
Guaranteed Bounds for Posterior Inference in
Universal Probabilistic Programming

Luke Ong

Nanyang Technological University, Singapore University of Oxford

(Joint work with Raven Beutner and Fabian Zaiser)

1



What is (Bayesian Statistical) Probabilistic Programming?
Bayes’ Rule

P[θ | D] =
P[D | θ] P[θ]

P[D]

Posterior ∝ Likelihood×Prior Thomas Bayes (1701-1761)

Problem: Probabilistic model development, and the design and implementation of
Bayesian (posterior) inference algorithms, are time-consuming and error-prone,
often requiring bespoke constructions. This motivates

Probabilistic Programming
– a general-purpose means of expressing probabilistic models as programs, and
automatically performing Bayesian inference.

▶ Probabilistic programming offers an elegant way of generalising graphical
models, allowing a much richer representation of models, compositionally.

▶ Probabilistic programming systems are equipped with implementations of
general-purpose inference algorithms.

2



What is (Bayesian Statistical) Probabilistic Programming?
Bayes’ Rule

P[θ | D] =
P[D | θ] P[θ]

P[D]

Posterior ∝ Likelihood×Prior Thomas Bayes (1701-1761)

Problem: Probabilistic model development, and the design and implementation of
Bayesian (posterior) inference algorithms, are time-consuming and error-prone,
often requiring bespoke constructions.

This motivates

Probabilistic Programming
– a general-purpose means of expressing probabilistic models as programs, and
automatically performing Bayesian inference.

▶ Probabilistic programming offers an elegant way of generalising graphical
models, allowing a much richer representation of models, compositionally.

▶ Probabilistic programming systems are equipped with implementations of
general-purpose inference algorithms.

2



What is (Bayesian Statistical) Probabilistic Programming?
Bayes’ Rule

P[θ | D] =
P[D | θ] P[θ]

P[D]

Posterior ∝ Likelihood×Prior Thomas Bayes (1701-1761)

Problem: Probabilistic model development, and the design and implementation of
Bayesian (posterior) inference algorithms, are time-consuming and error-prone,
often requiring bespoke constructions. This motivates

Probabilistic Programming
– a general-purpose means of expressing probabilistic models as programs, and
automatically performing Bayesian inference.

▶ Probabilistic programming offers an elegant way of generalising graphical
models, allowing a much richer representation of models, compositionally.

▶ Probabilistic programming systems are equipped with implementations of
general-purpose inference algorithms.

2



Vision of Probabilistic Programming
▶ Expressing probabilistic models as programs: elegant, unifying, potentially

benefiting from PL research (semantics and program analysis).
▶ Availability of general-purpose Bayesian inference engines for arbitrary

programs of a universal PPL promotes democratic access to ML algorithms.

What is the Reality?
Unfortunately existing inference algorithms
✗ have few guarantees on the result, and / or

✗ only work on a restricted class of programs
(models).

Our Contributions
Guaranteed (nonstochastic and sound) bounds on the posterior distributions.
✓ Diagnostics / (partial) correctness specification: can identify errors in inference results

✓ General applicability: works for a very broad class of probabilistic programs

✓ Basis for a new general-purpose inference algorithm (ongoing work).

3



Vision of Probabilistic Programming
▶ Expressing probabilistic models as programs: elegant, unifying, potentially

benefiting from PL research (semantics and program analysis).
▶ Availability of general-purpose Bayesian inference engines for arbitrary

programs of a universal PPL promotes democratic access to ML algorithms.

What is the Reality?
Unfortunately existing inference algorithms
✗ have few guarantees on the result, and / or

✗ only work on a restricted class of programs
(models).

Our Contributions
Guaranteed (nonstochastic and sound) bounds on the posterior distributions.
✓ Diagnostics / (partial) correctness specification: can identify errors in inference results

✓ General applicability: works for a very broad class of probabilistic programs

✓ Basis for a new general-purpose inference algorithm (ongoing work).

3



Vision of Probabilistic Programming
▶ Expressing probabilistic models as programs: elegant, unifying, potentially

benefiting from PL research (semantics and program analysis).
▶ Availability of general-purpose Bayesian inference engines for arbitrary

programs of a universal PPL promotes democratic access to ML algorithms.

