— " — wwu

— M 0N S TER

Asynchronous Hyperproperties e

Our current work on the asynchronous hyperlogic mumbling H,, A
Christoph Ohrem [

//\E

%\ﬂ@) S

AG Softwareentwicklung und
. Verifikation
wissen.leben Institut fiir Informatik

— —wwu

—— M U NSTER

Asynchronous Hyperproperties

Verification by Model Checking

Model Checking problem:
Given a model M and a property ¢, check whether

ME ¢
a N\

Model of a program, Desirable/undesirable
hardware circuit, ... property

Christoph Ohrem

= ——wwu

— MUNSTER Asynchronous Hyperproperties

Models - Kripke Structures

Kipke Structure Paths

{p,a} {p} {p.a} {p} {a} {p.a}
O—O—0O0—0O— -
{p,a} {p} 0 0
O—O—0O0—0O— -
{pa} ¥ o0 {a
O—O—0O0—0O— -

{a} 0

p,q: atomic propositions from a set AP

Christoph Ohrem

= ——wwu

— MUNSTER Asynchronous Hyperproperties

Models - Kripke Structures
Kipke Structure Traces

{p,a} {p}
{p.q} {p} {a} {p.q}

{p.q} {p} 0 0

{p,a} {p} 0 {a}
{a} 0

p,q: atomic propositions from a set AP

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Models - Pushdown Systems

Pushdown System P Paths
p.a} calla tp) {pé%%ll a{g}ret a{é} mt{p:’%l;ll a_
. {p’ctl:}all a{f\}call bp\ret b mret a
int callb O—O—O—O— -
o) 0 retb {p(,;l lla{g}call b%ret a{:q}lnt

a,b: stack symbols from a set ©

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Models - Pushdown Systems
Pushdown System P Traces

{p,q} {p}

calla

{p,atc {p} r {a} i{p.glc -

callb {p,atc {pfc 0 r 0 r -

{a}

retb

a,b: stack symbols from a set ©

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Properties - Linear Temporal Logics (LTL)®

“p or g always holds”

G(pVaq)
{p,a} {p} {a} {p,at - v
{p,a} ¥ 0 {at - X

LTL formulae are satisfied by traces; Properties are sets of traces

*[Pnueli, SFCS 1977]

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Properties - CaRet?

“q holds when the currently called procedure is returned from”
O

(assuming the next transition is a call)

fpgy ¢ P r {a¢ i {pgt ¢ - v
{p,a} ¢ {p} ¢ 0 r 0 r {qg¢ - v

“procedure fis in the call stack”
Ff
(assuming each state is labelled with the current top of stack symbol)

*[Alur et al., TACAS 2004]

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Model Checking LTL
Main Idea for Automata based LTL Model Checking
Kripke Structure 1C % NBA3 Ak
translation E(.A;C) _ Traces(lC)
i exponential
LTL Formula "”—fiﬁ ABA A, | XF:t—t>_ NBA A,
ranstation ealternation
L(A-p) =A{tr | tr [~ ¢}

K = ¢iff L(Ax) N L(A-,) = 0; Model Checking is in PSPACE

3NBA = Nondeterministic Biichi Automaton, ABA = Alternating Biichi Automaton

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Synchronous Hyperproperties - HyperLTL*
“The system seems to be deterministic to a low security user”
wop = V. V75 (i, <> ir,) = G(Or, <> 0Or,)

trye {i} {0} {h} {o}
tros {i} {o} 0 {o,h}
trs- {i} {h} {o} {o}
tre: 0 {h} {o} {o}

{tro,tro, tr,} v

{tri, trs} X

Inner HyperLTL formulae are satisfied by trace assignments;
Closed HyperLTL formulae are satisfied by sets of traces;
Hyperproperties are sets of sets of traces
“4[Clarkcon et al., POST 2014], Model Checking in [Finkbeiner et al., CAV 2015]

Christoph Ohrem

— " — wwu

MUNSTER Asynchronous Hyperproperties

Model Checking HyperLTL
Formula o = Qpmp . .. Qumy.p with o; = Qimrj . .. Qymy.1p, Structure K

linear exponential

Formulayy —— ABA Ay, — NBA Ay

translation dealternation
Aw =K ’gb J

NBA A, component i +1 — NBA A
-/4@,» =K i €xponential

\) /
complementation NBA Aﬂw

inductive construction, /i : =i+ 1

K = ¢iff L(A,) # 0; Model Checking is in kKEXPSPACE

Pi+1

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Asynchronous Hyperproperties - H,°

