
Tool Support for TLA+: TLC, Apalache, and TLAPS

Stephan Merz

(joint work with Igor Konnov and Markus Kuppe)

https://members.loria.fr/Stephan.Merz/

Inria Nancy – Grand Est & LORIA
Nancy, France

IFIP WG 2.2 meeting 2022, Münster, Germany
Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 1 / 25

https://members.loria.fr/Stephan.Merz/
http://www.inria.fr/
http://www.loria.fr/

TLA+ specification language

describe and verify distributed and concurrent systems

based on mathematical set theory and temporal logic TLA

TLA+ Video Course

documentation available from TLA+ home page

support tools

I TLC explicit-state model checking
I Apalache bounded (symbolic) model checking
I TLAPS interactive proof assistant
I PlusCal algorithmic language, front-end translator
I IDEs TLA+ Toolbox, VS Code extension

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 2 / 25

http://lamport.azurewebsites.net/video/videos.html
http://lamport.azurewebsites.net/tla/tla.html

TLA+ specification language

describe and verify distributed and concurrent systems

based on mathematical set theory and temporal logic TLA

TLA+ Video Course

documentation available from TLA+ home page

support tools

I TLC explicit-state model checking
I Apalache bounded (symbolic) model checking
I TLAPS interactive proof assistant
I PlusCal algorithmic language, front-end translator
I IDEs TLA+ Toolbox, VS Code extension

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 2 / 25

http://lamport.azurewebsites.net/video/videos.html
http://lamport.azurewebsites.net/tla/tla.html

Objective of this presentation

Present three main verification tools for TLA+

I verify (safety and liveness) properties of specifications

I check that a specification refines another one

Expose complementary strengths and weaknesses

I push-button verification vs. human interaction

I coverage and confidence provided

Suggest a workflow for analyzing TLA+ specifications

Presentation by example: distributed termination detection

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 3 / 25

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 4 / 25

Distributed Termination Detection

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

Nodes perform some computation
I a node can be active (double circle) or inactive (simple circle)
I “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
I active node finishes its computation and terminates
I master node announces termination

I active node sends a message to some node in the network
I node receives a message, waking up if inactive

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 5 / 25

Distributed Termination Detection

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

Nodes perform some computation
I a node can be active (double circle) or inactive (simple circle)
I “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
I active node finishes its computation and terminates
I master node announces termination

I active node sends a message to some node in the network
I node receives a message, waking up if inactive

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 5 / 25

Distributed Termination Detection

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

Nodes perform some computation
I a node can be active (double circle) or inactive (simple circle)
I “master node” 0 wishes to detect when all nodes are inactive

Relevant transitions
I active node finishes its computation and terminates
I master node announces termination
I active node sends a message to some node in the network
I node receives a message, waking up if inactive

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 5 / 25

TLA+ Specification: State Representation

MODULE TerminationDetection
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption ∆

= N ∈ Nat \ {0}
Nodes ∆

= 0 .. N−1
VARIABLES active, pending, termDetect
TypeOK ∆

= active ∈ [Nodes→ BOOLEAN] ∧ pending ∈ [Nodes→ Nat] ∧ termDetect ∈ BOOLEAN

vars ∆
= 〈active, pending, termDetect〉

terminated ∆
= ∀n ∈ Node : ¬active[n] ∧ pending[n] = 0

Declaration of constants and variables

Definition of operators
I TypeOK documents expected values of variables: active and color are arrays (functions)
I terminated describes configurations in which the systems is globally inactive

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 6 / 25

TLA+ Specification: Abstract State Machine

Init ∆
= ∧ active ∈ [Nodes→ BOOLEAN]

∧ pending = [n ∈ Nodes 7→ 0]
∧ termDetect ∈ {FALSE, terminated}

Terminate(i) ∆
=

∧ active[i]
∧ active′ = [active EXCEPT ![i] = FALSE]

∧ pending′ = pending
∧ termDetect′ ∈ {termDetect, terminated}

DetectTermination ∆
=

∧ terminated
∧ termDetect′ = TRUE

∧ UNCHANGED 〈active, pending〉

SendMsg(i, j) ∆
=

∧ active[i]
∧ pending′ = [pending EXCEPT ![j] = @ + 1]
∧ UNCHANGED 〈active, termDetect〉

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @− 1]
∧ UNCHANGED termDetect