What is the Reality?
Unfortunately existing inference algorithms
✗ have few guarantees on the result, and / or

✗ only work on a restricted class of programs
(models).

Our Contributions
Guaranteed (nonstochastic and sound) bounds on the posterior distributions.
✓ Diagnostics / (partial) correctness specification: can identify errors in inference results

✓ General applicability: works for a very broad class of probabilistic programs

✓ Basis for a new general-purpose inference algorithm (ongoing work).

3



A Challenging Example Model: Pedestrian

0 3

A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.
Question: Where was he (start) on the road when he started the random walk?

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution: p(start | observation)?

4



A Challenging Example Model: Pedestrian

0 3

A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.
Question: Where was he (start) on the road when he started the random walk?

start = sample uniform(0,3)

position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution: p(start | observation)?

4



A Challenging Example Model: Pedestrian

0 3

A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.
Question: Where was he (start) on the road when he started the random walk?

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution: p(start | observation)?

4



A Challenging Example Model: Pedestrian

0 3

A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.
Question: Where was he (start) on the road when he started the random walk?

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)

return start

Posterior distribution: p(start | observation)?

4



A Challenging Example Model: Pedestrian

0 3

A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.
Question: Where was he (start) on the road when he started the random walk?

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution: p(start | observation)? 4



Existing Inference Methods

1. Approximate methods: posterior ≈ X
▶ Monte Carlo (particle filter; Metropolis-Hastings, Gibbs sampling, HMC, etc.):

“Through the use of random processes, Metropolis algorithm [Monte Carlo
method] offers an efficient way to stumble toward answers to problems that are
too complicated to solve exactly.” (IEEE Computing award citation)

▶ Optimization-based, notably variational inference

Stan Pyro Anglican

2. Exact methods: posterior = X
– Computing a closed-form solution of the posterior inference problem using
computer algebra and other forms of symbolic calculations.

SPPL

5



Existing Inference Methods

1. Approximate methods: posterior ≈ X
▶ Monte Carlo (particle filter; Metropolis-Hastings, Gibbs sampling, HMC, etc.):

“Through the use of random processes, Metropolis algorithm [Monte Carlo
method] offers an efficient way to stumble toward answers to problems that are
too complicated to solve exactly.” (IEEE Computing award citation)

▶ Optimization-based, notably variational inference

Stan Pyro Anglican

2. Exact methods: posterior = X
– Computing a closed-form solution of the posterior inference problem using
computer algebra and other forms of symbolic calculations.

SPPL

5



Existing Inference Methods

1. Approximate methods: posterior ≈ X
▶ Monte Carlo (particle filter; Metropolis-Hastings, Gibbs sampling, HMC, etc.):

“Through the use of random processes, Metropolis algorithm [Monte Carlo
method] offers an efficient way to stumble toward answers to problems that are
too complicated to solve exactly.” (IEEE Computing award citation)

▶ Optimization-based, notably variational inference

Stan Pyro Anglican

2. Exact methods: posterior = X
– Computing a closed-form solution of the posterior inference problem using
computer algebra and other forms of symbolic calculations.

SPPL
5



Issues with Existing Methods
▶ exact methods: only work on restricted models (e.g. loop free)
▶ approximate methods: implicit assumptions, slow convergence

A (Real) Conundrum: Pedestrian Example

The two distributions are clearly different: at least one is wrong, but which?
(This problem actually sparked and drove the present project.)

6



Issues with Existing Methods
▶ exact methods: only work on restricted models (e.g. loop free)
▶ approximate methods: implicit assumptions, slow convergence

A (Real) Conundrum: Pedestrian Example

The two distributions are clearly different: at least one is wrong, but which?
(This problem actually sparked and drove the present project.) 6



Guaranteed Bounds on the Posterior: posteriorP (E) ∈ [a, b]

Desiderata
▶ A middle ground between exact and approximate methods.
▶ Given arbitrary program P of a universal PPL with continuous distributions

and observe, and error tolerance, infer guaranteed (nonstochastic and
sound) bounds of the posterior: a ≤ posteriorP (E) ≤ b

Why?
▶ Construct (useful aspects of) ground truth for inference problems.
▶ Debug (implementations of) approximate inference algorithms.