Asynchronicity arises naturally in many programs:

while (true) { while (true) {
a =a + C; temp = a + c;
} a = temp;
}

H,. generally captures asynchronous hyperproperties like
“The traces 7, and m, repeatedly agree on a, but one step on m, is
matched by two on m,”

vX.((ar, < ar,) A O, Or, Or,X)

>[Gutsfeld et al., POPL 2021]

Christoph Ohrem

10

— " — wwu

MUNSTER Asynchronous Hyperproperties

Model Checking H,

Formula o = Qumy . .. Qumy.p with ; = Qi . .. Qumy.2p, Structure

linear exponential

Formulagy ~—— AAPA® A, o NAPAL,
e

translation o alternation
Ay =x ¢ /

®Alternating Asynchronous Parity Automaton [Gutsfeld et al., POPL 2021]

Christoph Ohrem

11

— " — wwu

MUNSTER Asynchronous Hyperproperties

Model Checking H,
Formula o = Qumy . .. Qumy.p with ; = Qi . .. Qumy.2p, Structure
; exponential
Formulagy — —me, AAPA6 Aw D NAPA A,
translation dealternatlon

f not possible in general

®Alternating Asynchronous Parity Automaton [Gutsfeld et al., POPL 2021]

Christoph Ohrem

11

— " — wwu

MUNSTER Asynchronous Hyperproperties

Model Checking H,

Formula o = Qumy . .. Qumy.p with ; = Qi . .. Qumy.2p, Structure

l
Formulay —— AAPAS A, ;
translation _ semantics

Ay =

f e.g. k-synchronous or

k-context bounded
(blowup depending on restriction)

restricted
—_—

NPA A,

®Alternating Asynchronous Parity Automaton [Gutsfeld et al., POPL 2021]

Christoph Ohrem

— —wwu

— MUNSTER Asynchronous Hyperproperties

Asynchronous Hyperproperties - Stuttering HyperLTL’

Define a stuttering criterion, inspect only one copy of the suttered states

7N TN o~ ﬁ

Stutteringwith ' = {p}: {p} {p} 0 0 {p} 0

Captures a specific kind of asynchronicity, subsumed by H,,

Observational determinism with equivalence up to stuttering:
V7T1.V7T2. /\pel(pm A pTFz) — gL /\pEO(pﬂl A pﬂ'z)

Decidable Model Checking for a very interesting subset of the logic:
Use only one stuttering criterion I’
’[Bozzelli et al., LICS 2021]

Christoph Ohrem 12

— —wwu

— MUNSTER Asynchronous Hyperproperties

(Fair) Model Checking Stuttering HyperLTL

Formula ¢ with single stuttering criterion I, fair Structure (IC, F)

S

¥ remove non-atomic PAP structure Pap
/ ! . /
(K,F) formulaefromr (K',F’) transformation Kr
J
v

synchronous HyperLTL Model Checking

Model Checking still in KEXPSPACE

Christoph Ohrem

13

- T WWUuU .
— V0N S TE R Asynchronous Hyperproperties

Asynchronous Hyperproperties - Mumbling H,,®
Inspired by stuttering HyperLTL, but brings several additions:
— fixpoints
— non-atomic tests
— CaRet like modalities
— simpler jump mechanism
— different jump criteria for different traces
“The traces of the system are indistinguishable
with respect to f being in the call stack”

V7, V70 VX ([FFlwy < [FFlms) A OA:m»—mbsmz»—mbsx)
8Current work under review at POPL 2023

Christoph Ohrem

14

— —wwu

— MUNSTER Asynchronous Hyperproperties

Stuttering vs. Mumbling

Stuttering with I = {p}:

{pt P+ 0 0 {p} (I

Mumbling with A(7) =

p:
P} ¥ 0o o P 0 -
Mumbling seems more expressive: “all traces have the same number

of occurrences of p” is expressible with an atomic mumbling criterion
but not expressible with an LTL stuttering criterion

Christoph Ohrem

15

— —wwu

— MUNSTER Asynchronous Hyperproperties

(Fair) Finite State Model Checking Mumbling H ’

Formula ¢ with single mumbling criterion A, fair Structure (K, F)