Next ∆
= ∨ ∃i ∈ Node : Terminate(i) ∨ RcvMsg(i)
∨ ∃i, j ∈ Node : SendMsg(i, j)
∨ DetectTermination

Spec ∆
= Init∧2[Next]vars ∧WFvars(DetectTermination)

initial condition: arbitrary activation status, no pending messages

state transitions: local termination, termination detection,

sending/receiving of messages

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 7 / 25

TLA+ Specification: Abstract State Machine

Init ∆
= ∧ active ∈ [Nodes→ BOOLEAN]

∧ pending = [n ∈ Nodes 7→ 0]
∧ termDetect ∈ {FALSE, terminated}

Terminate(i) ∆
=

∧ active[i]
∧ active′ = [active EXCEPT ![i] = FALSE]

∧ pending′ = pending
∧ termDetect′ ∈ {termDetect, terminated}

DetectTermination ∆
=

∧ terminated
∧ termDetect′ = TRUE

∧ UNCHANGED 〈active, pending〉

SendMsg(i, j) ∆
=

∧ active[i]
∧ pending′ = [pending EXCEPT ![j] = @ + 1]
∧ UNCHANGED 〈active, termDetect〉

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @− 1]
∧ UNCHANGED termDetect

Next ∆
= ∨ ∃i ∈ Node : Terminate(i) ∨ RcvMsg(i)
∨ ∃i, j ∈ Node : SendMsg(i, j)
∨ DetectTermination

Spec ∆
= Init∧2[Next]vars ∧WFvars(DetectTermination)

initial condition: arbitrary activation status, no pending messages

state transitions: local termination, termination detection,

sending/receiving of messages

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 7 / 25

TLA+ Specification: Abstract State Machine

Init ∆
= ∧ active ∈ [Nodes→ BOOLEAN]

∧ pending = [n ∈ Nodes 7→ 0]
∧ termDetect ∈ {FALSE, terminated}

Terminate(i) ∆
=

∧ active[i]
∧ active′ = [active EXCEPT ![i] = FALSE]

∧ pending′ = pending
∧ termDetect′ ∈ {termDetect, terminated}

DetectTermination ∆
=

∧ terminated
∧ termDetect′ = TRUE

∧ UNCHANGED 〈active, pending〉

SendMsg(i, j) ∆
=

∧ active[i]
∧ pending′ = [pending EXCEPT ![j] = @ + 1]
∧ UNCHANGED 〈active, termDetect〉

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @− 1]
∧ UNCHANGED termDetect

Next ∆
= ∨ ∃i ∈ Node : Terminate(i) ∨ RcvMsg(i)
∨ ∃i, j ∈ Node : SendMsg(i, j)
∨ DetectTermination

Spec ∆
= Init∧2[Next]vars ∧WFvars(DetectTermination)

initial condition: arbitrary activation status, no pending messages

state transitions: local termination, termination detection, sending/receiving of messages

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 7 / 25

TLA+ Specification: Abstract State Machine

Init ∆
= ∧ active ∈ [Nodes→ BOOLEAN]

∧ pending = [n ∈ Nodes 7→ 0]
∧ termDetect ∈ {FALSE, terminated}

Terminate(i) ∆
=

∧ active[i]
∧ active′ = [active EXCEPT ![i] = FALSE]

∧ pending′ = pending
∧ termDetect′ ∈ {termDetect, terminated}

DetectTermination ∆
=

∧ terminated
∧ termDetect′ = TRUE

∧ UNCHANGED 〈active, pending〉

SendMsg(i, j) ∆
=

∧ active[i]
∧ pending′ = [pending EXCEPT ![j] = @ + 1]
∧ UNCHANGED 〈active, termDetect〉

RcvMsg(i) ∆
=

∧ pending[i] > 0
∧ active′ = [active EXCEPT ![i] = TRUE]

∧ pending′ = [pending EXCEPT ![i] = @− 1]
∧ UNCHANGED termDetect

Next ∆
= ∨ ∃i ∈ Node : Terminate(i) ∨ RcvMsg(i)
∨ ∃i, j ∈ Node : SendMsg(i, j)
∨ DetectTermination

Spec ∆
= Init∧2[Next]vars ∧WFvars(DetectTermination)

initial condition: arbitrary activation status, no pending messages

state transitions: local termination, termination detection, sending/receiving of messages

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 7 / 25

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 8 / 25

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

I type correctness Spec⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

I safety of detection Spec⇒ 2(termDetect⇒ terminated)

formally again expressed as an invariant

I quiescence of the system Spec⇒ 2(terminated⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

