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It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.
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The Theory of Testing [DH84|

Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

» Each test has a set of states.
» Some states are success states.

> It also has a set of executions,
which are (annotated) sequences of states.

» Some of the executions are classified as complete.

» There is a partial function [_||-] of type tests x automata — tests.
[T||A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T||A] has an execution with a success state.
A must pass T if each complete execution of [T||A] has a success state.
A should pass T [BRV95,NCO5] if each finite execution of [T||A]
can be extended into an execution with a success state.
A=goua B &= VT. (A should pass T < B should pass T)
Al gona B < VT. (A should pass T = B should pass T)
A type(A) = type(B).
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automata: CCS expressions, over an alphabet A of actions
tests: CCS expressions, over the alphabet AW {w}

states of a test: the reachable CCS expressions

success states: those states in which w is enabled
executions: determined by the operational semantics of CCS
complete executions: either infinite, of ending in deadlock
application: the CCS context (_|-)\.A
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Automata are also known as process graphs,
state/transition diagrams, or
sets of states in labelled transition systems.



Automata

An automaton/test A is (acts(A), states(A), start(A), steps(A)) with
» acts(A) a set of actions, partitioned into two sets ext(A) and
int(A) of external actions and internal actions, respectively,
> states(A) a set of states,
» start(A) C states(A) a nonempty set of start states, and
» steps(A) C states(A) x acts(A) x states(A) a transition relation.
Automata are also known as process graphs,

state/transition diagrams, or
sets of states in labelled transition systems.

An execution of an 1/O automaton A is an alternating sequence
« = s, a1, S1, a2, . .. of states and actions, either being infinite or
ending with a state, such that sp € start(A) and

(si,ai+1,Si+1) € steps(A) for all i < length(c).
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Testing for Automata

automata: automata A (see previous slide) with w ¢ acts(A)

tests: automata T (see previous slide) with w € ext(T)

states of a test: states(A)

success states: those states in which w is enabled

executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock

application: the CCS context (T|A)\A with A = ext(A) U ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.
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automata: automata A with w ¢ acts(A)

tests: automata T with w € ext(T)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: either infinite, of ending in deadlock
application: the CSP parallel composition T ||A

This operator enforces synchronisation on ext(T) N ext(A).
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T T T T
T b T
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w
w w
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T|A T|B

Amust pass T but —(B must pass T)

Thus A Zmust B and A Zmust B.



|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A) )
in which

» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,



|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which

» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,

> equipped with a partition part(A) of the set
local(A) := out(A) U int(A) of locally-controlled actions of A
into tasks.



|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which
» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,
> equipped with a partition part(A) of the set
local(A) := out(A) U int(A) of locally-controlled actions of A
into tasks.
An execution o of A is fair if, for each suffix o/ of «
and each task T € part(A),
if 7 is enabled in each state of o/,
then o’ contains an action from 7.



|/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which
» acts(A) is partitioned into in(A) and out(A),
» such that in each state each action from in(A) is enabled,
> equipped with a partition part(A) of the set
local(A) := out(A) U int(A) of locally-controlled actions of A
into tasks.
An execution o of A is fair if, for each suffix o/ of «
and each task T € part(A),

if T is enabled in each state of o/,
then o' contains an action from 7.

Parallel composition A||B of 1/O automata is as for CSP, or
standard automata, but is defined only when out(A) N out(B) = 0.
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Fundamental Preorders on |/O Automata [LT89]
I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(«) is the (in)finite sequence of external actions in execution «.
fintraces(A) := {trace(a) | « is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)

SCr |l & in(S)=in(l)Aout(S)=out(I)Afairtraces(l) C fairtraces(S) .
One writes A=r Bif ACT+ BABLCt A, and similarly for =f.
These preorders capture safety and liveness properties, respectively.

By [GH19, Thm. 6.1] each finite execution can be extended into a
fair execution. As a consequence, ACF B= ALt B.
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Example: discerning branching time impossible

T T T T
T b T
a b 3 b b b
w
w w
A B T

T|A T|B
Such a T does not exists:
» if a ¢ ext(A) or a ¢ ext(T) then neither A nor B must pass T.
» acin(A) or a € in(T) violates input enabledness
» if a € out(A) Nout(T) then T|A is undefined.
In fact, A =ust B.
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Safety and Liveness
The native preorders C1 and Cg from [LT89] are meant to
capture safety and liveness properties, respectively.
May and must testing can be seen as aiming at the same.

Indeed, we have A =,y B iff A=7 B.
(Trivial, or see my paper.)

Yet, =must and =g are incomparable [Seg97].

A= =0 B= =07 acts(A)=0 acts(B)=int(B)={r}.
Then A=f B, yet A Lnust B.

Tf!a =must Tf!b

ZF
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A Third Fundamental Preorder on 1/O Automata [Va91]

trace(«) is the (in)finite sequence of external actions in execution .
fintraces(A) := {trace(a) | a is a finite execution of A}.
fairtraces(A) := {trace(«) | a is a fair execution of A}.

An execution « is quiescent if it is finite and its last state enables

only input actions.
gtraces(A) := {trace(a)| a is a quiescent execution of A}.

SCt | & in(S)=in(I)rout(S)=out(I)A fintraces(l) C fintraces(S)
SCr |l & in(S)=in(l)rout(S)=out(I)Afairtraces(l) C fairtraces(S) .

SCqol:= STy | Aqtraces(l) C gtraces(S).

Theorem [Seg97]: Let A and B be finitely branching and strongly
convergent /O automata. Then A C st B iff ACq B.
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Safety and Liveness

The native preorders C1 and g from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A =,,,,, Biff A=1 B.
(Trivial, or see my paper.)

Yet, =nust and =f are incomparable [Seg97].

In my analysis, this is because the classical theory of testing and
I/O automata are based on different notions of a complete execution.
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Testing for 1/O Automata based on fairness

automata: /O automata A with w & acts(A)
tests: 1/0 automata T with w € out(A)

states of a test: states(A)

success states: those states in which w is enabled
executions: determined by steps(A)

complete executions: the fair ones

application: the 1/O parallel composition T||A

Theorem: Now A C, .« B iff ACE B.
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Counterexamples

ExampPLE 5.2. Consider the I/O automata

-

a4 r - Q“
Ve
@

a a

where « is an input action, » is an output action, 7 is an internal action, and the
partitions of the locally controlled actions contain a single class. The I/O automata
o, and o4 are equivalent according to the quiescent preorder since they have the
same external traces and their quiescent traces are all finite external traces con-
taining at least a b action. The external trace @™, however, is a fair trace of .7, but
not a fair trace of .o#,.

-Al =reward A2 but -Al 7_é1’;_1ust A2-
Al =must -AZ
»Al =may A2



Conclusion

When using the native notion of fairness from |/O automata as
completeness criterion in the definition of must testing,

must testing exactly characterises the fair preorder from [LT89].

Upgrading to reward testing here does not yield extra distinctions.

Future work: extend with time and probabilities.