¥ remove non-atomic PAP Model Checking
(K,F) formulae from A and tests (K, F') with basis AP

Idea is very similar to stuttering HyperLTL Model Checking
Works for non-atomic tests, Pushdown Model Checking
and CaRet-like modalities as well

Christoph Ohrem 16

— —wwu

— MUNSTER Asynchronous Hyperproperties

(Fair) Finite State Model Checking Mumbling H ’
Fair Model Checking with basis AP:

linear exponential

Formulayp —— APA A, — NPA Ay,

translation _ dealternation
Ay Zpa ¥ J
" projection with (o Fodpa 4L
/ i+1Pi

N_PA -Acpi on component it e NPA A
-A@f =(K,F).A Pi exponential

\ /
complementation NPA A,

inductive construction, i := i+ 1

K = ¢iff L(Ay) # 0; Model Checking still in kKEXPSPACE

Pi+1

Christoph Ohrem

16

— —wwu

— MUNSTER Asynchronous Hyperproperties

Pushdown Model Checking - Undecidability

Reduction from emptiness problem for the intersection of contextfree
languages; input model contains the two pushdown automata
Formula for the reduction:

¢ = Im. 3y [Ai]r, A 2] AG N\ 0], ¢ [0]m,
oEL

A reduction is also possible for formulae of interest:

pon = Y197, 3m3.G(\[alx, < lalw,) A G(/\ alr, < [alx,)

acl acH

Christoph Ohrem

17

— " — wwu

MUNSTER Asynchronous Hyperproperties

Pushdown Model Checking - Well-alignedness

Idea: align the stack actions and use visibly pushdown automata (VPA)

Full alignment on all positions is too restrictive; well-alignedness:
synchronise on observation points, allow some divergence in between

C r r i C i C

. AT AT AT A AT A

try: Orucuruiucucu O
. o TN LV NI VNI IV

try: Ocurucuiuruioc
. e NN N NI BV NIV NIV

tr3: - O—0O—0O—0O—0O—0O—0O—0O

subtraces between blue positions on tr, and tr, are well-aligned v
subtraces between blue positions on tr; and tr; are not well-aligned X

Christoph Ohrem 18

_L; wWwu)
— V0N S TE R Asynchronous Hyperproperties
Pushdown Model Checking - Well-alignedness

Idea: align the stack actions and use visibly pushdown automata (VPA)

Full alignment on all positions is too restrictive; well-alignedness:
synchronise on observation points, allow some divergence in between

a r C

a C a
r: O——O"—0—-0—O0—0-0
tri O——0) O-0--0—O0 .
e O O OO0

subtraces between blue positions on tr, and tr, are well-aligned v
subtraces between blue positions on tr; and tr; are not well-aligned X

Christoph Ohrem 18

— " — wwu

MUNSTER Asynchronous Hyperproperties

Pushdown Model Checking - Well-alignedness

Idea: align the stack actions and use visibly pushdown automata (VPA)

Full alignment on all positions is too restrictive; well-alignedness:
synchronise on observation points, allow some divergence in between

r c

e O 00
i OO ——O=0
tr3: (O O

subtraces between blue positions on tr, and tr, are well-aligned v
subtraces between blue positions on tr; and tr; are not well-aligned X

Christoph Ohrem 18

— —wwu

— MUNSTER Asynchronous Hyperproperties

(Fair)Pushdown Model Checking Mumbling H ’
Fair Pushdown Model Checking with basis AP:

linear exponential

Formulayy ——— APA Ay, — NPA Ay,

translation _al dealternation
Ay =(P,F),A ¥ J
W VPA Az, o

VPA A% (Psjas Fsie on component i1

~
VPA A<Pr’+1

A (7) F),A @i exponential -
——
complementation VPA A,

inductive construction, i :=i+1

K | ¢iff £L(A,) # 0; Model Checking in (k + 1)EXPTIME

Christoph Ohrem

19

— " — wwu

MUNSTER Asynchronous Hyperproperties

Conclusion
We explored different specification logics for the use in Model
Checking:

— LTL and CaRet for single trace properties

— HyperLTL for synchronous hyperproperties

- H,, for general asynchronous hyperproperties

- Stuttering H,, for asynchronous hyperproperties with known stuttering
criteria

- Mumbling H,, for asynchronous hyperproperties with known observation
criteria and pushdown models

Christoph Ohrem

20