I eventual detection Spec⇒ 2(terminated⇒ 3termDetect)

note: the system isn’t guaranteed to terminate

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 9 / 25

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

I type correctness Spec⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

I safety of detection Spec⇒ 2(termDetect⇒ terminated)

formally again expressed as an invariant

I quiescence of the system Spec⇒ 2(terminated⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

I eventual detection Spec⇒ 2(terminated⇒ 3termDetect)

note: the system isn’t guaranteed to terminate

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 9 / 25

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

I type correctness Spec⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

I safety of detection Spec⇒ 2(termDetect⇒ terminated)

formally again expressed as an invariant

I quiescence of the system Spec⇒ 2(terminated⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

I eventual detection Spec⇒ 2(terminated⇒ 3termDetect)

note: the system isn’t guaranteed to terminate

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 9 / 25

Expressing Correctness Properties

1 Safety properties: “nothing bad ever happens”

I type correctness Spec⇒ 2TypeOK

TypeOK is true throughout any execution of Spec

I safety of detection Spec⇒ 2(termDetect⇒ terminated)

formally again expressed as an invariant

I quiescence of the system Spec⇒ 2(terminated⇒ 2terminated)

2 Liveness properties: “something good happens eventually”

I eventual detection Spec⇒ 2(terminated⇒ 3termDetect)

note: the system isn’t guaranteed to terminate

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 9 / 25

Explicit-State Model Checking Using TLC

Create a model: finite instance of a TLA+ specification

I instantiate constant parameters and bound potentially large variable values
for example, create instance for N = 4
add state constraint ∀n ∈ Nodes : pending[n] ≤ 3

I indicate operator corresponding to system specification and properties to verify

I TLC reports 4,097 distinct states (262,145 for N = 6)

TLC integrated into TLA+ Toolbox and Visual Studio Code Extension

Exploit the automation of TLC for gaining confidence in the specification

I check putative (non-)properties and make changes to specification

I e.g., remove guard active[i] from definition of SendMsg(i, j)

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 10 / 25

http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
https://marketplace.visualstudio.com/items?itemName=alygin.vscode-tlaplus

Explicit-State Model Checking Using TLC

Create a model: finite instance of a TLA+ specification

I instantiate constant parameters and bound potentially large variable values
for example, create instance for N = 4
add state constraint ∀n ∈ Nodes : pending[n] ≤ 3

I indicate operator corresponding to system specification and properties to verify

I TLC reports 4,097 distinct states (262,145 for N = 6)

TLC integrated into TLA+ Toolbox and Visual Studio Code Extension

Exploit the automation of TLC for gaining confidence in the specification

I check putative (non-)properties and make changes to specification

I e.g., remove guard active[i] from definition of SendMsg(i, j)

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 10 / 25

http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
https://marketplace.visualstudio.com/items?itemName=alygin.vscode-tlaplus

Bounded Model Checking Using Apalache

Apalache: symbolic (SMT-based) model checker

CONSTANT
* @type: Int;
N

VARIABLES
* @type: Int→ Bool;
active,
* @type: Int→ Int;
pending,
* @type: Bool;
termDetect

I check safety properties for finite executions of k transitions
I relies on constraint solving rather than state enumeration
I requires type annotations for constant and variable parameters
I must fix N, no bound on the number of pending messages

Performance when increasing N and k

checking both invariants:

I type correctness

I safety of termination detection
5 10 15 20

Bound on execution length, k

101

102

Ti
m

e,
 se

co
nd

s,
lo

gs
ca

le

N=6
N=5
N=4
N=3

Apalache is particularly sensitive to the number of transitions

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 11 / 25

Bounded Model Checking Using Apalache

Apalache: symbolic (SMT-based) model checker

CONSTANT
* @type: Int;
N

VARIABLES
* @type: Int→ Bool;
active,
* @type: Int→ Int;
pending,
* @type: Bool;
termDetect

I check safety properties for finite executions of k transitions
I relies on constraint solving rather than state enumeration
I requires type annotations for constant and variable parameters
I must fix N, no bound on the number of pending messages

Performance when increasing N and k

checking both invariants:

I type correctness

I safety of termination detection
5 10 15 20

Bound on execution length, k

101

102

Ti
m

e,
 se

co
nd

s,
lo

gs
ca

le

N=6
N=5
N=4
N=3

Apalache is particularly sensitive to the number of transitions

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 11 / 25

Apalache for Checking Inductive Invariants

TypeOK ∧ (termDetect⇒ terminated) is an inductive invariant

I implied by the initial condition

I preserved by every step allowed by the transition relation

Apalache is well suited for verifying inductive invariants

20 40 60 80 100
Number of nodes, N

101

102

Ti
m

e,
 se

co
nd

s,
lo

gs
ca

le IndInv

I check Init⇒ IndInv and IndInv∧ [Next]vars ⇒ IndInv′

through Apalache queries for executions of length 0 and 1

I verify quiescence property by checking
IndInv∧ [Next]vars ⇒ (terminated⇒ terminated′)

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 12 / 25

Apalache for Checking Inductive Invariants

TypeOK ∧ (termDetect⇒ terminated) is an inductive invariant

I implied by the initial condition

I preserved by every step allowed by the transition relation

Apalache is well suited for verifying inductive invariants

20 40 60 80 100
Number of nodes, N

101

102

Ti
m

e,
 se

co
nd

s,
lo

gs
ca

le IndInv

I check Init⇒ IndInv and IndInv∧ [Next]vars ⇒ IndInv′

through Apalache queries for executions of length 0 and 1

I verify quiescence property by checking
IndInv∧ [Next]vars ⇒ (terminated⇒ terminated′)

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 12 / 25

Apalache for Checking Inductive Invariants

TypeOK ∧ (termDetect⇒ terminated) is an inductive invariant

I implied by the initial condition

I preserved by every step allowed by the transition relation

Apalache is well suited for verifying inductive invariants

20 40 60 80 100
Number of nodes, N

101

102

Ti
m

e,
 se

co
nd

s,
lo

gs
ca

le IndInv

I check Init⇒ IndInv and IndInv∧ [Next]vars ⇒ IndInv′

through Apalache queries for executions of length 0 and 1

I verify quiescence property by checking
IndInv∧ [Next]vars ⇒ (terminated⇒ terminated′)

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 12 / 25

Using TLAPS to Prove Correctness Properties

TLAPS: proof assistant for verifying TLA+ specifications
I proof effort is independent of the size of the instance
I relies on user interaction to guide verification
I uses automatic back-end provers for discharging proof obligations

TLAPS proof of type correctness

THEOREM TypeCorrect ∆
= Spec⇒ 2TypeOK

〈1〉1. Init⇒ TypeOK
〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈1〉3. QED BY〈1〉1, 〈1〉2, PTL DEF Spec

I hierarchical proof language represents proof tree
I steps can be proved in any order: usually start with QED step
I invariant follows from steps 〈1〉1 and 〈1〉2 by temporal logic

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 13 / 25

Using TLAPS to Prove Correctness Properties

TLAPS: proof assistant for verifying TLA+ specifications
I proof effort is independent of the size of the instance
I relies on user interaction to guide verification
I uses automatic back-end provers for discharging proof obligations

TLAPS proof of type correctness

THEOREM TypeCorrect ∆
= Spec⇒ 2TypeOK

〈1〉1. Init⇒ TypeOK
〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈1〉3. QED BY〈1〉1, 〈1〉2, PTL DEF Spec

I hierarchical proof language represents proof tree
I steps can be proved in any order: usually start with QED step
I invariant follows from steps 〈1〉1 and 〈1〉2 by temporal logic

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 13 / 25

Proving non-temporal facts

Brute force: cite relevant facts, expand definitions

〈1〉1. Init⇒ TypeOK
BY NAssumption DEFS Init, TypeOK, Node, terminated

Hierarchical proofs when brute force fails

〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈2〉 SUFFICES ASSUME TypeOK, [Next]vars PROVE TypeOK′

OBVIOUS

〈2〉 USE NAssumption DEF Node, TypeOK
〈2〉1. CASE DetectTermination

BY 〈2〉1 DEF DetectTermination
〈2〉2. ASSUME NEW i ∈ Node, Terminate(i) PROVE TypeOK′

BY 〈2〉2 DEF Terminate, terminated
. . . similarly for the remaining actions . . .
〈2〉 QED BY 〈2〉1, 〈2〉2, . . . DEF Next

Toolbox IDE assists

with decomposition

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 14 / 25

Proving non-temporal facts

Brute force: cite relevant facts, expand definitions

〈1〉1. Init⇒ TypeOK
BY NAssumption DEFS Init, TypeOK, Node, terminated

Hierarchical proofs when brute force fails

〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈2〉 SUFFICES ASSUME TypeOK, [Next]vars PROVE TypeOK′

