
Fair Must Testing for I/O Automata

Rob van Glabbeek

University of Edinburgh, UK
University of New South Wales, Sydney, Australia

23 September 2022

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑A must pass T if each complete execution of [T∥A] has a success state.

is defined andA should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.
A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.
Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑A must pass T if each complete execution of [T∥A] has a success state.

is defined andA should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.
A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑A must pass T if each complete execution of [T∥A] has a success state.

is defined andA should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.
A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑A must pass T if each complete execution of [T∥A] has a success state.

is defined andA should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.
A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑A must pass T if each complete execution of [T∥A] has a success state.

is defined andA should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.
A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑

A must pass T if each complete execution of [T∥A] has a success state.

is defined and

A should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.

A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)

A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.
↑

A must pass T if each complete execution of [T∥A] has a success state.

is defined and

A should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.

A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)

A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)
A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.

↑

A must pass T if each complete execution of [T∥A] has a success state.

is defined andA should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.
A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)

A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)

A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

The Theory of Testing [DH84]
Consider a model of concurrency that features automata and tests.
It does not matter how they are defined, provided the following:

▶ Each test has a set of states.

▶ Some states are success states.

Normally, automata are tests without success states.
That is, tests are automata enriched with success states.

▶ It also has a set of executions,
which are (annotated) sequences of states.

▶ Some of the executions are classified as complete.

▶ There is a partial function [∥] of type tests × automata ⇀ tests.
[T∥A] is the application of test T to automata A. It is of type test.

Now A may pass T if [T∥A] has an execution with a success state.

↑

A must pass T if each complete execution of [T∥A] has a success state.

is defined and

A should pass T [BRV95,NC95] if each finite execution of [T∥A]
can be extended into an execution with a success state.

A ≡may B :⇔ ∀T . (A may pass T ⇔ B may pass T)
A ⊑may B :⇔ ∀T . (A may pass T ⇒ B may pass T)
A ≡must B :⇔ ∀T . (A must pass T ⇔ B must pass T)
A ⊑must B :⇔ ∀T . (A must pass T ⇒ B must pass T)

A ≡should B :⇔ ∀T . (A should pass T ⇔ B should pass T)
A ⊑should B :⇔ ∀T . (A should pass T ⇒ B should pass T)

∧ type(A) = type(B).

Testing for CCS [DH84]

automata: [. . .]

CCS expressions, over an alphabet A of actions

tests: [. . .]

CCS expressions, over the alphabet A ⊎ {w}

states of a test: [. . .]

the reachable CCS expressions

success states: [. . .]

those states in which w is enabled

executions: [. . .]

determined by the operational semantics of CCS

complete executions: [. . .]

either infinite, of ending in deadlock

application: [. . .]

the CCS context (|)\A
Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests: [. . .]

CCS expressions, over the alphabet A ⊎ {w}

states of a test: [. . .]

the reachable CCS expressions

success states: [. . .]

those states in which w is enabled

executions: [. . .]

determined by the operational semantics of CCS

complete executions: [. . .]

either infinite, of ending in deadlock

application: [. . .]

the CCS context (|)\A
Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests:

[. . .]

CCS expressions, over the alphabet A ⊎ {w}
states of a test: [. . .]

the reachable CCS expressions

success states: [. . .]

those states in which w is enabled

executions: [. . .]

determined by the operational semantics of CCS

complete executions: [. . .]

either infinite, of ending in deadlock

application: [. . .]

the CCS context (|)\A
Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests:

[. . .]

CCS expressions, over the alphabet A ⊎ {w}
states of a test:

[. . .]

the reachable CCS expressions
success states: [. . .]

those states in which w is enabled

executions: [. . .]

determined by the operational semantics of CCS

complete executions: [. . .]

either infinite, of ending in deadlock

application: [. . .]

the CCS context (|)\A
Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests:

[. . .]

CCS expressions, over the alphabet A ⊎ {w}
states of a test:

[. . .]

the reachable CCS expressions
success states:

[. . .]

those states in which w is enabled
executions: [. . .]

determined by the operational semantics of CCS

complete executions: [. . .]

either infinite, of ending in deadlock

application: [. . .]

the CCS context (|)\A
Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests:

[. . .]

