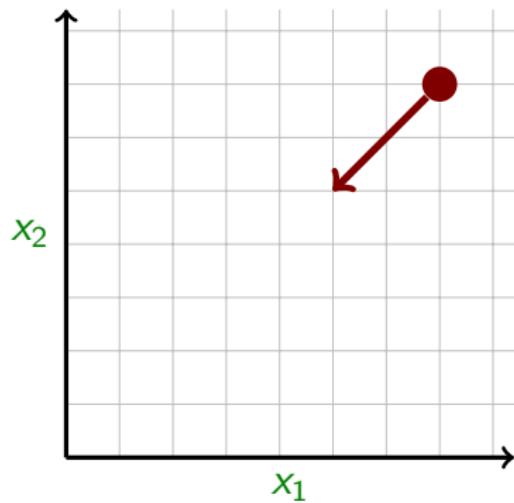
A Counterexample to Theorem 1 (cont.)



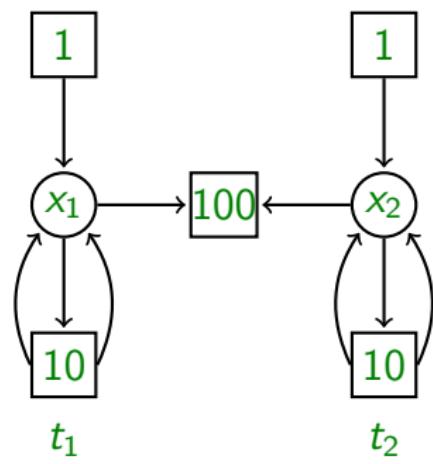
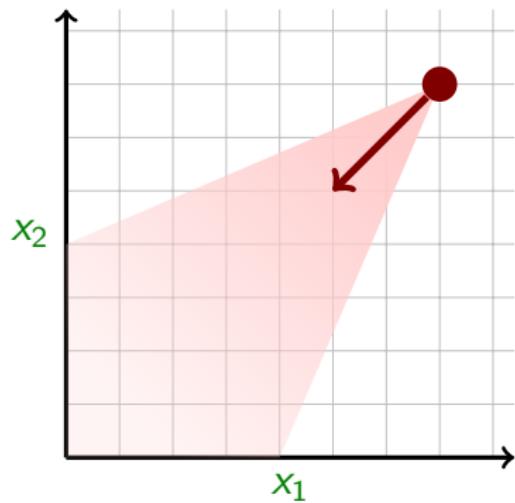
A Counterexample to Theorem 1 (cont.)



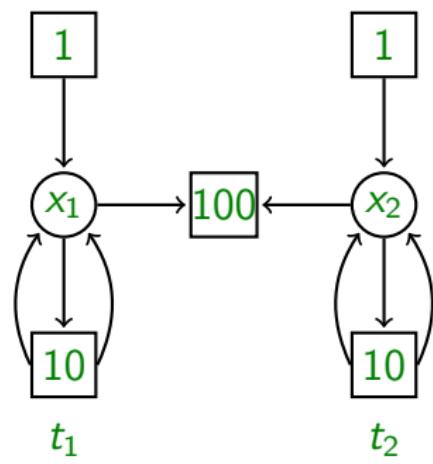
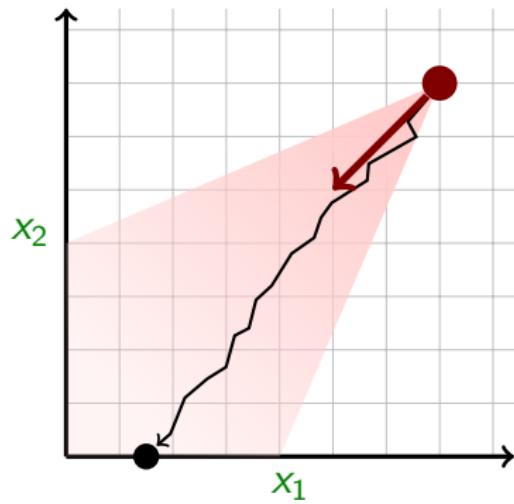
A Counterexample to Theorem 1 (cont.)