How? By exploiting semantics (abstract interpretation) and formal methods
1. interval traces (semantics) & interval arithmetic: basis of the approach

2. constraint-based interval type system: over-approximation of recursive terms

3. stochastic symbolic execution: optimization of special case

7



Guaranteed Bounds on the Posterior: posteriorP (E) ∈ [a, b]

Desiderata
▶ A middle ground between exact and approximate methods.
▶ Given arbitrary program P of a universal PPL with continuous distributions

and observe, and error tolerance, infer guaranteed (nonstochastic and
sound) bounds of the posterior: a ≤ posteriorP (E) ≤ b

Why?
▶ Construct (useful aspects of) ground truth for inference problems.
▶ Debug (implementations of) approximate inference algorithms.

How? By exploiting semantics (abstract interpretation) and formal methods
1. interval traces (semantics) & interval arithmetic: basis of the approach

2. constraint-based interval type system: over-approximation of recursive terms

3. stochastic symbolic execution: optimization of special case

7



Guaranteed Bounds on the Posterior: posteriorP (E) ∈ [a, b]

Desiderata
▶ A middle ground between exact and approximate methods.
▶ Given arbitrary program P of a universal PPL with continuous distributions

and observe, and error tolerance, infer guaranteed (nonstochastic and
sound) bounds of the posterior: a ≤ posteriorP (E) ≤ b

Why?
▶ Construct (useful aspects of) ground truth for inference problems.
▶ Debug (implementations of) approximate inference algorithms.

How? By exploiting semantics (abstract interpretation) and formal methods
1. interval traces (semantics) & interval arithmetic: basis of the approach

2. constraint-based interval type system: over-approximation of recursive terms

3. stochastic symbolic execution: optimization of special case

7



Guaranteed Bounds on the Posterior: posteriorP (E) ∈ [a, b]

Desiderata
▶ A middle ground between exact and approximate methods.
▶ Given arbitrary program P of a universal PPL with continuous distributions

and observe, and error tolerance, infer guaranteed (nonstochastic and
sound) bounds of the posterior: a ≤ posteriorP (E) ≤ b

Why?
▶ Construct (useful aspects of) ground truth for inference problems.
▶ Debug (implementations of) approximate inference algorithms.

How? By exploiting semantics (abstract interpretation) and formal methods
1. interval traces (semantics) & interval arithmetic: basis of the approach

2. constraint-based interval type system: over-approximation of recursive terms

3. stochastic symbolic execution: optimization of special case

7



Semantics of Probabilistic Programs
Kozen’s Principle
The executions of a probabilistic program are characterised by their traces i.e. the
sequence of random draws made during the execution.
Thus a probabilistic program can be interpreted as a deterministic program
parametrised by traces.

▶ A trace s records sampled values, e.g. ⟨0.23, 0.79, 0.01⟩
▶ value function: val(s) for trace s

▶ weight function: weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint distribution of latent and observed variables):

JP K(E) :=

∫
{s|val(s)∈E}

weight(s) ds = “ P(start ∈ E, obs) ”

By Bayes’ rule, normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E, obs)

P(obs)
=

JP K(E)

JP K(R)

N.B. Normalising constant, P(obs), is a special case of unnormalised posterior.

8



Semantics of Probabilistic Programs
Kozen’s Principle
The executions of a probabilistic program are characterised by their traces i.e. the
sequence of random draws made during the execution.
Thus a probabilistic program can be interpreted as a deterministic program
parametrised by traces.

▶ A trace s records sampled values, e.g. ⟨0.23, 0.79, 0.01⟩
▶ value function: val(s) for trace s

▶ weight function: weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint distribution of latent and observed variables):

JP K(E) :=

∫
{s|val(s)∈E}

weight(s) ds = “ P(start ∈ E, obs) ”

By Bayes’ rule, normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E, obs)

P(obs)
=

JP K(E)

JP K(R)

N.B. Normalising constant, P(obs), is a special case of unnormalised posterior.