OBVIOUS

〈2〉 USE NAssumption DEF Node, TypeOK
〈2〉1. CASE DetectTermination

BY 〈2〉1 DEF DetectTermination
〈2〉2. ASSUME NEW i ∈ Node, Terminate(i) PROVE TypeOK′

BY 〈2〉2 DEF Terminate, terminated
. . . similarly for the remaining actions . . .
〈2〉 QED BY 〈2〉1, 〈2〉2, . . . DEF Next

Toolbox IDE assists

with decomposition

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 14 / 25

Proving non-temporal facts

Brute force: cite relevant facts, expand definitions

〈1〉1. Init⇒ TypeOK
BY NAssumption DEFS Init, TypeOK, Node, terminated

Hierarchical proofs when brute force fails

〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK′

〈2〉 SUFFICES ASSUME TypeOK, [Next]vars PROVE TypeOK′

OBVIOUS

〈2〉 USE NAssumption DEF Node, TypeOK
〈2〉1. CASE DetectTermination

BY 〈2〉1 DEF DetectTermination
〈2〉2. ASSUME NEW i ∈ Node, Terminate(i) PROVE TypeOK′

BY 〈2〉2 DEF Terminate, terminated
. . . similarly for the remaining actions . . .
〈2〉 QED BY 〈2〉1, 〈2〉2, . . . DEF Next

Toolbox IDE assists

with decomposition

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 14 / 25

Proofs of Remaining Safety Properties

Safe ∆
= termDetect⇒ terminated

Apalache suggested that Safe is inductive relative to TypeOK

THEOREM Safety ∆
= Spec⇒ 2Safe

〈1〉1. Init⇒ Safe
〈1〉2. TypeOK ∧ Safe∧ [Next]vars ⇒ Safe′

〈1〉3. QED BY 〈1〉1, 〈1〉2, TypeCorrect, PTL DEF Spec

I use previously established theorem of type correctness
I proofs of steps 〈1〉1 and 〈1〉2 are similar as before

Proof of quiescence is similar
I proofs of safety properties require essentially no temporal logic
I automation of TLA+ set theory is the main concern

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 15 / 25

Proofs of Remaining Safety Properties

Safe ∆
= termDetect⇒ terminated

Apalache suggested that Safe is inductive relative to TypeOK

THEOREM Safety ∆
= Spec⇒ 2Safe

〈1〉1. Init⇒ Safe
〈1〉2. TypeOK ∧ Safe∧ [Next]vars ⇒ Safe′

〈1〉3. QED BY 〈1〉1, 〈1〉2, TypeCorrect, PTL DEF Spec

I use previously established theorem of type correctness
I proofs of steps 〈1〉1 and 〈1〉2 are similar as before

Proof of quiescence is similar
I proofs of safety properties require essentially no temporal logic
I automation of TLA+ set theory is the main concern

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 15 / 25

Liveness Proof

Liveness properties require fairness hypotheses
I reasoning about fairness requires establishing enabledness of action

LEMMA EnabledDT ∆
= ASSUME TypeOK

PROVE (ENABLED 〈DetectTermination〉vars) ≡ terminated∧ ¬termDetect

I TLAPS provides specific backends for reasoning about ENABLED

Now prove liveness theorem

THEOREM Liveness ∆
= Spec⇒ 2(terminated⇒ 3termDetect)

〈1〉 DEFINE P ∆
= terminated∧ ¬termDetect

〈1〉1. TypeOK ∧ P∧ [Next]vars ⇒ P′ ∨ termDetect′

〈1〉2. TypeOK ∧ P∧ 〈DetectTermination〉vars ⇒ termDetect′

〈1〉3. TypeOK ∧ P⇒ ENABLED 〈DetectTermination〉vars
〈1〉4. QED BY 〈1〉1, 〈1〉2, 〈1〉3, TypeCorrect, PTL DEF Spec

I again handled by action-level reasoning and propositional temporal logic

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 16 / 25

Liveness Proof

Liveness properties require fairness hypotheses
I reasoning about fairness requires establishing enabledness of action

LEMMA EnabledDT ∆
= ASSUME TypeOK

PROVE (ENABLED 〈DetectTermination〉vars) ≡ terminated∧ ¬termDetect

I TLAPS provides specific backends for reasoning about ENABLED

Now prove liveness theorem

THEOREM Liveness ∆
= Spec⇒ 2(terminated⇒ 3termDetect)

