BLISS: Bounded Lazy
Initialization with
SAT-Support

Marcelo Frias
Buenos Aires Institute of Technology

Joint work with Nicolas Rosner, Nazareno Aguirre,
Jaco Geldenhuys and Willem Visser

Funded by NPRP grant NPRP-4-1109-1-174 from the Qatar National Research Fund
IFIP WG 2.2, Munich, September 2014



Contents

Symbolic Execution

Lazy Initialization

TACO Bounds

(Refined) Bounded Lazy Initialization
BLISS

BLISS-DB



Goal

BLISS is a technique that improves the way

in which SPF analyzes code over heap-
allocated data structures.

checker that uses symbolic states.



Symbolic Execution

public*int int int
int output = 0;

1f (1 <= ] && 1 <= k)
output = 1; -

else
TR B Y ) AR
output = k;
else
output = 7J;

f i0, J =j0, l—kO oruut%)ut =0, true)

§| i0, j=j0, k=kO, output=0,

r'ri&fl?%’g g s

\IU’]\) 120\’—]
iI0>k0) && (i0<=j0 || kO<=;

(i0>j0

return output;

}



Symbolic Execution and
Dynamically Allocated Structures

® Khurshid, Pasareanu and Visser proposed
Lazy Initialization [TACASO3].

® An object attribute is initialized just when
its value is accessed. Up to that moment,
the attribute value is kept symbolic.



Lazy Initialization (L)

class Node {

- t
int elem; ‘ NO ﬂ»@

Node next; /

\requires Acyclic next
NO ———null NO
Node sortFirstTwo() { C " E

S 4

t.next = this;

return t; <«

} NO b—next IJI next i
return this; .*°

next NO nextI N1 next N2 next E -3




Lazy Initialization

® Does not generate isomorphic heaps.

® Constraints must be adapted so that they
can be evaluated on partially symbolic
structures.



Consider a Red-Black
Tree with up to 5 nodes




Bounded Lazy
Initialization (BLI)

® TACO: Translation of Annotated COde
(ISSTA2010,TSE2013)

® Use TACO bounds to reduce the number

of options whenever a symbolic node is
concretized.



TACO bounds

® Given a java field f,a TACO bound is a
minimal relation Uf such that in each valid
structure, f is contained in Uf.

® Automatically computed from a class
Invariant.

® Reusable across methods in a class, and
across tools.



TACO bounds (RBTree, 4 nodes)

NO —»null, NI NO — null, N1, N2
NI —»null, N3 NI —null, N3
N2 —null, N3 N2 — null, N3
N3 —null N3 —» null
Uleft Uright

Reduces the options from 40 (4x5 + 4x5) to just |5.



ldea

® When a reference is concretized, consider only the
target objects feasible as per the bounds.



Improvement




NO — null, NI, N2
NO —»null, N NI — null, N3

wores - BLI Hlustration w=his
N3 —null NSl
o Uright

® Root node labeled NO
® Ni.f labeled according to the bound Uf.

& £ B B
e 5% & &




BLI Numbers
Class TreeSet, Method BFS Traverse

Nodes 10 |l 12 13 14 |5 |6 |7

T 00:57| 03:46| 1422 61:04| OotM
'Me 1 00:36] 01:53] 08:08] 37:15| OotM

Number
of 23713] 82499129051 1]1103341 |

generated | 16353 | 64835|248783| 936131
structures

Speed up: about 2X

Ll %y BlLi%y




TACO Symmetry
Breaking and Refined BLI

® JTACO forces node identifiers to be
selected in breadth-first search order.

® Therefore, the labeling of some nodes may
be refined.

® This refinement prevents the generation of
many structures.



Refined BLI lllustrated




RBLI Numbers
Class TreeSet, Method BFS Traverse

Nodes 10 |l 12 13 14 15 16 |7

00:57| 03:46] 14:22 61:04 OofM
Time 00:36] OI:53] 08:08 37:15 OofM
00:06| 00:201 OlI:I3 06:18 19:24 OofM

N“mfbe'” 23713] 82499(290511] 103341 |
© 16353| 64835]248783] 936131

generated | .01 | a375| 72399| 278763| 1508943
structures

Speed up: about 10X (S13)

L| &y BLI%wgy RBLI %y Infinite for S|4




BLISS (Bounded Lazy
Initialization with Sat Support)

® Our goal was to promote pruning induced
by invariants as early as possible.