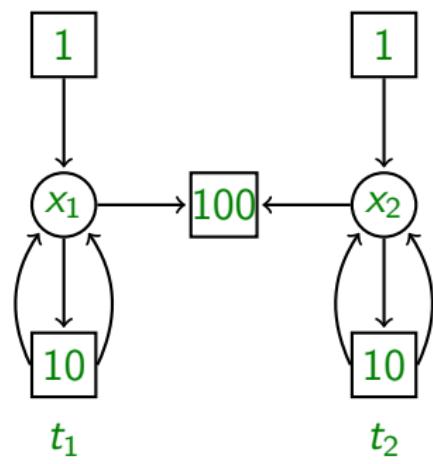
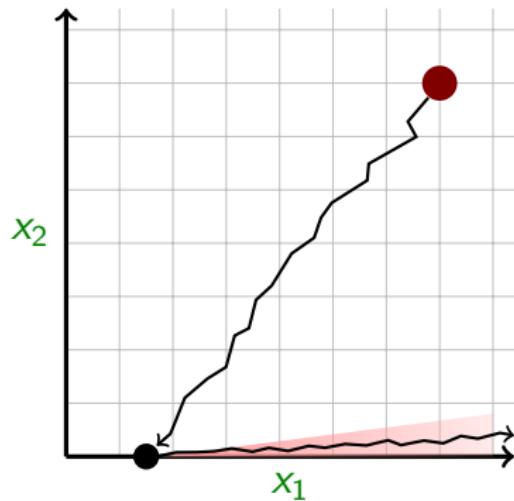
A Counterexample to Theorem 1 (cont.)



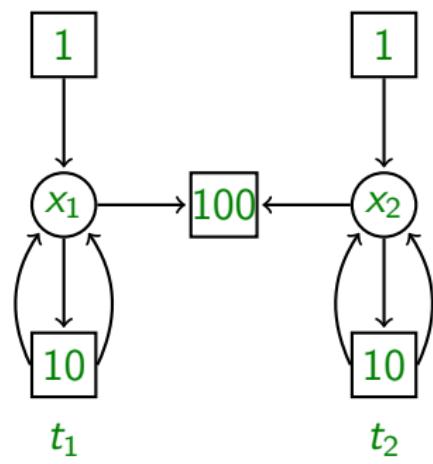
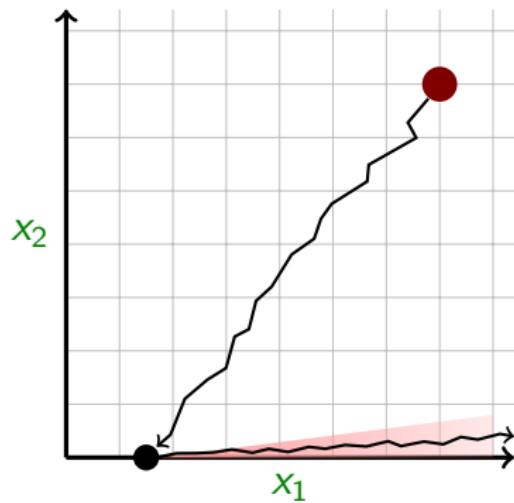
A Counterexample to Theorem 1 (cont.)



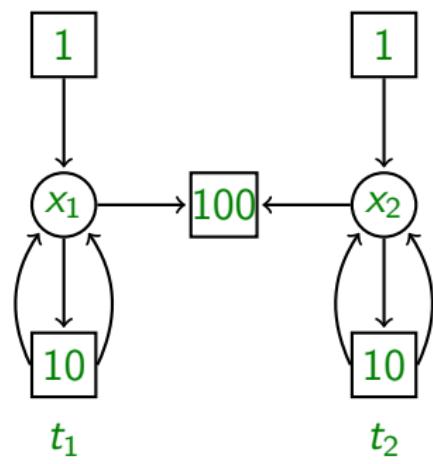
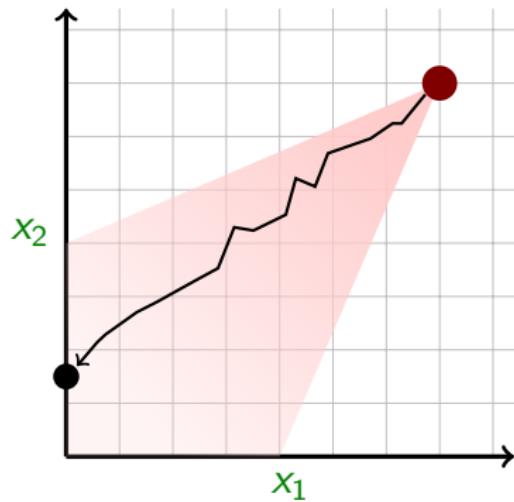
A Counterexample to Theorem 1 (cont.)