8



Semantics of Probabilistic Programs
Kozen’s Principle
The executions of a probabilistic program are characterised by their traces i.e. the
sequence of random draws made during the execution.
Thus a probabilistic program can be interpreted as a deterministic program
parametrised by traces.

▶ A trace s records sampled values, e.g. ⟨0.23, 0.79, 0.01⟩
▶ value function: val(s) for trace s

▶ weight function: weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint distribution of latent and observed variables):

JP K(E) :=

∫
{s|val(s)∈E}

weight(s) ds = “ P(start ∈ E, obs) ”

By Bayes’ rule, normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E, obs)

P(obs)
=

JP K(E)

JP K(R)

N.B. Normalising constant, P(obs), is a special case of unnormalised posterior.

8



Semantics of Probabilistic Programs
Kozen’s Principle
The executions of a probabilistic program are characterised by their traces i.e. the
sequence of random draws made during the execution.
Thus a probabilistic program can be interpreted as a deterministic program
parametrised by traces.

▶ A trace s records sampled values, e.g. ⟨0.23, 0.79, 0.01⟩
▶ value function: val(s) for trace s

▶ weight function: weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint distribution of latent and observed variables):

JP K(E) :=

∫
{s|val(s)∈E}

weight(s) ds = “ P(start ∈ E, obs) ”

By Bayes’ rule, normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E, obs)

P(obs)
=

JP K(E)

JP K(R)

N.B. Normalising constant, P(obs), is a special case of unnormalised posterior.
8



Interval Traces
Want to derive bounds of JP K(E) :=

∫
{s|val(s)∈E} weight(s) ds.

Analogy of Riemann integrals: defined by dividing the integral into strips (depend-
ing on the error tolerance); and computing the lower sum and upper sum, which
sandwich the integral.

An interval trace is just a sequence of intervals of the reals; e.g.
⟨[0.1, 0.3], [0.7, 1]⟩.

So a set of interval traces summarises a set of traces. E.g. interval trace
⟨[0.1, 0.3], [0.7, 1]⟩ contains (or is refined by) traces ⟨0.2, 0.9⟩ and ⟨0.23, 0.75⟩.

Idea behind upper bounding JP K(E):
▶ Given event E, find a summary (i.e. covering set) T of interval traces: every s

s.t. val(s) ∈ E is contained in some interval trace in T .
▶ Then

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

9



Interval Traces
Want to derive bounds of JP K(E) :=

∫
{s|val(s)∈E} weight(s) ds.

Analogy of Riemann integrals: defined by dividing the integral into strips (depend-
ing on the error tolerance); and computing the lower sum and upper sum, which
sandwich the integral.

An interval trace is just a sequence of intervals of the reals; e.g.
⟨[0.1, 0.3], [0.7, 1]⟩.

So a set of interval traces summarises a set of traces. E.g. interval trace
⟨[0.1, 0.3], [0.7, 1]⟩ contains (or is refined by) traces ⟨0.2, 0.9⟩ and ⟨0.23, 0.75⟩.

Idea behind upper bounding JP K(E):
▶ Given event E, find a summary (i.e. covering set) T of interval traces: every s

s.t. val(s) ∈ E is contained in some interval trace in T .
▶ Then

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

9



Interval Traces
Want to derive bounds of JP K(E) :=

∫
{s|val(s)∈E} weight(s) ds.

Analogy of Riemann integrals: defined by dividing the integral into strips (depend-
ing on the error tolerance); and computing the lower sum and upper sum, which
sandwich the integral.

An interval trace is just a sequence of intervals of the reals; e.g.
⟨[0.1, 0.3], [0.7, 1]⟩.

So a set of interval traces summarises a set of traces. E.g. interval trace
⟨[0.1, 0.3], [0.7, 1]⟩ contains (or is refined by) traces ⟨0.2, 0.9⟩ and ⟨0.23, 0.75⟩.

Idea behind upper bounding JP K(E):
▶ Given event E, find a summary (i.e. covering set) T of interval traces: every s

s.t. val(s) ∈ E is contained in some interval trace in T .