CCS expressions, over the alphabet A ⊎ {w}
states of a test:

[. . .]

the reachable CCS expressions
success states:

[. . .]

those states in which w is enabled
executions:

[. . .]

determined by the operational semantics of CCS
complete executions: [. . .]

either infinite, of ending in deadlock

application: [. . .]

the CCS context (|)\A
Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests:

[. . .]

CCS expressions, over the alphabet A ⊎ {w}
states of a test:

[. . .]

the reachable CCS expressions
success states:

[. . .]

those states in which w is enabled
executions:

[. . .]

determined by the operational semantics of CCS
complete executions:

[. . .]

either infinite, of ending in deadlock
application: [. . .]

the CCS context (|)\A

Deadlock: a state without outgoing transitions

Testing for CCS [DH84]

automata:

[. . .]

CCS expressions, over an alphabet A of actions
tests:

[. . .]

CCS expressions, over the alphabet A ⊎ {w}
states of a test:

[. . .]

the reachable CCS expressions
success states:

[. . .]

those states in which w is enabled
executions:

[. . .]

determined by the operational semantics of CCS
complete executions:

[. . .]

either infinite, of ending in deadlock
application:

[. . .]

the CCS context (|)\A

Deadlock: a state without outgoing transitions

Automata

An automaton/test A is (acts(A), states(A), start(A), steps(A)) with

▶ acts(A) a set of actions,

partitioned into two sets ext(A) and
int(A) of external actions and internal actions, respectively,

▶ states(A) a set of states,

▶ start(A) ⊆ states(A) a nonempty set of start states, and

▶ steps(A) ⊆ states(A)× acts(A)× states(A) a transition relation.

Automata are also known as process graphs,
state/transition diagrams, or
sets of states in labelled transition systems.

An execution of an I/O automaton A is an alternating sequence
α = s0, a1, s1, a2, . . . of states and actions, either being infinite or
ending with a state, such that s0 ∈ start(A) and
(si , ai+1, si+1) ∈ steps(A) for all i < length(α).

Automata

An automaton/test A is (acts(A), states(A), start(A), steps(A)) with

▶ acts(A) a set of actions, partitioned into two sets ext(A) and
int(A) of external actions and internal actions, respectively,

▶ states(A) a set of states,

▶ start(A) ⊆ states(A) a nonempty set of start states, and

▶ steps(A) ⊆ states(A)× acts(A)× states(A) a transition relation.

Automata are also known as process graphs,
state/transition diagrams, or
sets of states in labelled transition systems.

An execution of an I/O automaton A is an alternating sequence
α = s0, a1, s1, a2, . . . of states and actions, either being infinite or
ending with a state, such that s0 ∈ start(A) and
(si , ai+1, si+1) ∈ steps(A) for all i < length(α).

Testing for Automata

automata: CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)

tests: CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)

states of a test: the reachable CCS expressions

states(A)

success states: those states in which w is enabled

those states in which w is enabled

executions: determined by the operational semantics of CCS

determined by steps(A)

complete executions: either infinite, of ending in deadlock

either infinite, of ending in deadlock

application: the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests: CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)

states of a test: the reachable CCS expressions

states(A)

success states: those states in which w is enabled

those states in which w is enabled

executions: determined by the operational semantics of CCS

determined by steps(A)

complete executions: either infinite, of ending in deadlock

either infinite, of ending in deadlock

application: the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test: the reachable CCS expressions

states(A)

success states: those states in which w is enabled

those states in which w is enabled

executions: determined by the operational semantics of CCS

determined by steps(A)

complete executions: either infinite, of ending in deadlock

either infinite, of ending in deadlock

application: the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test:

the reachable CCS expressions

states(A)
success states: those states in which w is enabled

those states in which w is enabled

executions: determined by the operational semantics of CCS

determined by steps(A)

complete executions: either infinite, of ending in deadlock

either infinite, of ending in deadlock

application: the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test:

the reachable CCS expressions

states(A)
success states:

those states in which w is enabled

those states in which w is enabled
executions: determined by the operational semantics of CCS

determined by steps(A)

complete executions: either infinite, of ending in deadlock

either infinite, of ending in deadlock

application: the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test:

the reachable CCS expressions

states(A)
success states:

those states in which w is enabled

those states in which w is enabled
executions:

determined by the operational semantics of CCS

determined by steps(A)
complete executions: either infinite, of ending in deadlock

either infinite, of ending in deadlock

application: the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test:

the reachable CCS expressions

states(A)
success states:

those states in which w is enabled

those states in which w is enabled
executions:

determined by the operational semantics of CCS

determined by steps(A)
complete executions:

either infinite, of ending in deadlock

either infinite, of ending in deadlock
application:

the CCS context (T |A)\A

the CCS context (T |A)\A

with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test:

the reachable CCS expressions

states(A)
success states:

those states in which w is enabled

those states in which w is enabled
executions:

determined by the operational semantics of CCS

determined by steps(A)
complete executions:

either infinite, of ending in deadlock

either infinite, of ending in deadlock
application:

the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Testing for Automata

automata:

CCS expressions, over an alphabet A of actions

automata A (see previous slide) with w ̸∈ acts(A)
tests:

CCS expressions, over the alphabet A ⊎ {w}

automata T (see previous slide) with w ∈ ext(T)
states of a test:

the reachable CCS expressions

states(A)
success states:

those states in which w is enabled

those states in which w is enabled
executions:

determined by the operational semantics of CCS

determined by steps(A)
complete executions:

either infinite, of ending in deadlock

either infinite, of ending in deadlock
application:

the CCS context (T |A)\A

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

The theory of testing for CCS is a special case
of the theory of testing for automata.

Example: discerning branching time

τ

a b

A

τ τ

ba

B

b̄

w

T

τ

τ

w

(T |A)\A

τ τ

τ

w

(T |B)\A

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Example: discerning branching time

τ

a b

A

τ τ

ba

B

b̄

w

T

τ

τ

w

(T |A)\A

τ τ

τ

w

(T |B)\A

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Example: discerning branching time

τ

a b

A

τ τ

ba

B

b̄

w

T

τ

τ

w

(T |A)\A

τ τ

τ

w

(T |B)\A

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Example: discerning branching time

τ

a b

A

τ τ

ba

B

b̄

w

T

τ

τ

w

(T |A)\A

τ τ

τ

w

(T |B)\A

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Example: discerning branching time

τ

a b

A

τ τ

ba

B

b̄

w

T

τ

τ

w

(T |A)\A

τ τ

τ

w

(T |B)\A

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Testing for Automata

automata: automata A with w ̸∈ acts(A)
tests: automata T with w ∈ ext(T)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock
application: the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

the CSP parallel composition T∥A

This operator enforces synchronisation on ext(T) ∩ ext(A).

Testing for Automata

automata: automata A with w ̸∈ acts(A)
tests: automata T with w ∈ ext(T)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock
application:

the CCS context (T |A)\A with A= ext(A) ∪ ext(T)\{w}

the CSP parallel composition T∥A

This operator enforces synchronisation on ext(T) ∩ ext(A).

Example: discerning branching time

τ

a b

A

τ τ

ba

B

b

w

T

τ

b

w

T∥A

τ τ

b

w

T∥B

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

I/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A)

, part(A)

)
in which

▶ acts(A) is partitioned into in(A) and out(A),

▶ such that in each state each action from in(A) is enabled,

▶ equipped with a partition part(A) of the set
local(A) := out(A) ∪ int(A) of locally-controlled actions of A
into tasks.

An execution α of A is fair if, for each suffix α′ of α
and each task T ∈ part(A),
if T is enabled in each state of α′,
then α′ contains an action from T .

Parallel composition A∥B of I/O automata is as for CSP, or
standard automata, but is defined only when out(A) ∩ out(B) = ∅.

I/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which

▶ acts(A) is partitioned into in(A) and out(A),

▶ such that in each state each action from in(A) is enabled,

▶ equipped with a partition part(A) of the set
local(A) := out(A) ∪ int(A) of locally-controlled actions of A
into tasks.

An execution α of A is fair if, for each suffix α′ of α
and each task T ∈ part(A),
if T is enabled in each state of α′,
then α′ contains an action from T .