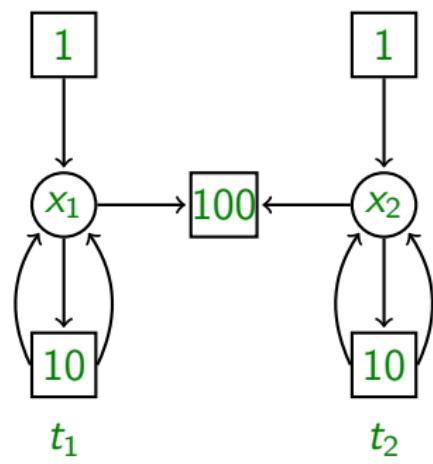
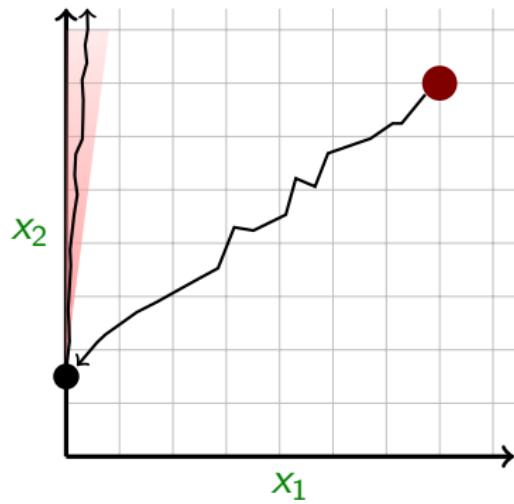
A Counterexample to Theorem 1 (cont.)



A Counterexample to Theorem 1 (cont.)



A Counterexample to Theorem 1 (cont.)



Pattern Frequency in 2-dimensional pVASS

Theorem 2

Let $p\vec{v}$ be an initial configuration in a 2-dimensional pVASS. Then

- $\mathcal{P}[\mathcal{F} = \perp] = 0$;
- \mathcal{F} is a discrete random variable;
- \mathcal{F} may take infinitely many values with a positive probability, and it is decidable whether this set is finite or infinite;
- these values and the associated probabilities can be approximated up to an arbitrarily small given $\varepsilon > 0$.

- The complexity bounds employ the complexity results about 2-dimensional (non-probabilistic) VASS.

Theorem 3

There exists a 3-dimensional pVASS \mathcal{A} and a initial configuration $p\vec{v}$ such that the graph of reachable configurations is strongly connected and $\mathcal{P}[\mathcal{F}=\perp] = 1$. Further, this property is preserved in ε -perturbations of \mathcal{A} for some $\varepsilon > 0$.

Pattern Frequency in 3-dimensional pVASS (cont.)

The idea behind the construction of \mathcal{A} :

$$\begin{array}{l} (k, 0, 0) \xrightarrow{(+, +, 0)} (0, 2k, 0) \xrightarrow{(0, +, +)} (0, 0, 4k) \xrightarrow{(+, 0, +)} \\ (8k, 0, 0) \xrightarrow{(+, +, 0)} (0, 16k, 0) \xrightarrow{(0, +, +)} (0, 0, 32k) \xrightarrow{(+, 0, +)} \\ (64k, 0, 0) \xrightarrow{(+, +, 0)} (0, 128k, 0) \xrightarrow{(0, +, +)} (0, 0, 256k) \xrightarrow{(+, 0, +)} \end{array}$$

Conclusions

- For pVASS with at least three counters, the limit-average behaviour is generally **undefined** and this feature can be **robust**.
- The remaining challenge is to identify reasonable **sufficient conditions** for eVASS with $d \geq 3$ counters under which the limit-average behaviour exists and can be effectively analyzed.

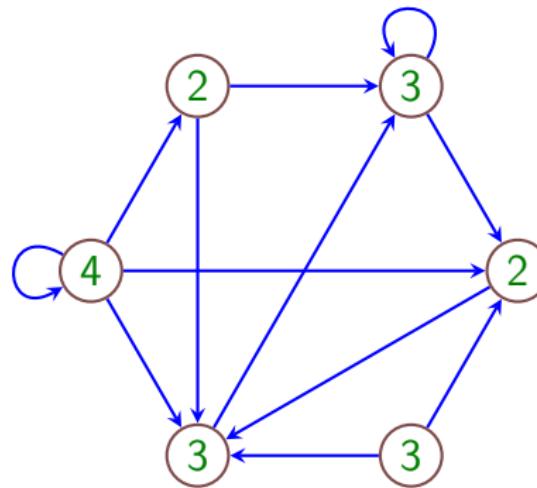
Patrolling Problem (Informally)

- One of the basic problems in operations research.
- Design the best possible strategy for a patroller who travels among a given set of vulnerable targets and aims at detecting possible intrusions.
- Many technical variants: the number of patrollers/attackers, attacker's abilities, various levels of target importance/vulnerability, etc.