〈1〉 DEFINE P ∆
= terminated∧ ¬termDetect

〈1〉1. TypeOK ∧ P∧ [Next]vars ⇒ P′ ∨ termDetect′

〈1〉2. TypeOK ∧ P∧ 〈DetectTermination〉vars ⇒ termDetect′

〈1〉3. TypeOK ∧ P⇒ ENABLED 〈DetectTermination〉vars
〈1〉4. QED BY 〈1〉1, 〈1〉2, 〈1〉3, TypeCorrect, PTL DEF Spec

I again handled by action-level reasoning and propositional temporal logic

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 16 / 25

TLAPS Architecture

TLA+ Proof System

Proof Manager

Back-end provers

TLA+ Toolbox
(IDE)

Pre-process module
Generate

proof obligations

Call external provers
to attempt proof

Certify proof
(optional)

Isabelle/TLA+ Zenon SMT PTL

Isabelle/TLA+: faithful encoding of TLA+ in Isabelle’s meta-logic

PTL: decision procedure for propositional temporal logic

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 17 / 25

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 18 / 25

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1

;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

I nodes remember difference between numbers of messages sent and received
I token accumulates sum of differences
I receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
I sum of counters at master node and token is zero
I master node is inactive and clean, and it holds a clean token

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 19 / 25

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1

;

0

3

2

1 · · · ;

0

3

2

1

I nodes remember difference between numbers of messages sent and received
I token accumulates sum of differences
I receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
I sum of counters at master node and token is zero
I master node is inactive and clean, and it holds a clean token

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 19 / 25

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1

· · · ;

0

3

2

1

I nodes remember difference between numbers of messages sent and received
I token accumulates sum of differences
I receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
I sum of counters at master node and token is zero
I master node is inactive and clean, and it holds a clean token

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 19 / 25

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

I nodes remember difference between numbers of messages sent and received
I token accumulates sum of differences
I receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
I sum of counters at master node and token is zero
I master node is inactive and clean, and it holds a clean token

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 19 / 25

Overall Idea of Safra’s algorithm (EWD 998, 1986)

Token circulating on the ring

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

I nodes remember difference between numbers of messages sent and received
I token accumulates sum of differences
I receiving node becomes “stained”, passing token collects “stain”

Condition for detecting termination
I sum of counters at master node and token is zero
I master node is inactive and clean, and it holds a clean token

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 19 / 25

Verification in TLA+ (1)

Similar correctness properties as for the abstract state machine
I type correctness, safety, liveness, quiescence

Explicit model checking using TLC

I fix number of nodes, assume bounds on counter values

values of bounds # states time
3 nodes, node counters ≤ 3 1.3 million 42 sec
4 nodes, node counters ≤ 3 219 million 50 min

Is this enough for gaining confidence?
I model checking for 5 or 6 nodes looks infeasible
I experiment: error found for N = 4, but not N = 3
I TLC supports random exploration, finds seeded bugs in majority of runs

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 20 / 25

Verification in TLA+ (1)

Similar correctness properties as for the abstract state machine
I type correctness, safety, liveness, quiescence

Explicit model checking using TLC

I fix number of nodes, assume bounds on counter values

values of bounds # states time
3 nodes, node counters ≤ 3 1.3 million 42 sec
4 nodes, node counters ≤ 3 219 million 50 min

Is this enough for gaining confidence?
I model checking for 5 or 6 nodes looks infeasible
I experiment: error found for N = 4, but not N = 3
I TLC supports random exploration, finds seeded bugs in majority of runs

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 20 / 25

Verification in TLA+ (1)

Similar correctness properties as for the abstract state machine
I type correctness, safety, liveness, quiescence

Explicit model checking using TLC

I fix number of nodes, assume bounds on counter values

values of bounds # states time
3 nodes, node counters ≤ 3 1.3 million 42 sec
4 nodes, node counters ≤ 3 219 million 50 min

Is this enough for gaining confidence?
I model checking for 5 or 6 nodes looks infeasible
I experiment: error found for N = 4, but not N = 3
I TLC supports random exploration, finds seeded bugs in majority of runs

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 20 / 25

Verification in TLA+ (2)

Checking inductive invariants
I type correctness
I invariant provided by Dijkstra (EWD 998), inductive relative to type correctness

