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VASS Games

VASS control states are split into angelic and demonic subsets.
Demon/Angel wants to prolong/shorten a computation initiated in pv⃗.

Let σ and π be strategies for Angel and Demon, and let Compσ,π(pv⃗) be
the maximal computation initiated in pv⃗ determined by σ and π.

Tval(pv⃗) = sup
π

inf
σ
|Compσ,π(pv⃗)| = inf

σ
sup
π
|Compσ,π(pv⃗)|

Termination complexity: L :N→N∞ defined by

L(n) = max
{

Tval(pv⃗) | p ∈ Q , v⃗ ≤ n⃗
}

Cval[c](pv⃗) = sup
π

inf
σ
max[c](Compσ,π(pv⃗)) = inf

σ
sup
π

max[c](Compσ,π(pv⃗))

Counter complexity: C[c] :N→N∞ defined by

C[c](n) = max
{

Cval[c](pv⃗) | p ∈ Q , v⃗ ≤ n⃗
}

Antonín Kučera (FI MU Brno) VASS Termination Complexity IFIP WG2.2, 2022 3 / 21



VASS Games

VASS control states are split into angelic and demonic subsets.
Demon/Angel wants to prolong/shorten a computation initiated in pv⃗.

Let σ and π be strategies for Angel and Demon, and let Compσ,π(pv⃗) be
the maximal computation initiated in pv⃗ determined by σ and π.

Tval(pv⃗) = sup
π

inf
σ
|Compσ,π(pv⃗)| = inf

σ
sup
π
|Compσ,π(pv⃗)|

Termination complexity: L :N→N∞ defined by

L(n) = max
{

Tval(pv⃗) | p ∈ Q , v⃗ ≤ n⃗
}

Cval[c](pv⃗) = sup
π

inf
σ
max[c](Compσ,π(pv⃗)) = inf

σ
sup
π

max[c](Compσ,π(pv⃗))

Counter complexity: C[c] :N→N∞ defined by

C[c](n) = max
{

Cval[c](pv⃗) | p ∈ Q , v⃗ ≤ n⃗
}
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Example I

input i
while ( i >0)

i = i −1
j = i
while ( j >0)

j = j −1

input i
while ( i >0)

i = i −1
j = 0 ; Aux = 0
while ( i >0)

i = i −1
j = j+1
Aux = Aux+1

while (Aux>0)
i = i+1
Aux = Aux−1

while ( j >0)
j = j −1

(0,0,0)

(0,0,0)

(0,0,0)

(−1,0,0)

(0,0,0)

(0,−1,−1)

(−1,+1,+1)

(+1,0,−1)

(0,−1,0)
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Example II

input i ;
j :=0 ; k :=0 ; z :=0 ;

i f condi t ion / / demonic choice / /
then while ( i >0) do j ++; k :=k+ i ; i −−; done
else j := i * i ; k := i ;

while ( i >0) do j := j+k ; i −−; done

choose : / / a n g e l i c choice / /
while ( j >0) do j −−; z++ done

or : while ( k>0) do k−−; z++ done
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Some Basic Questions (1)

Can we decide whether L(n) is finite for all n?

Demonic VASS: L(n) = ∞ for some n iff there exists a “self-covering”
computation pv⃗ →∗ pu⃗ where v⃗ ≤ u⃗. Hence, the problem is in P.

VASS Games: If Angel has some strategy σ∗ such that
supπ |Compσ

∗,π(pv⃗)| is finite for every pv⃗, then Angel has a counterless
strategy with this property. The problem is NP-complete.
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Some Basic Questions (2)

How fast can L(n) grow?

F1(n) = 2n + 1, F2(n) = n2, F3(n) = 2n,

Fk+1(n) = Fk ◦ · · · ◦ Fk︸         ︷︷         ︸
n

(n) for k ≥ 3

Gk =
{
f :N→N | f ≤ Fk ◦ · · · ◦ Fk︸         ︷︷         ︸

µ

for some µ ∈N
}

For every k , there exists a terminating demonic VASS such that
L(n) ≥ Fk (n) for all sufficiently large n.
[Mayr and Meyer; JACM 1981]

For every terminating demonic VASS with d counters, L ∈ Gd+1.
[Schmitz; Icalp 2018]
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Grzegorczyk Complexity of Demonic VASS

Theorem 1 ([K., Leroux, Velan; LICS 2020)
Let k ∈N. The problem whether L ∈ Gk for a given demonic VASS is in P.
Furthermore, if L < Gk , then there is a constant c such that
L(n) ≥ Fk+1(⌊n/c⌋) for all sufficiently large n.
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Polynomial Complexity of Demonic VASS

Theorem 2 (Brázdil, Chatterjee, K., Novotný, Velan, Zuleger;
LICS 2018)
The problem whether L ∈ O(n) for a given demonic VASS is in P.
Furthermore, if L < O(n), then L ∈ Ω(n2).
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Linear VASS termination

Assume a strongly connected demonic VASS A.

