Fair Must Testing for 1/O Automata

Rob van Glabbeek

University of Edinburgh, UK
University of New South Wales, Sydney, Australia

23 September 2022

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.

» Some states are success states.

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:
» Each test has a set of states.

» Some states are success states.
Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

» Some of the executions are classified as complete.

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

v

Some of the executions are classified as complete.

» There is a partial function [_||-] of type tests x automata — tests.
[T||A] is the application of test T to automata A. It is of type test.

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

» Some of the executions are classified as complete.

» There is a partial function [_||-] of type tests x automata — tests.
[T||A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T||A] has an execution with a success state.
/]\

is defined and

A=, B &= VT.(Amaypass T < B may pass T)

A type(A) = type(B).

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

» Some of the executions are classified as complete.

» There is a partial function [_||-] of type tests x automata — tests.
[T||A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T||A] has an execution with a success state.

/I\

is defined and

A=, B &= VT.(Amaypass T < B may pass T)
Al,., B &= VT.(Amaypass T = B may pass T)

A type(A) = type(B).

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

» It also has a set of executions,
which are (annotated) sequences of states.
» Some of the executions are classified as complete.

» There is a partial function [_||-] of type tests x automata — tests.
[T||A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T||A] has an execution with a success state.
A must pass T if each complete execution of [T||A] has a success state.

A= B & VT.(Amust pass T < B must pass T)
Al st B & VT. (A must pass T = B must pass T)

A type(A) = type(B).

The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

» Some of the executions are classified as complete.

» There is a partial function [_||-] of type tests x automata — tests.
[T||A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T||A] has an execution with a success state.
A must pass T if each complete execution of [T||A] has a success state.
A should pass T [BRV95,NCO5] if each finite execution of [T||A]
can be extended into an execution with a success state.
A=goua B &= VT. (A should pass T < B should pass T)
Al gona B < VT. (A should pass T = B should pass T)
A type(A) = type(B).

Testing for CCS [DH84|

automata: [..]
tests: [..]

states of a test: [..]
success states: [..]
executions: [...]

complete executions:
application: [...]

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions

tests: [..]

states of a test: [..]
success states: [..]
executions: [...]
complete executions: [..]

application: [...]

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}

states of a test: [..]
success states: [..]
executions: [...]
complete executions: [..]

application: [...]

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}
states of a test: the reachable CCS expressions

success states: [..]
executions: [...]
complete executions: [..]

application: [...]

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}

states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: [...]

complete executions: [..]

application: [...]

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}

states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: [..]

application: [...]

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}
states of a test: the reachable CCS expressions
success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: [...]

Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}

states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (_|-)\.A

Automata

An automaton/test A is (acts(A), states(A), start(A), steps(A)) with

» acts(A) a set of actions,

> states(A) a set of states,
» start(A) C states(A) a nonempty set of start states, and
» steps(A) C states(A) x acts(A) x states(A) a transition relation.

Automata are also known as process graphs,
state/transition diagrams, or
sets of states in labelled transition systems.

Automata

An automaton/test A is (acts(A), states(A), start(A), steps(A)) with
» acts(A) a set of actions, partitioned into two sets ext(A) and
int(A) of external actions and internal actions, respectively,
> states(A) a set of states,
» start(A) C states(A) a nonempty set of start states, and
» steps(A) C states(A) x acts(A) x states(A) a transition relation.
Automata are also known as process graphs,

state/transition diagrams, or
sets of states in labelled transition systems.

An execution of an 1/O automaton A is an alternating sequence
« = s, a1, S1, a2, . .. of states and actions, either being infinite or
ending with a state, such that sp € start(A) and

(si,ai+1,Si+1) € steps(A) for all i < length(c).

