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Goal

• Java Pathfinder (JPF) is a concrete state 
model checker for Java programs.	



• Symbolic Pathfinder (SPF) is a model 
checker that uses symbolic states. 

BLISS is a technique that improves the way 
in which SPF analyzes code over heap-

allocated data structures.



Symbolic Execution

    public int  min3(int i, int j, int k){	
    	 int output = 0;	
    	 if (i <= j && i <= k)	
    	 	 output = i;	
    	 else 	
    	 	 if (i <= j || k <= j)	
    	 	 	 output = k;	
    	 	 else	
    	 	 	 output = j;	
!
    	 return output;	
    }

(i=i0, j=j0, k=k0, true)
(i=i0, j=j0, k=k0, output=0, true)

(i=i0, j=j0, k=k0, output=0, 	


i0>j0 || i0>k0)(i=i0, j=j0, k=k0, output=0, 	



(i0>j0 || i0>k0) && (i0<=j0 || k0<=j0))(i=i0, j=j0, k=k0, output=k0, 	


(i0>j0 || i0>k0) && (i0<=j0 || k0<=j0))



Symbolic Execution and 
Dynamically Allocated Structures

• Khurshid, Pasareanu and Visser proposed 
Lazy Initialization [TACAS03].	



• An object attribute is initialized just when 
its value is accessed. Up to that moment, 
the attribute value is kept symbolic.



class Node {	


   int elem;	


   Node next;	


!
   \requires Acyclic	


   Node sortFirstTwo() {	


      if (next != null)	


        if (elem > next.elem) {	


           Node t = next;	


           next = t.next;	


           t.next = this;	


           return t;	


        }	


      return this;	


   }	


}
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Lazy Initialization

• Does not generate isomorphic heaps.	



• Constraints must be adapted so that they 
can be evaluated on partially symbolic 
structures.



Consider a Red-Black 
Tree with up to 5 nodes

null

null

null



Bounded Lazy 
Initialization (BLI)

• TACO: Translation of Annotated COde 
(ISSTA2010, TSE2013)	



• Use TACO bounds to reduce the number 
of options whenever a symbolic node is 
concretized.



	

 TACO bounds

• Given a java field f, a TACO bound is a 
minimal relation Uf such that in each valid 
structure, f is contained in Uf.	



• Automatically computed from a class 
invariant.	



• Reusable across methods in a class, and 
across tools.



TACO bounds (RBTree, 4 nodes)

Reduces the options from 40 (4x5 + 4x5) to just 15.

N0      null, N1	


N1      null, N3	


N2      null, N3	


N3      null

Uleft

N0      null, N1, N2	
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N2      null, N3	


N3      null

Uright



Idea

• When a reference is concretized, consider only the 
target objects feasible as per the bounds.



Improvement

null
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BLI: Illustration

• Root node labeled N0	



• Ni.f labeled according to the bound Uf.
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BLI Numbers	


Class TreeSet, Method BFS_Traverse

Nodes 10 11 12 13 14 15 16 17 18

Time
00:57	


00:36

03:46	


01:53

14:22	


08:08

61:04	


37:15

OofM	


OofM

!

Number 
of	



generated	


structures

23713	


16353

82499	


64835

290511	


248783

1033411	


936131

!

00:57	



LI BLI
Speed up: about 2X



TACO Symmetry 
Breaking and Refined BLI

• TACO forces node identifiers to be 
selected in breadth-first search order.	



• Therefore, the labeling of some nodes may 
be refined.	



• This refinement prevents the generation of 
many structures.



Refined BLI Illustrated
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RBLI Numbers	


Class TreeSet, Method BFS_Traverse

LI BLI RBLI

Nodes 10 11 12 13 14 15 16 17 18

Time
00:57	


00:36	


00:06

03:46	


01:53	


00:20

14:22	


08:08	


01:13

61:04	


37:15	


06:18

OofM	


OofM	


19:24

!
!

OofM

Number 
of	



generated	


structures

23713	


16353	


4557

82499	


64835	


18375

290511	


248783	


72399

1033411	


936131	


278763

!
!

1508943

!

Speed up: about 10X (S13)	


Infinite for S14



BLISS (Bounded Lazy 
Initialization with Sat Support)

• Our goal was to promote pruning induced 
by invariants as early as possible.	



• Before extending a partially symbolic 
structure we check the invariant in order 
to determine if it can ever be made into a 
concrete valid structure.	