▶ Then
JP K(E) ≤

∑
t∈T

(maxweight(t)) vol(t)

9



Interval Traces
Want to derive bounds of JP K(E) :=

∫
{s|val(s)∈E} weight(s) ds.

Analogy of Riemann integrals: defined by dividing the integral into strips (depend-
ing on the error tolerance); and computing the lower sum and upper sum, which
sandwich the integral.

An interval trace is just a sequence of intervals of the reals; e.g.
⟨[0.1, 0.3], [0.7, 1]⟩.

So a set of interval traces summarises a set of traces. E.g. interval trace
⟨[0.1, 0.3], [0.7, 1]⟩ contains (or is refined by) traces ⟨0.2, 0.9⟩ and ⟨0.23, 0.75⟩.

Idea behind upper bounding JP K(E):
▶ Given event E, find a summary (i.e. covering set) T of interval traces: every s

s.t. val(s) ∈ E is contained in some interval trace in T .
▶ Then

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

9



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start

0.6 [0.5, 0.6]

position

distance

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start

0.6 [0.5, 0.6]

position

distance

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position

distance

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.6 [0.5, 0.6]

distance 0.0 [0.0, 0.0]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.6 [0.5, 0.6]

distance 0.0 [0.0, 0.0]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.8 [0.6, 0.8]

distance 0.2 [0.1, 0.2]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.8 [0.6, 0.8]

distance 0.2 [0.1, 0.2]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.0 [−0.3, 0.0]

distance 1.0 [0.9, 1.1]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) 1 [1, 1]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.0 [−0.3, 0.0]

distance 1.0 [0.9, 1.1]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) ≈ 2.4 [0.53, 3.99]

return value val(s)

10



Interval Trace Semantics

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.0 [−0.3, 0.0]

distance 1.0 [0.9, 1.1]

trace s ⟨0.6 , 0.2 , −0.8 ⟩ ⟨ [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8] ⟩
weight weight(s) ≈ 2.4 [0.53, 3.99]

return value val(s) 0.6 [0.5, 0.6]

10



Robustness, Precision and Effectivity
Soundness
For all non-overlapping and exhaustive set of interval traces T :

lowerBdTP ≤ JP K ≤ upperBdTP .

lowerBdTP and upperBdTP are super-/sub-additive measures.

Completeness
For all intervals I and ϵ > 0, there is a countable set T of (non-overlapping and
exhaustive) interval traces s.t.

upperBdTP (I)− ϵ ≤ JP K(I) ≤ lowerBdTP (I) + ϵ

under the assumptions:
▶ the primitive functions are continuous*
▶ each sampled value is used at most once in each conditional, observe

statement, and in the return value.

11



Robustness, Precision and Effectivity
Soundness
For all non-overlapping and exhaustive set of interval traces T :

lowerBdTP ≤ JP K ≤ upperBdTP .

lowerBdTP and upperBdTP are super-/sub-additive measures.

Completeness
For all intervals I and ϵ > 0, there is a countable set T of (non-overlapping and
exhaustive) interval traces s.t.

upperBdTP (I)− ϵ ≤ JP K(I) ≤ lowerBdTP (I) + ϵ

under the assumptions:
▶ the primitive functions are continuous*
▶ each sampled value is used at most once in each conditional, observe

statement, and in the return value.

11



Robustness, Precision and Effectivity
Soundness
For all non-overlapping and exhaustive set of interval traces T :

lowerBdTP ≤ JP K ≤ upperBdTP .

lowerBdTP and upperBdTP are super-/sub-additive measures.

Completeness
For all intervals I and ϵ > 0, there is a countable set T of (non-overlapping and
exhaustive) interval traces s.t.

upperBdTP (I)− ϵ ≤ JP K(I) ≤ lowerBdTP (I) + ϵ

under the assumptions:
▶ the primitive functions are continuous*
▶ each sampled value is used at most once in each conditional, observe

statement, and in the return value.