® Before extending a partially symbolic
structure we check the invariant in order
to determine if it can ever be made into a
concrete valid structure.

® SAl-checks are expensive, so only useful if
many structures are pruned.



An Example

4 v

/ l.v\ ‘ "

. 4 2
3

left right  left /" \right leftf Wright  left &7 Sright

.
K% B¢
o S

null 4!%!!» null QHHH=|H3>

left/  \right left right

null null E:Z:ZB

left / \right o X




From Partially Symbolic
Structures to a SAT Problem




From Partially Symbolic
Structures to a SAT Problem

M(NO,left,N1),
M(NO,right,N2),
M(N 1,left,null),...

TreeSet Invariant




BLISS Numbers
Class TreeSet, Method BFS Traverse

NP 10 ¥ 12 k 1 4 15 16 17 18
00:57| 03:46| 1422 61:04] OoM

T 00:36] 01:53] 08:08 37:15 OofM

'Me 1 00:06] 00201 o1:13] o618 1924 OotM

00:10] 00:23| o1:10] 03:10] o08:10] 2036 4853| 136:12 | 331:12

N“mfbe" 23713 82499(290511| 103341 |

n‘;t o | 16353| 64835]248783| 936131

gte etae 4557| 18375 72399| 278763| 1508943

STPUCHUFES L o171 407 863 1767| 3463 6804| 13572| 27400 | 56080

Ll %y BL|%gy RBLI %y BLISS

Speed up: about 20X (S| 3)
Infinite for S14-S18



An Optimization

® The kind of analyses provided by SPF are
executed starting with some limit k on the
number of nodes, and this bound is
increased until:

® we are happy with the reached value,

® the analysis takes too long and it is
stopped.



Optimization
(Continued)

® |f a SAT check in bound k yields SAT, it will
also be SAT in larger bounds.

® We store partial instances and the analysis
outcome in a database, and look up
previous verdicts before launching the SAT

solver.



BLISS-DB Numbers
Class TreeSet, Method BFS Traverse

Nodes | 10 I 12 k 14 5 16 17 18
00:57| 03:46| 14:22] 61:04] ©ofM
00:36| 01:53] 08:08] 37:15| ©ofM
Time 00:06] 00:201 OI:I3 06:18 19:24 OofM
00:10] 00:23] o1:10] o03:10] o0s:10] 2036l 4853| 136:12 | 331:12
00:07] 00:16] 00:45| o01:59] 05:02] 12:33]  30:12] 8927 | 218:17
N”r:fbe'" 23713] 82499]/290511] 103341 |
senerated 16353| 64835]248783| 936131
| 4557| 18375 72399| 278763] 1508943
217|  407] 863| 1767| 3463| 6804] 13572 27400 | 56080
|| &y BLI%wgy RBLI %™y BLISS BLISS-DB %y

Speed up: about 30X (S| 3)

Infinite for S14-S18




Discussion

® BLISS offers important speed ups in the
analyzed case studies (reaching 20,000X).

® BLISS is sound and complete.
® [wo invariants are required:

® a procedural (hybrid) one that handles
partially symbolic structures (required by LI).

® a declarative one required by BLISS.



Other applications of tight
bounds

x TACO (ISSTA 2010, IEEE TSE 2013).

FAJITA, test generation (ICST 2013)

MUCHO-TACO (SAT-based distributed analysis of code, ISSTA
2013).

BLI (Bounded Lazy Initialization, NFM 201 3).

BLISS (Bounded Lazy Initialization with SAT-Support, to appear in
IEEE TSE).

HyTek (Exhaustive input generation from hybrid specs, OOPSLA
2014).



Conclusion

® |f you have developed a tool for the analysis

of Java-like programs, it may be worth
thinking if TACO bounds can improve your

analyses.