Sum(f , S) ∆
= FoldFunctionOnSet(+, 0, f , S)

Inv ∆
= ∧ Sum(pending, Node) = Sum(counter, Node)
∧ ∨ ∧ ∀i ∈ token.pos + 1, N− 1 : active[i] = FALSE

∧ token.q = Sum(counter, (token.pos + 1) .. (N− 1))
∨ Sum(counter, 0 .. token.pos) + token.q > 0
∨ ∃i ∈ 0 .. token.pos : color[i] = “orange”
∨ token.color = “orange”

Verification with TLA+ tools
I Apalache confirms that TypeOK ∧ Inv is inductive
I TLAPS proves Spec⇒ 2Inv for arbitrary N, modulo lemmas on Sum

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 21 / 25

Verification in TLA+ (2)

Checking inductive invariants
I type correctness
I invariant provided by Dijkstra (EWD 998), inductive relative to type correctness

Sum(f , S) ∆
= FoldFunctionOnSet(+, 0, f , S)

Inv ∆
= ∧ Sum(pending, Node) = Sum(counter, Node)
∧ ∨ ∧ ∀i ∈ token.pos + 1, N− 1 : active[i] = FALSE

∧ token.q = Sum(counter, (token.pos + 1) .. (N− 1))
∨ Sum(counter, 0 .. token.pos) + token.q > 0
∨ ∃i ∈ 0 .. token.pos : color[i] = “orange”
∨ token.color = “orange”

Verification with TLA+ tools
I Apalache confirms that TypeOK ∧ Inv is inductive
I TLAPS proves Spec⇒ 2Inv for arbitrary N, modulo lemmas on Sum

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 21 / 25

Correctness by Refinement

Specifications and properties are TLA+ formulas

I THEOREM Spec⇒ Prop every run of Spec satisfies property Prop

I THEOREM Impl⇒ Spec every run of Impl corresponds to a run of Spec

I stuttering invariance of TLA+ formulas is important here

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec⇒ TD!Spec

I TLC checks refinement relation just as it verifies correctness properties
I Apalache verifies safety part of refinement by checking implications

Init⇒ TD!Init TypeOK ∧ Inv∧ [Next]vars ⇒ [TD!Next]TD!vars

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 22 / 25

Correctness by Refinement

Specifications and properties are TLA+ formulas

I THEOREM Spec⇒ Prop every run of Spec satisfies property Prop

I THEOREM Impl⇒ Spec every run of Impl corresponds to a run of Spec

I stuttering invariance of TLA+ formulas is important here

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec⇒ TD!Spec

I TLC checks refinement relation just as it verifies correctness properties
I Apalache verifies safety part of refinement by checking implications

Init⇒ TD!Init TypeOK ∧ Inv∧ [Next]vars ⇒ [TD!Next]TD!vars

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 22 / 25

Correctness by Refinement

Specifications and properties are TLA+ formulas

I THEOREM Spec⇒ Prop every run of Spec satisfies property Prop

I THEOREM Impl⇒ Spec every run of Impl corresponds to a run of Spec

I stuttering invariance of TLA+ formulas is important here

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec⇒ TD!Spec

I TLC checks refinement relation just as it verifies correctness properties
I Apalache verifies safety part of refinement by checking implications

Init⇒ TD!Init TypeOK ∧ Inv∧ [Next]vars ⇒ [TD!Next]TD!vars

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 22 / 25

Correctness by Refinement

Specifications and properties are TLA+ formulas

I THEOREM Spec⇒ Prop every run of Spec satisfies property Prop

I THEOREM Impl⇒ Spec every run of Impl corresponds to a run of Spec

I stuttering invariance of TLA+ formulas is important here

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec⇒ TD!Spec

I TLC checks refinement relation just as it verifies correctness properties
I Apalache verifies safety part of refinement by checking implications

Init⇒ TD!Init TypeOK ∧ Inv∧ [Next]vars ⇒ [TD!Next]TD!vars

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 22 / 25

Correctness by Refinement

Specifications and properties are TLA+ formulas

I THEOREM Spec⇒ Prop every run of Spec satisfies property Prop

I THEOREM Impl⇒ Spec every run of Impl corresponds to a run of Spec

I stuttering invariance of TLA+ formulas is important here

Use existing tools for verifying refinement

TD ∆
= INSTANCE TerminationDetection THEOREM Spec⇒ TD!Spec

I TLC checks refinement relation just as it verifies correctness properties
I Apalache verifies safety part of refinement by checking implications