• SAT-checks are expensive, so only useful if 
many structures are pruned.



An Example

(b)(a)
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Figure 11: A partially symbolic red-black tree con-
sidered valid by LI and BLI (a), and its RBLI-refined
version (b), yet pruned by BLISS.

/*@
@ invariant root!=null ==> root.color== BLACK;
@ invariant
@ (\forall Node n;
@ \reach(root, Node, left).has(n);
@ ((n.color == RED && n.left != null) ==>
@ n.left.color == BLACK) &&
@ (\forall Node x;
@ \reach(n.left, Node, left).has(x);

x.key < n.key) &&
@ (\forall Node x;
@ \reach(n.right, Node, left).has(x);

x.key > n.key) &&
@ ...
@*/

Figure 12: A fragment of the JML class invariant
for TreeSet.

simplified if we consider nodes s and t whose label sets are
singletons. Notice that this naturally happens in the fully
concrete prefixes of the BFS traversal of a heap, after RBLI
has been applied. Therefore, applying BLISS after RBLI
is a sensible decision to make. SAT-solving under assump-
tions allows SAT-solver calls to receive, as a parameter, a set
of assumptions (literals assumed to hold during the analy-
sis). BLISS then performs a BFS traversal of the heap (as
RBLI does), generating the assumptions to be used during
the analysis. The traversal algorithm is presented in Fig. 2.
Its core is the call to method assumptions, which is the
one that, given a source node, a field name and target node
(or null), actually retrieves the corresponding propositional
variable. For our refined sample structure in Fig. 11b, if we
denote by inv the propositional translation of the declara-
tive class invariant, the SAT call receives as parameters inv
and the assumptions

pvars.get(hN0, left , N1i), pvars.get(hN0, right , N2i),
pvars.get(hN1, left ,nulli), pvars.get(hN1, right , N3i),
pvars.get(hN2, left ,nulli), pvars.get(hN2, right , N4i),
pvars.get(hN3, left ,nulli), pvars.get(hN3, right ,nulli),

pvars.get(hN4, left , N5i) .

1 boolean processHeapWithSolver(Heap h)
2 ListhIntegeri assumptions = new LinkedListhIntegeri();
3 Node root = getRoot(h);
4 if (root not Symbolic and not null) then
5 QueuehNodei worklist = new LinkedListhNodei();
6 HashSethNodei visited = new HashSethNodei;
7 worklist.add(root);
8 visited.add(root);
9 while (!worklist.isEmpty()) do

10 Node src = worklist.remove();
11 if (src not Symbolic and not null) then
12 for (String fn : classFieldNames) do
13 Node target = pointsThroughField(src, fn);
14 ListhIntegeri laux;
15 laux = assumptions(h, src, fn, target);
16 assumptions.addAll(laux);
17 if ((target is Symbolic or null) ||

visited.add(target)) then
18 worklist.add(target);
19 end

20 end

21 end

22 end
23 boolean verdict = solver.isSatisfiable(assumptions);
24 return verdict;
25 end
26 return true;
27 end

Algorithm 2: Assumptions computation in BLISS.

BLISS satisfiability checks have, in many situations, the
same purpose that preconditions/class invariants on par-
tially symbolic structures during LI have, i.e., to rule out
partially symbolic structures that cannot be extended to a
valid concrete structure. However, BLISS overcomes precon-
ditions in various aspects. First, preconditions must be gen-
eralized to deal with symbolic structures. This task has to
be manually carried out by the engineer, who has to attempt
to algorithmically decide if a partially symbolic structure is
concretizable, from the already concretized part of the struc-
ture. Typically, this approach is limited in the way it refers
to symbolic portions of the partially symbolic structure, and
is bound to how well the engineer is able to “generalize” the
concrete precondition/class invariant to symbolic structures.
Second, preconditions or imperative class invariants do not
take into consideration the scope. Satisfiability checks (from
declarative class invariants), on the other hand, can predi-
cate on symbolic portions of the structure straightforwardly
(essentially, via existential quantification), and can draw
conclusions based on the scope, which is a necessary part
of every satisfiability check, as in the example we showed
above.
Using BLISS requires some additional e↵ort with respect

to LI and our previously introduced extensions. More pre-
cisely, it requires the engineer to provide a declarative in-
variant. We will elaborate about this fact in Section 5.4.
As the following theorem states, BLISS is sound and com-

plete (modulo the equivalence of the declarative and the
procedural invariants), with respect to LI. When we refer to
the equivalence with the procedural class invariant we mean
with respect to the one that operates on fully concrete struc-
tures, and not the hybrid one. The latter is a more general
and weak version of the former.

