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Problem: Probabilistic model development, and the design and implementation of
Bayesian (posterior) inference algorithms, are time-consuming and error-prone,
often requiring bespoke constructions. This motivates

Probabilistic Programming

— a general-purpose means of expressing probabilistic models as programs, and
automatically performing Bayesian inference.

» Probabilistic programming offers an elegant way of generalising graphical
models, allowing a much richer representation of models, compositionally.

» Probabilistic programming systems are equipped with implementations of
general-purpose inference algorithms.
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What is the Reality? N .
Unfortunately existing inference algorithms 2 1
X have few guarantees on the result, and / or L. -h h
X only work on a restricted class of programs = l-_ » '._
(models).

Our Contributions

Guaranteed (nonstochastic and sound) bounds on the posterior distributions.

v/ Diagnostics / (partial) correctness specification: can identify errors in inference results
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v/ General applicability: works for a very broad class of probabilistic programs

v/ Basis for a new general-purpose inference algorithm (ongoing work).



A Challenging Example Model: Pedestrian
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A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.

Question: Where was he (start) on the road when he started the random walk?
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A Challenging Example Model: Pedestrian

A pedestrian suddenly found himself on a long road. He knows he is no more than 3 km
from his home. To get home, he does a random walk: he walks for a random distance no
more than 1km, in a random direction (either away or towards his home); and he repeats
this step until he reaches home. Upon reaching home, his old step counter tells him he
has travelled 1.1km.

Question: Where was he (start) on the road when he started the random walk?

start = sample uniform (0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1)
return start

Posterior distribution: p(start | observation)?
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" Through the use of random processes, Metropolis algorithm [Monte Carlo
method] offers an efficient way to stumble toward answers to problems that are
too complicated to solve exactly (IEEE Computing award citation)
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2. Exact methods: posterior = X

— Computing a closed-form solution of the posterior inference problem using
computer algebra and other forms of symbolic calculations.

"l soLver 2 [1PL

SPPL



Issues with Existing Methods
> exact methods: only work on restricted models (e.g. loop free)

> approximate methods: implicit assumptions, slow convergence
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> exact methods: only work on restricted models (e.g. loop free)

> approximate methods: implicit assumptions, slow convergence

A (Real) Conundrum: Pedestrian Example
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The two distributions are clearly different: at least one is wrong, but which?
(This problem actually sparked and drove the present project.)
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Semantics of Probabilistic Programs

Kozen's Principle

The executions of a probabilistic program are characterised by their traces i.e. the
sequence of random draws made during the execution.

Thus a probabilistic program can be interpreted as a deterministic program
parametrised by traces.

> A trace s records sampled values, e.g. (0.23,0.79,0.01)

> value function: val(s) for trace s

> weight function: weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint distribution of latent and observed variables):

[PI(E) := / weight(s) ds = “PP(start € E,obs)"
{s|val(s)eE}

By Bayes' rule, normalized posterior (conditional probability):
P(start € F,obs) [P](E)
P(obs) PR

N.B. Normalising constant, IP(obs), is a special case of unnormalised posterior.

P(start € E | obs) =
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Want to derive bounds of [P](E f{s‘val (5)CE) weight(s) ds.

Analogy of Riemann integrals: defined by dividing the integral into strips (depend-
ing on the error tolerance); and computing the lower sum and upper sum, which
sandwich the integral.

An interval trace is just a sequence of intervals of the reals; e.g.
([0.1,0.3],[0.7,1]).

So a set of interval traces summarises a set of traces. E.g. interval trace
([0.1,0.3],[0.7,1]) contains (or is refined by) traces (0.2,0.9) and (0.23,0.75).

Idea behind upper bounding [P](E):
> Given event E, find a summary (i.e. covering set) T of interval traces: every s
s.t. val(s) € E is contained in some interval trace in 7.
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[P](E) < Z max weight(t)) vol(t)

teT
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Interval Trace Semantics

start = sample uniform(O0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs(step)
observe 1.1 from normal (distance, 0.1%)
return start
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Soundness

For all non-overlapping and exhaustive set of interval traces 7

lowerBd7, < [P] < upperBd}.

lowerBd7, and upperBd}, are super-/sub-additive measures.

Completeness

For all intervals T and € > 0, there is a  finite  set 7 of (non-overlapping and
exhaustive) interval traces s.t.

[P](I) < lowerBd}(I) + €

under the assumptions:

> the primitive functions are continuous*

» each sampled value is used at most once in each conditional, observe
statement, and in the return value.
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Examples that Trip Up MCMCI
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Comparison with Previous Work
Sankaranarayanan et al. (PLDI2013)
> framework for bounding probabilities of events definable by score-free programs

» ours is more general, hence usually slower, but often finds tighter bounds
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> framework for bounding probabilities of events definable by score-free programs

» ours is more general, hence usually slower, but often finds tighter bounds

PSI solver (CAV2016)

> consistency check: benchmarks from the PSI repository

» we can handle unbounded loops, contrary to PSI. Warning: Artificially
bounding recursive programs can yield different (hence wrong) posterior

distribution!
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Also in our PLDI22 paper?

» Constraint-based interval type system: approximates unbounded loops and
recursion soundly

> Symbolic execution & linear programming: optimization for linear guards

» Comparison with statistical validation methods: simulation-based
calibration

1Raven Beutner, C.-H. Luke Ong, Fabian Zaiser: Guaranteed bounds for posterior inference
in universal probabilistic programming. PLDI 2022: 536-551
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Also in our PLDI22 paper?

» Constraint-based interval type system: approximates unbounded loops and
recursion soundly

> Symbolic execution & linear programming: optimization for linear guards

» Comparison with statistical validation methods: simulation-based
calibration

Limitations: GuBPi struggles if
» program has lots of branching: path explosion problem

» model is high-dimensional (i.e. has many samples)

1Raven Beutner, C.-H. Luke Ong, Fabian Zaiser: Guaranteed bounds for posterior inference
in universal probabilistic programming. PLDI 2022: 536-551
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Guaranteed Bounds for Posterior Inference
in Universal Probabilistic Programming

Raven Beutner Luke Ong Fabian Zaiser

...are a middle ground between approximate and exact:
> guaranteed correct (vs. approximate inference)

> supports many language features (vs. exact inference)

|
Theory: soundness & completeness

°

Practice:
» detect issues with inference results
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> guaranteed partial correctness specifications S ;
for programs that other tools cannot handle
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Future work
> better heuristics for finding a “good” set of interval traces T

> basis for a new approximate inference algorithm.
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