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> Adversaries are efficient
randomized algorithms;
> Adversaries are allowed to break

protocols and primitives, but
only with small probability.
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Concurrency

Behavioural

Typing

> Adversaries are efficient
randomized algorithms;

> Adversaries are allowed to break
protocols and primitives, but
only with small probability.

Security

Computational

> Strings are replaced by symbolic
expressions;

> Adversaries are omnipotent;

> Probability is abstracted away.
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> The spi-calculus;

> Applied m-calculi;
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> Multiparty Sessions for Access Control.

> Cryptographic Synthesis by way of
Multiparty Sessions.




> CCS-style PPT
process calculus.
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Cryptographic Experiments

PrivKi7(n) :
mg, my < A(1")
k < Gen(1")
b+ {0,1}
¢ < Enc(k,my)
g+ Alo)
return (b = g)
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Cryptographic Experiments

PrivKi7(n) :
mo, my < A(1")
k <+ Gen(l”)< Key generation |
b« {0,1}
¢ < Enc(k, mb)
g < Alc)
return (b = g)




Cryptographic Experiments

PrivKi7(n) :
mo, my < A(1"
k < Gen(1")
b« {0,1}
¢ < Enc(k,my)
g < Alc)
return (b = g)

)

%VA.EIs.Pr [Priijﬁ’ﬁ(n) = } <




Cryptographic Experiments

PRIVK :

input f dv;
Privk e (n) input mg from adv;

input m, from adv;
mo, My <— A(ln) P !

let k = gen() in

:<— %E?(l ) let b = flipcoin() in
— {Ea ];{ let c = enc(k‘, mb) in

C < nC( 7mb) output c to adv;

g« A(e)

; ) input g from adv;
return (b = g) let r = eq(g,b) in

output r to exp;



Cryptographic Experiments

> An ordinary process term;
> The adversary is now an external process.
PRIVKy :
- eav ' input mg from adv;
PrivKi7(n) :

input m, from adv;
mo, My <— A(ln) P !

let k = gen() in

:<— %6?(1 ) let b = flipcoin() in
— {Ea ];{ let c = enc(k‘, mb) in

C < nC( 7mb) output c to adv;

g« A(e)

; ) input g from adv;
return (b = g) let 7 = eq(g,b) in

output r to exp;



Security as Equivalence

VA. (PRIVKy,|A) ~ FLIPCOIN



Security as Equivalence

VA. (PRIVKy,|A) ~ FLIPCOIN

|

The two involved processes behave
approximately the same.




VA.

Security as Equivalence

II, = (Gen, Enc, Dec)

Enc(m,k) =m & g(k)
Dec(c, k) = c® g(k)

y

(PRIVKy, | A) ~ FLIPCOIN

|

The two involved processes behave
approximately the same.




Security as Equivalence

vD. (RAND | D) ~ (PRAND, | D)

Y
VA. (PRIVKy,|A) ~ FLIPCOIN



Security as Equivalence

Sends a pseudorandom
string obtained through ¢
to D.

Sends a random
string to D.

NG 7
VD. (RAND | D) ~ (PRAND, | D)

Y
VA. (PRIVKy,|A) ~ FLIPCOIN



s Intraduction to Modern Oryptography

THEOREM 345 If G is  pseudomandoms generator, then Construc-
tiom 217 is  fiund length private-kry encryption scheme that has indistin-
guishable encryptions i the presencs of an eavesdropper.

PROOF  Let I denote Construction 3.17. We show that 11 satisfics Def-
imitian 3.5, Nazmely, we shonr that for any probabifistic polynomial-time s
verary A there i n negligible function negl such that

Pe [P 1) = 3+ neg(n). (52)

The intuition is that if T used  usiform pad in place of the peadorandom
padd G(k), then the resulting scheme would be identical to the cue-time pad
cryption sebee and A woukd be b o ey g which mesage
bability aay better tha 1/2. Thus, if Equation (3.2)

i fra

this
by showing bow to wse A to construct an efficient distinguisher D), with the
property tinguish the autput of G fror

chosen, uniforzly (i, w & & *mandom string’) or whether w was genernted
Gik) (ie, wisn
string”). We comstruct D o that it cmalates the

does not suscoed then D guesses that w ¥ n random string, 1 detail:
Distinguisher D
s given as imput a string w & {0, 1)1, neam

be determined from £(n).)

1. Bun A(1”) to obtain a pair of memages mg,m, & [0, 1},
2. Chioose » uniform bit b € (0,1). Set e:= wmi.
3 Give ¢ to A and obtain cutput & Output 1if & = b, and
output 0 otherwise.
D sty e s polysoial tie (sesing A doc).