Parallel composition A∥B of I/O automata is as for CSP, or
standard automata, but is defined only when out(A) ∩ out(B) = ∅.

I/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which

▶ acts(A) is partitioned into in(A) and out(A),

▶ such that in each state each action from in(A) is enabled,

▶ equipped with a partition part(A) of the set
local(A) := out(A) ∪ int(A) of locally-controlled actions of A
into tasks.

An execution α of A is fair if, for each suffix α′ of α
and each task T ∈ part(A),
if T is enabled in each state of α′,
then α′ contains an action from T .

Parallel composition A∥B of I/O automata is as for CSP, or
standard automata, but is defined only when out(A) ∩ out(B) = ∅.

I/O Automata [LT89]

Automata A = (acts(A), states(A), start(A), steps(A), part(A))
in which

▶ acts(A) is partitioned into in(A) and out(A),

▶ such that in each state each action from in(A) is enabled,

▶ equipped with a partition part(A) of the set
local(A) := out(A) ∪ int(A) of locally-controlled actions of A
into tasks.

An execution α of A is fair if, for each suffix α′ of α
and each task T ∈ part(A),
if T is enabled in each state of α′,
then α′ contains an action from T .

Parallel composition A∥B of I/O automata is as for CSP, or
standard automata, but is defined only when out(A) ∩ out(B) = ∅.

Fundamental Preorders on I/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

One writes A ≡T B if A ⊑T B ∧ B ⊑T A, and similarly for ≡F .

These preorders capture safety and liveness properties, respectively.

By [GH19, Thm. 6.1] each finite execution can be extended into a
fair execution. As a consequence, A ⊑F B ⇒ A ⊑T B.

Fundamental Preorders on I/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

One writes A ≡T B if A ⊑T B ∧ B ⊑T A, and similarly for ≡F .

These preorders capture safety and liveness properties, respectively.

By [GH19, Thm. 6.1] each finite execution can be extended into a
fair execution. As a consequence, A ⊑F B ⇒ A ⊑T B.

Fundamental Preorders on I/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

One writes A ≡T B if A ⊑T B ∧ B ⊑T A, and similarly for ≡F .

These preorders capture safety and liveness properties, respectively.

By [GH19, Thm. 6.1] each finite execution can be extended into a
fair execution. As a consequence, A ⊑F B ⇒ A ⊑T B.

Fundamental Preorders on I/O Automata [LT89]

I/O automata are a typed model of concurrency: automata will be
compared only when they have the same input and output actions.

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

One writes A ≡T B if A ⊑T B ∧ B ⊑T A, and similarly for ≡F .

These preorders capture safety and liveness properties, respectively.

By [GH19, Thm. 6.1] each finite execution can be extended into a
fair execution. As a consequence, A ⊑F B ⇒ A ⊑T B.

Testing for I/O Automata [Seg97]

automata:

I/O

automata A with w ̸∈ acts(A)
tests:

I/O

automata T with w ∈ acts(T)

w ∈ out(A)

states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock
application: the

I/O

parallel composition T∥A

Testing for I/O Automata [Seg97]

automata: I/O automata A with w ̸∈ acts(A)
tests: I/O automata T with w ∈ acts(T)

w ∈ out(A)

states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock
application: the

I/O

parallel composition T∥A

Testing for I/O Automata [Seg97]

automata: I/O automata A with w ̸∈ acts(A)
tests: I/O automata T with

w ∈ acts(T)

w ∈ out(A)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock
application: the

I/O

parallel composition T∥A

Testing for I/O Automata [Seg97]

automata: I/O automata A with w ̸∈ acts(A)
tests: I/O automata T with

w ∈ acts(T)

w ∈ out(A)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock
application: the I/O parallel composition T∥A

Example: discerning branching time impossible

τ

a b

A

τ τ

ba

B

b

w

T

τ

b

w

T∥A

τ τ

b

w

T∥B

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Such a T does not exists:

▶ if a /∈ ext(A) or a /∈ ext(T) then neither A nor B must pass T .

▶ a ∈ in(A) or a ∈ in(T) violates input enabledness

▶ if a ∈ out(A) ∩ out(T) then T∥A is undefined.