Patrolling Problem (Informally)

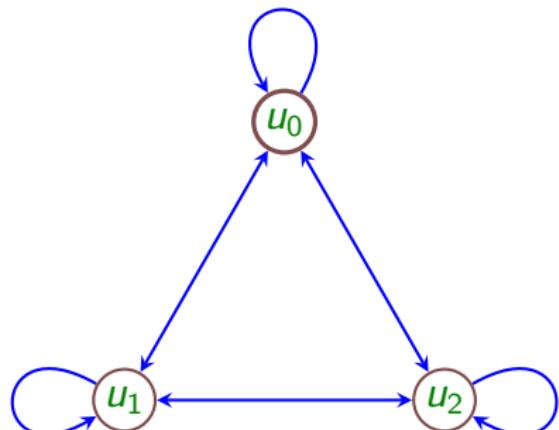
- Existing results.
 - Main task: Compute as good strategy as possible.
 - Main tools: Mathematical programming (scalability problems).
 - Some basic “game-theoretic” questions are not studied in greater detail (and sometimes answered incorrectly).
- This contribution.
 - We study adversarial patrolling games in unrestricted environment where all targets are equally important.
 - We yield a **compositional** method for computing (sub)optimal strategies (no scalability problems).

Patrolling Problem (Formally)



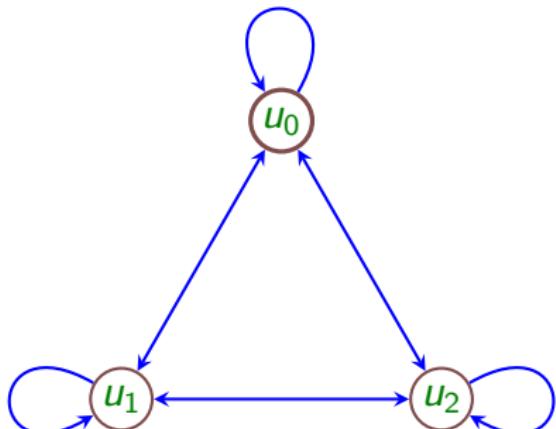
- Defender's strategy: $\sigma : V^+ \rightarrow \Delta(V)$
- Attacker's strategy: $\pi : V^+ \rightarrow V \cup \{*\}$ (must be “prefix free”)
- $\mathcal{P}^{\sigma, \pi}(DRuns)$
- $val = \sup_{\sigma} \inf_{\pi} \mathcal{P}^{\sigma, \pi}(DRuns)$