11



Robustness, Precision and Effectivity
Soundness
For all non-overlapping and exhaustive set of interval traces T :

lowerBdTP ≤ JP K ≤ upperBdTP .

lowerBdTP and upperBdTP are super-/sub-additive measures.

Completeness
For all intervals I and ϵ > 0, there is a finite set T of (non-overlapping and
exhaustive) interval traces s.t.

upperBdTP (I)− ϵ ≤

JP K(I) ≤ lowerBdTP (I) + ϵ

under the assumptions:
▶ the primitive functions are continuous*
▶ each sampled value is used at most once in each conditional, observe

statement, and in the return value.

11



Empirical Evaluation
▶ Implementation: GuBPI (Guaranteed Bounds for Posterior inference)

gubpi-tool.github.io

Pedestrian example:

12

https://gubpi-tool.github.io/


Empirical Evaluation
▶ Implementation: GuBPI (Guaranteed Bounds for Posterior inference)

gubpi-tool.github.io

Pedestrian example:

12

https://gubpi-tool.github.io/


Empirical Evaluation
▶ Implementation: GuBPI (Guaranteed Bounds for Posterior inference)

gubpi-tool.github.io

Pedestrian example:

12

https://gubpi-tool.github.io/


Examples that Trip Up MCMC!

Neal’s funnel Mixture model

13



Comparison with Previous Work
Sankaranarayanan et al. (PLDI2013)
▶ framework for bounding probabilities of events definable by score-free programs
▶ ours is more general, hence usually slower, but often finds tighter bounds

PSI solver (CAV2016)
▶ consistency check: benchmarks from the PSI repository
▶ we can handle unbounded loops, contrary to PSI. Warning: Artificially

bounding recursive programs can yield different (hence wrong) posterior
distribution!

14



Comparison with Previous Work
Sankaranarayanan et al. (PLDI2013)
▶ framework for bounding probabilities of events definable by score-free programs
▶ ours is more general, hence usually slower, but often finds tighter bounds

PSI solver (CAV2016)
▶ consistency check: benchmarks from the PSI repository
▶ we can handle unbounded loops, contrary to PSI. Warning: Artificially

bounding recursive programs can yield different (hence wrong) posterior
distribution!

14



Also in our PLDI22 paper1

▶ Constraint-based interval type system: approximates unbounded loops and
recursion soundly

▶ Symbolic execution & linear programming: optimization for linear guards
▶ Comparison with statistical validation methods: simulation-based

calibration

Limitations: GuBPi struggles if
▶ program has lots of branching: path explosion problem
▶ model is high-dimensional (i.e. has many samples)

1Raven Beutner, C.-H. Luke Ong, Fabian Zaiser: Guaranteed bounds for posterior inference
in universal probabilistic programming. PLDI 2022: 536-551

15

https://doi.org/10.48550/arXiv.2204.02948
https://doi.org/10.48550/arXiv.2204.02948


Also in our PLDI22 paper1

▶ Constraint-based interval type system: approximates unbounded loops and
recursion soundly

▶ Symbolic execution & linear programming: optimization for linear guards
▶ Comparison with statistical validation methods: simulation-based

calibration

Limitations: GuBPi struggles if
▶ program has lots of branching: path explosion problem
▶ model is high-dimensional (i.e. has many samples)

1Raven Beutner, C.-H. Luke Ong, Fabian Zaiser: Guaranteed bounds for posterior inference
in universal probabilistic programming. PLDI 2022: 536-551

15

https://doi.org/10.48550/arXiv.2204.02948
https://doi.org/10.48550/arXiv.2204.02948


Guaranteed Bounds for Posterior Inference
in Universal Probabilistic Programming

Raven Beutner Luke Ong Fabian Zaiser

. . . are a middle ground between approximate and exact:
▶ guaranteed correct (vs. approximate inference)
▶ supports many language features (vs. exact inference)

Theory: soundness & completeness

Practice:
▶ detect issues with inference results
▶ competitive on existing benchmarks
▶ guaranteed partial correctness specifications

for programs that other tools cannot handle

Future work
▶ better heuristics for finding a “good” set of interval traces T
▶ basis for a new approximate inference algorithm.

16


	Appendix
	Appendix