(Gen, Enc, Dec) th-x-an-.ﬂyu-:wsume pad cncryption scheane, ex-

cep ot
of the mesmnge to be emerypted. That &, Gen(1™) outputs a usiform key k of
kength €(n), and the eacryption of mesage m € 2% using key & € (0,1}4%)

Private-Key Encryption o
= the ciphertext o= & @ m. (Deeryption ean be performed as mul, but is
inessential to what follows.) Perfeet seerecy of the one-time pad imphies

P [Pk Th(m) = 1] @3

To nalyze the behavior of D, the main observations are:
1. M chosen: {0,148, A

subcoutine by D & dtribmted dentieally to the view of A in

PraKS (n). This is beonuse whem A is run ns » subrostine by D{s) in
this ense, A i given & ciphertext ¢ = w@my, where w € (0,1)5% i uni-
form. Siace D outputs 1 exactly when A suscecds in its cavesdropping
experiment, we therelore have (cf. Equation (3.3))

Prye uemlD(w) = 1] =

(The subeeript on the first probability j
chosen uniformly from {0, 14 there.)
it gemerat by choosiog waom | € (0,1)° s then
= G(K), the view of A when run as n subroutine by D i
sted. rmmllylolhevunl.Amewmll’mK"’,.m] This
is besnise A, when run as & subroatine by D, is now given o
&= w @ mg where w = G() for a uniform £ & {0, 1]". Thus,

Pric qo-lDIGIE) = 1] =Pr PekTyim =1, @3)

Since G i n pacadorandom generator (and since £ rugs in polynomial time),
e know there is a pegligible fnction neg) mich that

P o D(w) = 1] = Priy_ - [D(GIE)) = ll‘ = neglin).
Using Equations (3.4) aml (3.5), we thes see that

Pr [PriviTn (n) = 1]{ = negl(n),

which s Pe [PrvkC () = 1] =3 vl St A was s by

FPT ndversary, -
mmmnmu!muvedmppa [ |
It get st in naything

s b gnine s compared L ape- e o e al, e o i pac
alo encrypts an £bit mewage by XORing it with an £-bit string! The point
of the construction, of course, & that the £bit string G(k) can be much

THE “USUAL” PROOF
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The Three Challenges



Randomized Evolution

Q1



Randomized Evolution

pl/ » The Q;s can be very
. different as for the

P . —_ values they produce

. » Their behaviors have
the same structure.
Pn
Q mn



Approximate Equivalence

Pr[Obs(P) = Obs(Q)] > 1 — £(n)

where € is a negligible function.

PoQ

A

> Process definitions should
be parameterized on n, the
security parameter.

> Roughly speaking, n is the
length of keys.




Polynomial Time Bounds

> For every P there must be a polynomial
q such that m < q(k) for every k.

> Otherwise, e.g., any modern encryption
scheme would be insecure.

\
Pn—kl =P — P~ ---— Py
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System mDIBLL
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Throughout the years, several typing disciplines for the n-calculus have been proposed.
Arguably, the most widespread of these typing disciplines consists of session types. Session
types describe the input/output behaviour of processes and traditionally provide strong
guarantees about this behaviour (i.e. deadlock-freedom and fidelity). While these systems
exploit a fundamental notion of linearity, the precise connection between linear logic and
session types has not been well understood.

This paper proposes a type system for the n-calculus that corresponds to a standard sequent
calculus presentation of intuitionistic linear logic, interpreting linear propositions as session
types and thus providing a purely logical account of all key features and properties of session

types. We show the deep correspondence between linear logic and session types by exhibiting

a ticht aneratinnal et stene and nracece rednctinne We
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Processes

These are exactly the process
expressions of 7TDILL.

v

PQ == 0 ‘ P|Q ’ (vy) P | z(y).P | x(y).P ’
lx(y). P ‘ x.inl; P ! x.inr; P ‘ x.case(P, Q)




Processes

PQu= 0| P|Q| (vy P | x(y).P | 2(y).P |
lz(y).P | 2.inl; P | z.inr; P | z.case(P,Q) |
[x<v] | 2.P | letz=ain P |
if v then P else ()



Processes

P,Q == 0 ‘ P|lQ ’ (vy) P | x(y).P ‘ z(y).P }
lx(y). P ‘ x.inl; P ! x.inr; P ! x.case(P, Q) !
(<] | 2.P | letz=ain P |

if v then P else () \

» The term a is of course not a process!