Testing for Automata

automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}

states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)
tests: CCS expressions, over the alphabet AW {w}

states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)
tests: automata T (see previous slide) with w € ext(T)
states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)
tests: automata T (see previous slide) with w € ext(T)
states of a test: states(A)

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)
tests: automata T (see previous slide) with w € ext(T)
states of a test: states(A)

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)
tests: automata T (see previous slide) with w € ext(T)
states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\.A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)
tests: automata T (see previous slide) with w € ext(T)
states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the CCS context (T|A)\A

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)

tests: automata T (see previous slide) with w € ext(T)

states of a test: states(A)

success states: those states in which w is enabled

executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock

application: the CCS context (T|A)\A with A = ext(A) U ext(T)\{w}

Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)

tests: automata T (see previous slide) with w € ext(T)

states of a test: states(A)

success states: those states in which w is enabled

executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock

application: the CCS context (T|A)\A with A = ext(A) U ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Example: discerning branching time

Example: discerning branching time

T T -

T b
a b 3 b

w

A B T

Example: discerning branching time

AMARER Y

(T|A)\A (T|B)\A

Example: discerning branching time

T T
T
a b 3 b
A B

(T|A)\A (T|B)\A

Amust pass T but —(B must pass T)

Example: discerning branching time

AMARER Y

(T|A)\A (T|B)\A

Amust pass T but —(B must pass T)

Thus A Zmust B and A Zmust B.

Testing for Automata

automata: automata A with w ¢ acts(A)

tests: automata T with w € ext(T)

states of a test: states(A)

success states: those states in which w is enabled

executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock

application: the CCS context (T|A)\A with A = ext(A) Uext(T)\{w}

Testing for Automata

automata: automata A with w ¢ acts(A)

tests: automata T with w € ext(T)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the CSP parallel composition T ||A

This operator enforces synchronisation on ext(T) N ext(A).

Example: discerning branching time

T T T T
T b T
a b 3 b b b
w
w w
A B T

T|A T|B

Amust pass T but —(B must pass T)

Thus A Zmust B and A Zmust B.

|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A))
in which

» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,

|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which

» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,

> equipped with a partition part(A) of the set
local(A) := out(A) U int(A) of locally-controlled actions of A
into tasks.

|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which
» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,
> equipped with a partition part(A) of the set
local(A) := out(A) U int(A) of locally-controlled actions of A
into tasks.
An execution o of A is fair if, for each suffix o/ of «
and each task T € part(A),
if 7 is enabled in each state of o/,
then o’ contains an action from 7.

|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which
» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,
> equipped with a partition part(A) of the set
local(A) := out(A) U int(A) of locally-controlled actions of A
into tasks.
An execution o of A is fair if, for each suffix o/ of «
and each task T € part(A),

if T is enabled in each state of o/,
then o' contains an action from 7.

Parallel composition A||B of 1/O automata is as for CSP, or
standard automata, but is defined only when out(A) N out(B) = 0.

Fundamental Preorders on 1/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

Fundamental Preorders on 1/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(«) is the (in)finite sequence of external actions in execution «.
fintraces(A) := {trace(a) | « is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)
SCr |l & in(S)=in(l)Aout(S)=out(I)Afairtraces(l) C fairtraces(S) .

One writes A=r Bif ACT+ BABLCt A, and similarly for =f.

Fundamental Preorders on 1/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(«) is the (in)finite sequence of external actions in execution «.
fintraces(A) := {trace(a) | « is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)
SCr |l & in(S)=in(l)Aout(S)=out(I)Afairtraces(l) C fairtraces(S) .

One writes A=r Bif ACT+ BABLCt A, and similarly for =f.

These preorders capture safety and liveness properties, respectively.

Fundamental Preorders on |/O Automata [LT89]
I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(«) is the (in)finite sequence of external actions in execution «.
fintraces(A) := {trace(a) | « is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)

SCr |l & in(S)=in(l)Aout(S)=out(I)Afairtraces(l) C fairtraces(S) .
One writes A=r Bif ACT+ BABLCt A, and similarly for =f.
These preorders capture safety and liveness properties, respectively.

By [GH19, Thm. 6.1] each finite execution can be extended into a
fair execution. As a consequence, ACF B= ALt B.