In fact, A ≡must B.

Example: discerning branching time impossible

τ

a b

A

τ τ

ba

B

b

w

T

τ

b

w

T∥A

τ τ

b

w

T∥B

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Such a T does not exists:

▶ if a /∈ ext(A) or a /∈ ext(T) then neither A nor B must pass T .

▶ a ∈ in(A) or a ∈ in(T) violates input enabledness

▶ if a ∈ out(A) ∩ out(T) then T∥A is undefined.

In fact, A ≡must B.

Example: discerning branching time impossible

τ

a b

A

τ τ

ba

B

b

w

T

τ

b

w

T∥A

τ τ

b

w

T∥B

A must pass T but ¬(B must pass T)

Thus A ̸⊑must B and A ̸≡must B.

Such a T does not exists:

▶ if a /∈ ext(A) or a /∈ ext(T) then neither A nor B must pass T .

▶ a ∈ in(A) or a ∈ in(T) violates input enabledness

▶ if a ∈ out(A) ∩ out(T) then T∥A is undefined.

In fact, A ≡must B.

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.
Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.
Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.
Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.
Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.

Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.
Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

A = B = τ acts(A) = ∅ acts(B) = int(B) = {τ}.
Then A ≡F B, yet A ̸⊑must B.

τ
a ≡must

̸≡F

τ
b

A Third Fundamental Preorder on I/O Automata [Va91]

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.

An execution α is quiescent if it is finite and its last state enables
only input actions.
qtraces(A) := {trace(α) | α is a quiescent execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

S ⊑Q I :⇔ S ⊑T I ∧ qtraces(I) ⊆ qtraces(S) .

Theorem [Seg97]: Let A and B be finitely branching and strongly
convergent I/O automata. Then A ⊑must B iff A ⊑Q B.

A Third Fundamental Preorder on I/O Automata [Va91]

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.
An execution α is quiescent if it is finite and its last state enables
only input actions.
qtraces(A) := {trace(α) | α is a quiescent execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

S ⊑Q I :⇔ S ⊑T I ∧ qtraces(I) ⊆ qtraces(S) .

Theorem [Seg97]: Let A and B be finitely branching and strongly
convergent I/O automata. Then A ⊑must B iff A ⊑Q B.

A Third Fundamental Preorder on I/O Automata [Va91]

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.
An execution α is quiescent if it is finite and its last state enables
only input actions.
qtraces(A) := {trace(α) | α is a quiescent execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

S ⊑Q I :⇔ S ⊑T I ∧ qtraces(I) ⊆ qtraces(S) .

Theorem [Seg97]: Let A and B be finitely branching and strongly
convergent I/O automata. Then A ⊑must B iff A ⊑Q B.

A Third Fundamental Preorder on I/O Automata [Va91]

trace(α) is the (in)finite sequence of external actions in execution α.
fintraces(A) := {trace(α) | α is a finite execution of A}.
fairtraces(A) := {trace(α) | α is a fair execution of A}.
An execution α is quiescent if it is finite and its last state enables
only input actions.
qtraces(A) := {trace(α) | α is a quiescent execution of A}.

S ⊑T I :⇔ in(S)=in(I)∧out(S)=out(I)∧ fintraces(I) ⊆ fintraces(S)

S ⊑F I :⇔ in(S)=in(I)∧out(S)=out(I)∧fairtraces(I) ⊆ fairtraces(S) .

S ⊑Q I :⇔ S ⊑T I ∧ qtraces(I) ⊆ qtraces(S) .

Theorem [Seg97]: Let A and B be finitely branching and strongly
convergent I/O automata. Then A ⊑must B iff A ⊑Q B.

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

In my analysis, this is because the classical theory of testing and
I/O automata are based on different notions of a complete execution.

Safety and Liveness

The native preorders ⊑T and ⊑F from [LT89] are meant to
capture safety and liveness properties, respectively.

May and must testing can be seen as aiming at the same.

Indeed, we have A ≡may B iff A ≡T B.
(Trivial, or see my paper.)

Yet, ≡must and ≡F are incomparable [Seg97].

In my analysis, this is because the classical theory of testing and
I/O automata are based on different notions of a complete execution.