Example 1



Attack length = 2

Example 1



Attack length = 2

$$\sigma(h) = \mu_\ell, \quad \ell = |h| \bmod 2$$

$$\mu_0(u_0) = 0,$$

$$\mu_0(u_1) = \kappa,$$

$$\mu_0(u_2) = 1 - \kappa$$

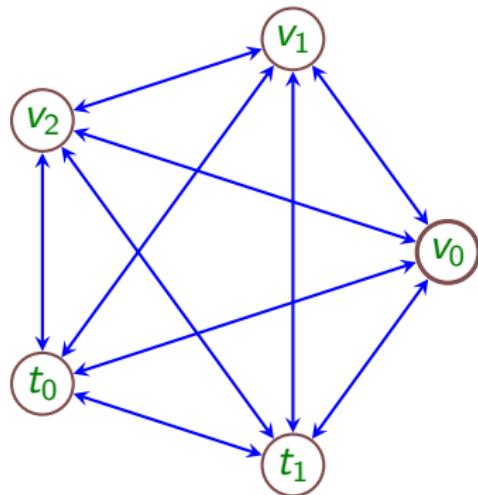
$$\mu_1(u_0) = \kappa,$$

$$\mu_1(u_1) = 0,$$

$$\mu_1(u_2) = 1 - \kappa$$

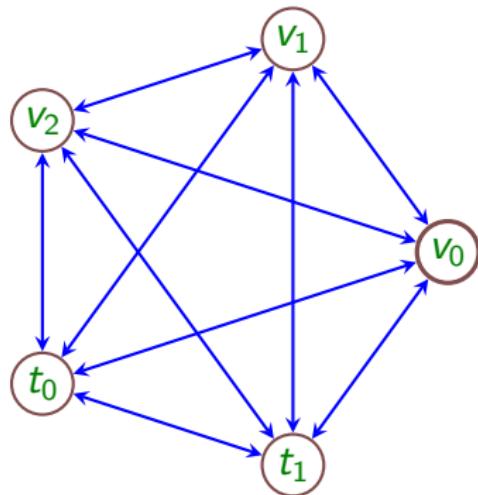
$$\kappa = (\sqrt{5} - 1)/2 = 0.618\dots$$

Example 2



$$d(t_i) = 2, d(v_i) = 3$$

Example 2



$\sigma(h)$ selects uniformly between
 $v_{|h|+1 \bmod 3}$ and $t_{|h|+1 \bmod 2}$

$$val^\sigma = 1/2$$

$$val = 1/2$$

$$d(t_i) = 2, d(v_i) = 3$$

The Existence of Optimal Strategies

- Recall $val = \sup_{\sigma} \inf_{\pi} \mathcal{P}^{\sigma, \pi}(DRuns)$
- A strategy σ^* is *optimal* if $\inf_{\pi} \mathcal{P}^{\sigma^*, \pi}(DRuns) = val$

The Existence of Optimal Strategies

- Recall $val = \sup_{\sigma} \inf_{\pi} \mathcal{P}^{\sigma, \pi}(DRuns)$
- A strategy σ^* is *optimal* if $\inf_{\pi} \mathcal{P}^{\sigma^*, \pi}(DRuns) = val$

Theorem 4

There exists an optimal strategy σ^ for the defender.*

An Upper Bound on the Value

- A *signature* of a game \mathcal{G} is a function $S : \mathbb{N} \rightarrow \mathbb{N}_0$ where $S(k)$ is the total number of nodes u where $d(u) = k$.

An Upper Bound on the Value

- A *signature* of a game \mathcal{G} is a function $S : \mathbb{N} \rightarrow \mathbb{N}_0$ where $S(k)$ is the total number of nodes u where $d(u) = k$.

Theorem 5

Let \mathcal{G} be a game with signature S . Then

$$val \leq \left(\sum_{k \in supp(S)} \frac{S(k)}{k} \right)^{-1}$$

where $supp(S)$ is the set of all $k \in \mathbb{N}$ such that $S(k) > 0$.

Compositionality in Patrolling Games (1)

- A strategy σ is *modular* if $\sigma(h)$ depends only on $|h| \bmod c$ for some $c \in \mathbb{N}$.
- Let \mathcal{G} be a game, and let $U = U_1 \uplus \dots \uplus U_n$.
- Let $\sigma_1, \dots, \sigma_n$ be modular strategies for $\mathcal{G}/U_1, \dots, \mathcal{G}/U_n$.
- Let $\mu \in \Delta\{1, \dots, n\}$. A μ -*composition* of $\sigma_1, \dots, \sigma_n$ is a modular strategy σ for \mathcal{G} defined by $\sigma(h) = \sum_{i=1}^n \mu(i) \cdot \sigma_i(h)$

Theorem 6

We have that $\text{val}^\sigma \geq \min_{i=1}^n \mu(i) \cdot \text{val}^{\sigma_i}$

Compositionality in Patrolling Games (2)

- A signature S is *well-formed* if k divides $S(k)$ for every $k \in \mathbb{N}$.

Theorem 7

Let \mathcal{G} be a patrolling game with a well-formed signature S where the graph of \mathcal{G} is complete. Then there exist an optimal modular strategy for the defender constructible in polynomial time.

Compositionality in Patrolling Games (3)

Theorem 8

For every well formed signature S there exists a graph \mathcal{H}_S computable in polynomial time such that for **every** patrolling game \mathcal{G} with signature S we have the following: the defender has a strategy achieving the upper bound $\left(\sum_{k \in \text{supp}(S)} \frac{S(k)}{k}\right)^{-1}$ iff \mathcal{H}_S is a subgraph of \mathcal{G} .

The problem whether the defender has a strategy achieving the bound in a given \mathcal{G} is **NP**-complete.

Open problems

- Classification/construction of optimal strategies for games with non-well-formed signatures.
- Extending the obtained results to more general models.
- Meta-theorems for security games.