Let Inc be the set of effect of all simple cycles.

Inc is computable in time polynomial in A and exponential in d.
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Linear VASS termination (2)
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Linear VASS termination (3)

Let A be a VASS of dimension d where Q is the set of states.

Every c ∈ Rd and h : Q → R determine the corresponding weighted linear
map defined by µ(pv⃗) = c · v⃗ + hp

A weighted linear map µ is a weighted linear ranking function for A if c ≥ 0
and there is ε > 0 s.t., for every pv⃗ and pv⃗ → qu⃗,

µ(pv⃗) ≥ µ(qu⃗) + ε
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Linear VASS termination (4)

Theorem 3
Let A be a VASS. We have that L(n) ∈ O(n) iff there exists a weighted linear
ranking function for A. Further, the existence of a weighted linear ranking
function for A can be decided in time polynomial in ||A||.

Establishing the existence of a weighted linear ranking function for A is a
sound and complete method for proving linear VASS termination.
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Deciding “Polynomiality” of Demonic VASS

Theorem 4 (Leroux; Icalp 2018)
The problem whether there exist k ∈N such that L ∈ O(nk ) for a given
demonic VASS is in P. Furthermore, if L < O(nk ) for any k , then L ∈ 2Ω(n).

An iteration scheme ofA is a sequence of cycles ϱ1, . . . , ϱm such that every
counter c decreased by some ϱi is strictly increased by the total effect of
the sequence.

L(n) is not polynomial iff there is an iteration scheme of A.

C[c](n) is not polynomial iff there is an iteration scheme whose total effect
increases c.
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Classifying Polynomial Demonic VASS

Theorem 5 (Zuleger, FoSSaCS 2020)

Let A be a strongly connected demonic VASS with d counters. For every
counter c, we have that either C[c] ∈ Θ(nk ) for some 1 ≤ k ≤ 2d , or
C[c] ∈ 2Ω(n). It is decidable in polynomial time which of the two possibilities
holds. In the first case, the k is computable in polynomial time.

(n,n,n)

(n2,n,2Ω(n))

A
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Classifying Polynomial Demonic VASS (2)

Theorem 6 (Ajdarów, K.; CONCUR 2021)

Let k ≥ 1. For every demonic VASS A we have that L is either in O(nk ) or in
Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk ) is in P for k = 1, and coNP-complete for k ≥ 2;
L ∈ Ω(nk ) is in P for k ≤ 2, and NP-complete for k ≥ 3;
L ∈ Θ(nk ) is in P for k = 1, coNP-complete for k = 2, and DP-complete
for k ≥ 3.

Similar results hold also for C[c].
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Classifying Polynomial Demonic VASS (3)

For every v⃗ = (k1, . . . , kd) ∈Nd , let C[c, v⃗] :N→N∞ where

C[c, v⃗](n) = max
{
Cval[c](pu⃗) | p ∈ Q , u⃗ = (nk1 , . . . ,nkd )

}

Theorem 7

Let A be a strongly connected demonic VASS with d counters, and let v⃗ ∈Nd

such that v⃗(i) ≤ 2j·d for every i ≤ d, where j < |Q |. For every counter c, we
have that either C[c, v⃗] ∈ Θ(nk ) for some 1 ≤ k ≤ 2(j+1)·d , or C[c, v⃗] ∈ 2Ω(n). It
is decidable in polynomial time which of the two possibilities holds. In the first
case, the k is computable in polynomial time.
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Classifying Polynomial Demonic VASS (4)
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Results about VASS Games

Theorem 8 (Ajdarów, K.; CONCUR 2021)

Let k ≥ 1. For every VASS game A we have that L is either in O(nk ) or in
Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk ) is NP-complete for k=1 and PSPACE-complete for k≥2;
L ∈ Ω(nk ) is in P for k=1, coNP-complete for k=2, and
PSPACE-complete for k≥3;
L ∈ Θ(nk ) is NP-complete for k=1 and PSPACE-complete for k≥2.

The same results hold also for C[c].
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Polynomial termination for VASS games

Angel must take into account the asymptotic growth of the counters along
the computational history.

Key new concepts:

locking strategy

locking decomposition
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Future work

The analysis of termination complexity for VASS MDPs (and VASS
stochastic games).

A recent summary:

A. Kučera. Algorithmic Analysis of Termination and Counter Complexity in
Vector Addition Systems with States: A Survey of Recent Results. ACM
SIGLOG News. 8(4):4-21, 2021.
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