Theorem 2. BLISS is sound and complete with respect
to LI, i.e., a valid structure is produced by BLISS if and

B

R

B

B B

R

R



From Partially Symbolic 
Structures to a SAT Problem

We store a map M such that 	



M(sourceNode,field,targetNode) = var 	



iff var captures the fact 	



sourceNode.field = targetNode



From Partially Symbolic 
Structures to a SAT Problem
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Figure 11: A partially symbolic red-black tree con-
sidered valid by LI and BLI (a), and its RBLI-refined
version (b), yet pruned by BLISS.

/*@
@ invariant root!=null ==> root.color== BLACK;
@ invariant
@ (\forall Node n;
@ \reach(root, Node, left).has(n);
@ ((n.color == RED && n.left != null) ==>
@ n.left.color == BLACK) &&
@ (\forall Node x;
@ \reach(n.left, Node, left).has(x);

x.key < n.key) &&
@ (\forall Node x;
@ \reach(n.right, Node, left).has(x);

x.key > n.key) &&
@ ...
@*/

Figure 12: A fragment of the JML class invariant
for TreeSet.

simplified if we consider nodes s and t whose label sets are
singletons. Notice that this naturally happens in the fully
concrete prefixes of the BFS traversal of a heap, after RBLI
has been applied. Therefore, applying BLISS after RBLI
is a sensible decision to make. SAT-solving under assump-
tions allows SAT-solver calls to receive, as a parameter, a set
of assumptions (literals assumed to hold during the analy-
sis). BLISS then performs a BFS traversal of the heap (as
RBLI does), generating the assumptions to be used during
the analysis. The traversal algorithm is presented in Fig. 2.
Its core is the call to method assumptions, which is the
one that, given a source node, a field name and target node
(or null), actually retrieves the corresponding propositional
variable. For our refined sample structure in Fig. 11b, if we
denote by inv the propositional translation of the declara-
tive class invariant, the SAT call receives as parameters inv
and the assumptions

pvars.get(hN0, left , N1i), pvars.get(hN0, right , N2i),
pvars.get(hN1, left ,nulli), pvars.get(hN1, right , N3i),
pvars.get(hN2, left ,nulli), pvars.get(hN2, right , N4i),
pvars.get(hN3, left ,nulli), pvars.get(hN3, right ,nulli),

pvars.get(hN4, left , N5i) .

1 boolean processHeapWithSolver(Heap h)
2 ListhIntegeri assumptions = new LinkedListhIntegeri();
3 Node root = getRoot(h);
4 if (root not Symbolic and not null) then
5 QueuehNodei worklist = new LinkedListhNodei();
6 HashSethNodei visited = new HashSethNodei;
7 worklist.add(root);
8 visited.add(root);
9 while (!worklist.isEmpty()) do

10 Node src = worklist.remove();
11 if (src not Symbolic and not null) then
12 for (String fn : classFieldNames) do
13 Node target = pointsThroughField(src, fn);
14 ListhIntegeri laux;
15 laux = assumptions(h, src, fn, target);
16 assumptions.addAll(laux);
17 if ((target is Symbolic or null) ||

visited.add(target)) then
18 worklist.add(target);
19 end

20 end

21 end

22 end
23 boolean verdict = solver.isSatisfiable(assumptions);
24 return verdict;
25 end
26 return true;
27 end

Algorithm 2: Assumptions computation in BLISS.

BLISS satisfiability checks have, in many situations, the
same purpose that preconditions/class invariants on par-
tially symbolic structures during LI have, i.e., to rule out
partially symbolic structures that cannot be extended to a
valid concrete structure. However, BLISS overcomes precon-
ditions in various aspects. First, preconditions must be gen-
eralized to deal with symbolic structures. This task has to
be manually carried out by the engineer, who has to attempt
to algorithmically decide if a partially symbolic structure is
concretizable, from the already concretized part of the struc-
ture. Typically, this approach is limited in the way it refers
to symbolic portions of the partially symbolic structure, and
is bound to how well the engineer is able to “generalize” the
concrete precondition/class invariant to symbolic structures.
Second, preconditions or imperative class invariants do not
take into consideration the scope. Satisfiability checks (from
declarative class invariants), on the other hand, can predi-
cate on symbolic portions of the structure straightforwardly
(essentially, via existential quantification), and can draw
conclusions based on the scope, which is a necessary part
of every satisfiability check, as in the example we showed
above.
Using BLISS requires some additional e↵ort with respect

