A Theory of Substitutions for Separation Logic

Frank de Boer

Trigger

Assignment axiom in Hoare logic:

{plx = €]} x:=e {p}

Reynolds:
Expressions do not contain notations, ..., that refer to the
heap. It follows that none of the new heap manipulating
instructions are instances of the simple assignment instruc-
tion. In fact, they will not obey Hoare's inference rule for
assignment.

Contribution

A theory of substitutions for separation logic which

> describes the effect of the basic heap manipulating
instructions compositionally in terms of the logical structure
of the given pre/postcondition,

» provides a direct account of aliasing in terms of basic
equational predicate logic, and

P does not generate additional complexity measured by the
maximal depth of nested separating conjunction/implication
connectives, e.g., as in the backwards mutation axiom

{By(x=y))x((x =€) = p)} [x] = e {p}

The Basic Instructions

Basic assignment (x := e, h,s) = (h, s[x := s(e)]),

Look-up (x := [e], h,s) = (h,s[x := h(s(e))]) if s(e) € dom(h),
(x := [€], h,s) = fail if s(e) & dom(h),

Mutation ([x] := e, h,s) = (h[s(x) := s(e)], s) if s(x) € dom(h),

([x] :== e, h,s) = fail if s(x) & dom(h),

Allocation (x := new(e), h,s) = (h[n := s(e)], s[x := n]) if

n & dom(h).

Dispose ([x] := L, h,s) = (h[s(x) := L], s) if s(x) € dom(h),
([x] :== L, h,s) = fail if s(x) & dom(h)

Separation Logic

h,s |= b iff s(b) = true,

h, s = emp iff dom(h) = 0,

h,s = (e — €') iff dom(h) = {s(e)} and h(s(e)) = s(€'),
h,s = (e — ¢€) iff s(e) € dom(h) and h(s(e)) = s(€’),

h,s = (pAq)iff hys=pand h s = q,

h,s=(pVq)iff sk Eporhskag,

h,s = (p — q) iff h,s = p implies h,s = q,

h,s |= 3xp iff h,s[x := n] |= p for some n,

h,s = Vxp iff h,s[x := n| = p for all n,

h,s = (p * q) iff hi,s = p and ha, s |= q for some partition
h = hy W ho,

h,s = (p — q) iff for all h" disjoint from h: K s |= p implies
hWh s q.

Weakest Precondition Calculus

Basic assignment {p[x := €|} x := e {p}

Look-up {Jy((e = y) A plx :=y])} x := [e] {p}

where y is fresh

Mutation {(x <= —) A p[(x) := €]} [x] :== e {p}
Allocation {Vx((x & —) — p[(x) == ¢€])} x .= new(e) {p}
Dispose {(x — —) A p[(x) := L]} [x] := L {p}

VS (“OLD SCHOOL"):

Mutation {(x — —) * ((x — e) = p)} [x] := e {p}
Allocation {Vx((x — e) — p)} x := new(e) {p}
Dispose {(x — —) * p} [x] :== L {p}

Substitution Heap Update

> b[(x) :=e] = b,
> (e = e[(x)=el=(x=€eNe"=€e)V(x#e Ne =€),

> (pAQq)[(x) :=e] = p[(x) == e] Aq[(x) := €], and similar for V
and —,

> (Jyp)[(x) := €] = Ty(p[(x) := €]) and similar for V,
> (P q)l(x) = e] = (p(x) := el «) V (p" x q[(x) = e])
where p’ = p A (x ¥ —) and similarly ¢ = g A (x & —),
> (p— q)l{x) :=e] = p' = q[(x) := €]
where as above p’ = p A (x & —).

Lemma (heap update substitution lemma)

h,s = p[(x) := e] iff h[s(x) := s(e)],s = p.

Example

{(x=)N ((y=xA"1=0)V(y #xAy = 1))} [x]:=0{y =1}
Compare this with the standard backwards rule:

{x—=>—%(x—0—=xy—=1)}[x]:=0{y—1}

Substitution Heap Clear

> b[(x):=1]=b
» emp[(x) ==Ll =empV x— —
> (e — €)[(x) :=1] =
e e Ax#eANVy((y—=-)—(y=eVy=x))
> (e)[(x)=Ll]l=x#eNe—=¢€
> (pAq)[(x):= L] = p[(x) := L] A q[(x) := L], and similar for

V and —,
> (Fyp)[(x) := L] =3y (pl(x) := 1])
> (p=*q)[(x) :== L] = (p[(x) := L]) = (q[(x) := L])

> (p = q)[{x) :=1] =
((pAx £ =) = ql(x) := L) AVy(pl(x) := y] = q[(x) := y])
where y is a fresh variable.

Lemma (heap clear substitution lemma)
h,s = p[(x) := L] iff h[s(x) := L],s E p.

Soundness and Completeness WP calculus

Theorem
For any basic instruction S, we have

= {p} S {q} ifand only if {p} S {q} is derivable from the above
axioms and (a single application of) the rule of consequence.

Strongest Postcondition Calculus

Basic assignment {p} x := e {Jy(p[x := y] A (e[x :=y] = x))}
Look-up

{pAe—=—} x:=[e] {Fy(plx = y] A (x = e[x:=y]))}
Mutation {p A x — —} [x] := e {3y(p[(x) :=y]) A x — e}
Allocation

{p} x = new(e) {(Gy(plx := yI)I(x) = L] Ax e}

Dispose {p A x — —} [x] := L {3y(p[(x) :=y]) Ax & —}

Conclusion

Substitutions describe the effect of the instructions
in terms of the logical structure of the given
pre/postcondition,

whereas
in the standard approach heap operations are used to de-
scribe the effect of the instructions, abstracting from the
logical structure of the given pre/postcondition.

And What About ...

The Frame Rule
{p} S {q}

{pxr} S{qgxr}

» Not needed for completeness while programs.

» Completeness recursive procedures.
See Completeness for recursive procedures in separation logic
by Mahmudul Faisal Al Ameen and Makoto Tatsuta, TCS,
2016: Also does not use the frame rule!

» Modular completeness.
Frame rule applied in thesis Local Reasoning for Stateful
Programs by Hongseok Yang, 2001.