Testing for I/O Automata based on fairness

automata: I/O automata A with w ̸∈ acts(A)
tests: I/O automata T with w ∈ out(A)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions: either infinite, of ending in deadlock

the fair ones

application: the I/O parallel composition T∥A

Theorem: Now A ⊑must B iff A ⊑F B.

Testing for I/O Automata based on fairness

automata: I/O automata A with w ̸∈ acts(A)
tests: I/O automata T with w ∈ out(A)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions:

either infinite, of ending in deadlock

the fair ones
application: the I/O parallel composition T∥A

Theorem: Now A ⊑must B iff A ⊑F B.

Testing for I/O Automata based on fairness

automata: I/O automata A with w ̸∈ acts(A)
tests: I/O automata T with w ∈ out(A)
states of a test: states(A)
success states: those states in which w is enabled
executions: determined by steps(A)
complete executions:

either infinite, of ending in deadlock

the fair ones
application: the I/O parallel composition T∥A

Theorem: Now A ⊑must B iff A ⊑F B.

A lattice of testing equivalences for I/O automata

≡may≡Pr
must

≡Pr
must ∧ ≡may

≡Pr
reward

≡F
must

= ≡F
reward

A lattice of testing equivalences for I/O automata

≡may≡Pr
must

≡Pr
must ∧ ≡may

≡Pr
reward

≡F
must

= ≡F
reward

A lattice of testing equivalences for I/O automata

≡may≡Pr
must

≡Pr
must ∧ ≡may

≡Pr
reward

≡F
must = ≡F

reward

Counterexamples

τ
a

̸≡Pr
reward

≡Pr
must

̸≡may

̸≡F
must

τ
b

a b

̸≡Pr
reward

̸≡Pr
must

≡may

̸≡F
must

a

a
b

•

τ

c g

̸≡Pr
reward

≡may

≡Pr
must

̸≡F
must

•

τ

c g
c

Counterexamples

τ
a

̸≡Pr
reward

≡Pr
must

̸≡may

̸≡F
must

τ
b

a b

̸≡Pr
reward

̸≡Pr
must

≡may

̸≡F
must

a

a
b

•

τ

c g

̸≡Pr
reward

≡may

≡Pr
must

̸≡F
must

•

τ

c g
c

Counterexamples

τ
a

̸≡Pr
reward

≡Pr
must

̸≡may

̸≡F
must

τ
b

a b

̸≡Pr
reward

̸≡Pr
must

≡may

̸≡F
must

a

a
b

•

τ

c g

̸≡Pr
reward

≡may

≡Pr
must

̸≡F
must

•

τ

c g
c

Counterexamples

τ
a

̸≡Pr
reward

≡Pr
must

̸≡may

̸≡F
must

τ
b

a b

̸≡Pr
reward

̸≡Pr
must

≡may

̸≡F
must

a

a
b

•

τ

c g

̸≡Pr
reward

≡may

≡Pr
must

̸≡F
must

•

τ

c g
c

Counterexamples

τ
a

̸≡Pr
reward

≡Pr
must

̸≡may

̸≡F
must

τ
b

a b

̸≡Pr
reward

̸≡Pr
must

≡may

̸≡F
must

a

a
b

•

τ

c g

̸≡Pr
reward

≡may

≡Pr
must

̸≡F
must

•

τ

c g
c

Counterexamples

τ
a

̸≡Pr
reward

≡Pr
must

̸≡may

̸≡F
must

τ
b

a b

̸≡Pr
reward

̸≡Pr
must

≡may

̸≡F
must

a

a
b

•

τ

c g

̸≡Pr
reward

≡may

≡Pr
must

̸≡F
must

•

τ

c g
c

Counterexamples

̸≡Pr
reward

̸≡Pr
must

≡may

≡F
must

τ

Counterexamples

A1 ≡reward A2 but A1 ̸≡F
must A2.

A1 ≡must A2

A1 ≡may A2

Conclusion

When using the native notion of fairness from I/O automata as
completeness criterion in the definition of must testing,

must testing exactly characterises the fair preorder from [LT89].

Upgrading to reward testing here does not yield extra distinctions.

Future work: extend with time and probabilities.