to LI and our previously introduced extensions. More pre-
cisely, it requires the engineer to provide a declarative in-
variant. We will elaborate about this fact in Section 5.4.
As the following theorem states, BLISS is sound and com-

plete (modulo the equivalence of the declarative and the
procedural invariants), with respect to LI. When we refer to
the equivalence with the procedural class invariant we mean
with respect to the one that operates on fully concrete struc-
tures, and not the hybrid one. The latter is a more general
and weak version of the former.

Theorem 2. BLISS is sound and complete with respect
to LI, i.e., a valid structure is produced by BLISS if and

M(N0,left,N1),

M(N0,right,N2),

M(N1,left,null),…

TreeSet Invariant
SAT(       )



BLISS Numbers	


Class TreeSet, Method BFS_Traverse

LI BLI RBLI BLISS

Nodes 10 11 12 13 14 15 16 17 18

Time

00:57	


00:36	


00:06	


00:10

03:46	


01:53	


00:20	


00:23

14:22	


08:08	


01:13	


01:10

61:04	


37:15	


06:18	


03:10

OofM	


OofM	


19:24	


08:10

!
!

OofM	


20:36

!
!
!

48:53

!
!
!

136:12

!
!
!

331:12

Number 
of	



generated	


structures

!
23713	


16353	


4557	


217

!
82499	


64835	


18375	



407

!
290511	


248783	


72399	



863

!
1033411	


936131	


278763	



1767

!
!
!

1508943	


3463

!
!
!
!

6804

!
!
!
!

13572

!
!
!
!

27400

!
!
!
!

56080

Speed up: about 20X (S13)	


Infinite for S14-S18



An Optimization

• The kind of analyses provided by SPF are 
executed starting with some limit k on the 
number of nodes, and this bound is 
increased until:	



• we are happy with the reached value,	



• the analysis takes too long and it is 
stopped.



Optimization 
(Continued)

• If a SAT check in bound k yields SAT, it will 
also be SAT in larger bounds.	



• We store partial instances and the analysis 
outcome in a database, and look up 
previous verdicts before launching the SAT 
solver.



BLISS-DB

BLISS-DB Numbers	


Class TreeSet, Method BFS_Traverse

LI BLI RBLI BLISS

Nodes 10 11 12 13 14 15 16 17 18

Time

00:57	


00:36	


00:06	


00:10	


00:07

03:46	


01:53	


00:20	


00:23	


00:16

14:22	


08:08	


01:13	


01:10	


00:45

61:04	


37:15	


06:18	


03:10	


01:59

OofM	


OofM	


19:24	


08:10	


05:02

!
!

OofM	


20:36	


12:33

!
!
!

48:53	


30:12

!
!
!

136:12	


89:27

!
!
!

331:12	


218:17

Number 
of	



generated	


structures

!
23713	


16353	


4557	


217

!
82499	


64835	


18375	



407

!
290511	


248783	


72399	



863

!
1033411	


936131	


278763	



1767

!
!
!

1508943	


3463

!
!
!
!

6804

!
!
!
!

13572

!
!
!
!

27400

!
!
!
!

56080

Speed up: about 30X (S13)	


Infinite for S14-S18



Discussion

• BLISS offers important speed ups in the 
analyzed case studies (reaching 20,000X).	



• BLISS is sound and complete.	



• Two invariants are required: 	



• a procedural (hybrid) one that handles 
partially symbolic structures (required by LI).	



• a declarative one required by BLISS.



Other applications of tight 
bounds

TACO (ISSTA 2010, IEEE TSE 2013). 

FAJITA, test generation (ICST 2013) 

MUCHO-TACO (SAT-based distributed analysis of code, ISSTA 
2013). 

BLI (Bounded Lazy Initialization, NFM 2013). 

BLISS (Bounded Lazy Initialization with SAT-Support, to appear in 
IEEE TSE). 

HyTek (Exhaustive input generation from hybrid specs, OOPSLA 
2014).



Conclusion

• If you have developed a tool for the analysis 
of Java-like programs, it may be worth 
thinking if TACO bounds can improve your 
analyses.



Thanks!