Testing for /O Automata [Seg97]

automata: automata A with w ¢ acts(A)

tests: automata T with w € acts(T)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the parallel composition T||A

Testing for /O Automata [Seg97]

automata: /O automata A with w ¢ acts(A)

tests: 1/O automata T with w € acts(T)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the parallel composition T||A

Testing for /O Automata [Seg97]

automata: /O automata A with w ¢ acts(A)

tests: |/O automata T with w € out(A)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the parallel composition T||A

Testing for /O Automata [Seg97]

automata: /O automata A with w ¢ acts(A)

tests: |/O automata T with w € out(A)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the 1/O parallel composition T||A

Example: discerning branching time impossible

T T T T
T b T
a b 3 b b b
w
w w
A B T

T|A T|B

Amust pass T but —(B must pass T)

Thus A Zmust B and A Zmust B.

Example: discerning branching time impossible

T T T T
T b T
a b 3 b b b
w
w w
A B T

T|A T|B
Such a T does not exists:
» if a ¢ ext(A) or a ¢ ext(T) then neither A nor B must pass T.
» acin(A) or a € in(T) violates input enabledness
» if a € out(A) Nout(T) then T|A is undefined.

Example: discerning branching time impossible

T T T T
T b T
a b 3 b b b
w
w w
A B T

T|A T|B
Such a T does not exists:
» if a ¢ ext(A) or a ¢ ext(T) then neither A nor B must pass T.
» acin(A) or a € in(T) violates input enabledness
» if a € out(A) Nout(T) then T|A is undefined.
In fact, A =ust B.

Safety and Liveness

The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.

Safety and Liveness

The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Safety and Liveness
The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.
May and must testing can be seen as aiming at the same.

Indeed, we have A =,y B iff A=7 B.
(Trivial, or see my paper.)

Safety and Liveness
The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.
May and must testing can be seen as aiming at the same.

Indeed, we have A =,y B iff A=7 B.
(Trivial, or see my paper.)

Yet, =must and =g are incomparable [Seg97].

Safety and Liveness
The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.
May and must testing can be seen as aiming at the same.

Indeed, we have A =,y B iff A=7 B.
(Trivial, or see my paper.)

Yet, =must and =g are incomparable [Seg97].

A= =0 B= =07 acts(A)=0 acts(B)=int(B)={r}.

Safety and Liveness
The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.
May and must testing can be seen as aiming at the same.

Indeed, we have A =,y B iff A=7 B.
(Trivial, or see my paper.)

Yet, =must and =g are incomparable [Seg97].

A= =0 B= =07 acts(A)=0 acts(B)=int(B)={r}.
Then A=f B, yet A Lnust B.

Safety and Liveness
The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.
May and must testing can be seen as aiming at the same.

Indeed, we have A =,y B iff A=7 B.
(Trivial, or see my paper.)

Yet, =must and =g are incomparable [Seg97].

A= =0 B= =07 acts(A)=0 acts(B)=int(B)={r}.
Then A=f B, yet A Lnust B.

Tf!a =must Tf!b

ZF

A Third Fundamental Preorder on 1/O Automata [Va91]

trace(«) is the (in)finite sequence of external actions in execution .
fintraces(A) := {trace(a) | a is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)

SCr |l & in(S)=in(l)rout(S)=out(I)Afairtraces(l) C fairtraces(S) .

A Third Fundamental Preorder on 1/O Automata [Va91]

trace(«) is the (in)finite sequence of external actions in execution .
fintraces(A) := {trace(a) | a is a finite execution of A}.

fairtraces(A) := {trace(«) | a is a fair execution of A}.
An execution « is quiescent if it is finite and its last state enables

only input actions.
gtraces(A) := {trace(a)| a is a quiescent execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)
SCr |l & in(S)=in(l)rout(S)=out(I)Afairtraces(l) C fairtraces(S) .

A Third Fundamental Preorder on 1/O Automata [Va91]

trace(«) is the (in)finite sequence of external actions in execution .
fintraces(A) := {trace(a) | a is a finite execution of A}.

fairtraces(A) := {trace(«) | a is a fair execution of A}.
An execution « is quiescent if it is finite and its last state enables

only input actions.
gtraces(A) := {trace(a)| a is a quiescent execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)
SCr |l & in(S)=in(l)rout(S)=out(I)Afairtraces(l) C fairtraces(S) .