Init⇒ TD!Init TypeOK ∧ Inv∧ [Next]vars ⇒ [TD!Next]TD!vars

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 22 / 25

Proving Refinement Using TLAPS

Safety part of refinement

I rely on previous proofs of type correctness and inductive invariant
I proving initialization and step simulation is then straightforward

Proof of liveness: set up proof by contradiction

BSpec ∆
= 2TypeOK ∧2Inv∧2¬termDetect∧2[Next]vars ∧WFvars(System)

I 3 rounds of the token on the ring may be necessary
I (i) bring the token back to node 0, (ii) all nodes are white, (iii) token is also white

I prove corresponding lemmas, e.g. BSpec⇒ (terminated ; (terminated∧ token.p = 0))

I conclude that action TD.DetectTermination cannot be always enabled
I effort: 245 lines of proof, less than one person-day

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 23 / 25

Proving Refinement Using TLAPS

Safety part of refinement

I rely on previous proofs of type correctness and inductive invariant
I proving initialization and step simulation is then straightforward

Proof of liveness: set up proof by contradiction

BSpec ∆
= 2TypeOK ∧2Inv∧2¬termDetect∧2[Next]vars ∧WFvars(System)

I 3 rounds of the token on the ring may be necessary
I (i) bring the token back to node 0, (ii) all nodes are white, (iii) token is also white

I prove corresponding lemmas, e.g. BSpec⇒ (terminated ; (terminated∧ token.p = 0))

I conclude that action TD.DetectTermination cannot be always enabled
I effort: 245 lines of proof, less than one person-day

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 23 / 25

Outline

1 Distributed Termination Detection

2 Checking Properties of the Specification

3 Safra’s Algorithm for Termination Detection

4 Conclusion

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 24 / 25

Summing Up

Complementary strengths and weaknesses of TLA+ tools
I TLC essentially push-button, random exploration finds trivial bugs
I Apalache: bounded model checking, particularly for verifying inductive invariants
I TLAPS: highest confidence for proving properties of arbitrary instances

Tools share the same input language, modulo restrictions
I TLC and Apalache require finite models, Apalache doesn’t handle general recursion
I TLAPS does not yet support recursive operators and relies on theorem libraries

Ongoing and future work
I TLC: parallelize liveness checking, visualize counter-examples
I Apalache: explore alternative SMT encodings, adapt algorithms such as IC3
I TLAPS: better support for higher-order reasoning and for liveness proofs
I IDEs: help with joint use of the tools, e.g. model checking from a proof step

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 25 / 25

Summing Up

Complementary strengths and weaknesses of TLA+ tools
I TLC essentially push-button, random exploration finds trivial bugs
I Apalache: bounded model checking, particularly for verifying inductive invariants
I TLAPS: highest confidence for proving properties of arbitrary instances

Tools share the same input language, modulo restrictions
I TLC and Apalache require finite models, Apalache doesn’t handle general recursion
I TLAPS does not yet support recursive operators and relies on theorem libraries

Ongoing and future work
I TLC: parallelize liveness checking, visualize counter-examples
I Apalache: explore alternative SMT encodings, adapt algorithms such as IC3
I TLAPS: better support for higher-order reasoning and for liveness proofs
I IDEs: help with joint use of the tools, e.g. model checking from a proof step

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 25 / 25

Summing Up

Complementary strengths and weaknesses of TLA+ tools
I TLC essentially push-button, random exploration finds trivial bugs
I Apalache: bounded model checking, particularly for verifying inductive invariants
I TLAPS: highest confidence for proving properties of arbitrary instances

Tools share the same input language, modulo restrictions
I TLC and Apalache require finite models, Apalache doesn’t handle general recursion
I TLAPS does not yet support recursive operators and relies on theorem libraries

Ongoing and future work
I TLC: parallelize liveness checking, visualize counter-examples
I Apalache: explore alternative SMT encodings, adapt algorithms such as IC3
I TLAPS: better support for higher-order reasoning and for liveness proofs
I IDEs: help with joint use of the tools, e.g. model checking from a proof step

Stephan Merz (INRIA Nancy) Tool Support for TLA+ : TLC, Apalache, and TLAPS IFIP WG 2.2, Münster 2022 25 / 25

	Distributed Termination Detection
	Checking Properties of the Specification
	Safra's Algorithm for Termination Detection
	Conclusion