SCqol:= STy | Aqtraces(l) C gtraces(S).

A Third Fundamental Preorder on 1/O Automata [Va91]

trace(«) is the (in)finite sequence of external actions in execution .
fintraces(A) := {trace(a) | a is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

An execution « is quiescent if it is finite and its last state enables

only input actions.
gtraces(A) := {trace(a)| a is a quiescent execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)
SCr |l & in(S)=in(l)rout(S)=out(I)Afairtraces(l) C fairtraces(S) .

SCqol:= STy | Aqtraces(l) C gtraces(S).

Theorem [Seg97]: Let A and B be finitely branching and strongly
convergent /O automata. Then A C st B iff ACq B.

Safety and Liveness

The native preorders C1 and g from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A =,,,,, Biff A=1 B.
(Trivial, or see my paper.)

Yet, =nust and =f are incomparable [Seg97].

Safety and Liveness

The native preorders C1 and g from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A =,,,,, Biff A=1 B.
(Trivial, or see my paper.)

Yet, =nust and =f are incomparable [Seg97].

In my analysis, this is because the classical theory of testing and
I/O automata are based on different notions of a complete execution.

Testing for 1/O Automata based on fairness

automata: /O automata A with w & acts(A)

tests: 1/0 automata T with w € out(A)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the 1/O parallel composition T||A

Testing for 1/O Automata based on fairness

automata: /O automata A with w & acts(A)
tests: 1/0 automata T with w € out(A)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: the fair ones

application: the 1/O parallel composition T||A

Testing for 1/O Automata based on fairness

automata: /O automata A with w & acts(A)
tests: 1/0 automata T with w € out(A)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: the fair ones

application: the 1/O parallel composition T||A

Theorem: Now A C, .« B iff ACE B.

A lattice of testing equivalences for I/O automata

— Pr /\ — —
—must —may —must

= Pr pr—
—must —may

A lattice of testing equivalences for I/O automata

—Pr

—reward

=must A =may =must

= Pr pr—
—must —may

A lattice of testing equivalences for I/O automata

—Pr
—reward
—must —may —must T —reward

—must =may

Counterexamples

IR

—Pr
—must

§—émay

Counterexamples

Pr
reward

—Pr
::! a —must ::! b
T T
§—émay

F
must

Counterexamples

Pr
reward

—Pr
a —must
T
§—£may

F
must

Pr
! a b must

=may

F
must

Counterexamples

IR

! a b

Pr
reward

—Pr
—must

§—£may

F
must

;,g Pr
reward
Pr

must

=may

F
must

Counterexamples

Pr
reward

—Pr
::! a —must ::! b
T T
§—£may

F
must

P
ire:)vard

Pr a
a b must
a

=may

F
must

P
7_érerward

=may
c g —Pr
—must

Counterexamples

Pr
reward

—Pr
::! a —must ::! b
T T
§—£may

F
must

P
ire:)vard

Pr a
a b must
a

=may

F
must

P
7_érerward

=may
c g —Pr
—must
F

Counterexamples

Pr
reward

Pr
é must

=may

—must

Counterexamples

ExampPLE 5.2. Consider the I/O automata

-

a4 r - Q“
Ve
@

a a

where « is an input action, » is an output action, 7 is an internal action, and the
partitions of the locally controlled actions contain a single class. The I/O automata
o, and o4 are equivalent according to the quiescent preorder since they have the
same external traces and their quiescent traces are all finite external traces con-
taining at least a b action. The external trace @™, however, is a fair trace of .7, but
not a fair trace of .o#,.

-Al =reward A2 but -Al 7_é1’;_1ust A2-
Al =must -AZ
»Al =may A2

Conclusion

When using the native notion of fairness from |/O automata as
completeness criterion in the definition of must testing,

must testing exactly characterises the fair preorder from [LT89].

Upgrading to reward testing here does not yield extra distinctions.

Future work: extend with time and probabilities.