> It’s built from first-order function
symbols computing random functions
and which can be evaluated in
probabilistic polynomial time in n.




Processes

P,Q == 0 ‘ P|lQ ’ (vy) P | x(y).P ‘ z(y).P ’
lx(y). P ‘ x.inl; P ! x.inr; P ! x.case(P, Q) !
(<] | P | letz=ain P |

i hen

Input of a Output of a
ground value. ground value.




Types

These are (almost) exactly the
types of TDILL

\
AB:=1]| A—-B|L,A| A®9B | A®B | A&B |

B | S[p]
\

Strings of length p(n)




Typing Judgments

Polynomial variables

|Termvari@ /
[ A; 6 Y p oo A

‘\ | Restricted channels |

Unrestricted channels, each
associated with at type and a
polynomial.




Some Typing Rules

D,up: Ay Ay y: A, 0 Y P T

TCO
U, upq: Ay A; © FY vy uy).P = T Teon]



Some Typing Rules

Unresticted environments can be
aggregated, summing up
polynomials.

/ I'; A;, ©FY P oz A
C
FlEHFQ_F FQ; A27[E:A; 8 |_V Q A

F; A17A2; O 4 (V 1') (P ‘ Q) T [Tcut]




Some Typing Rules

Terms have to be typable
themselves.

v
OFYa:A T;A;0,2z:AF P T
I A;©F letx=ainP = T

[Tlet]



Reduction Semantics

P—9



Reduction Semantics

P @ Processes rewrite to
; distributions of processes.




Reduction Semantics

P @ Processes rewrite to
; distributions of processes.

P— Q@



Reduction Semantics

P @ Processes rewrite to
; distributions of processes.

P Q% Qef;@?oarf}d (D).




Reduction Semantics

P @ Processes rewrite to
; distributions of processes.

P Q% Qei@?o%d (D).

9 =&



Reduction Semantics

P @ Processes rewrite to
; distributions of processes.

P Q% Qef;@?oarber}d (D).

@ —_— é" —— The Kleisli Lifting of —. |




Part IV

Main Technical Results



Subject Reduction

Theorem

Iftr, A P :: z:Cand P+ R, then it holds that
I'y AR : z:C.



Subject Reduction

| Randomization plays no role.

Theorem

Iftr;, A P :: z:Cand P+ R, then it holds that
I'y AR : z:C.



Polytime Soundness

Theorem

For every derivation 7 typing P, there is a polynomial p, such
that for every substitution p, if Pp —* @), the overall
computational cost of the aforementioned reduction
is bounded by p.(p).



Polytime Soundness

The weight of 7, defined
following the structure of P.

Theorem

For every derivation 7 typing P, there is a polynomial p, such
that for every substitution p, if Pp —* @), the overall
computational cost of the aforementioned reduction
is bounded by p.(p).



Confluence

Theorem

tr, A+ P : Tand Y« P — & then either Z = & or there
exists .# such that Z = F < &.



Part V

Back To Cryptography



Observational Equivalence

A Notion of Observation

Given a process - P :: x : B, the fact that P outputs b, written P |, b does
not depend on any scheduler, thanks to confluence.



Observational Equivalence

A Notion of Observation

Given a process = P :: x : B, the fact that P outputs b, written P |, b does
not depend on any scheduler, thanks to confluence.

The Definition

Two processes P, () are observationally equivalent iff for every closing
context € there is € negligible such that

[Pr[€[P]p o 8] — PrE[Qlo 4 b]] < <(p)



Observational Equivalence

A Notion

Given a process = P :: x : B, the faq
not depend on any sch

The

Contexts

A process € in which the hole
[-] occurs only once and such
that = €[P] :: x : B is said to
be a closing context for P.

b does

Two processes P, () are observationally equivalent iff for every closing
context € there is € negligible such that

[Pr[€[P]p o 8] — PrE[Qlo 4 b]] < <(p)



The Proof of Security for II,

vD.vout.(PRAND, | D) ~ vout.(RAND | D)

Y
VAvadv.(PRIVKy, | A) ~ FAIRFLIP



The Proof of Security for II,

A

l

vout.(PRAND, | Da) ~ vadv.(PRIVKy, | A)
vout.(RAND | D4) ~ FAIRFLIP



The Proof of Security for II,

It is built out of
vadv.(PRIVKy, | A), by isolating
the role played by g.

Y

A

l

vout.(PRAND, | Da) ~ vadv.(PRIVKy, | A)
vout.(RAND | D4) ~ FAIRFLIP



The Proof of Security for II,

It is built out of A
vadv.(PRIVKy, | A), by isolating
the role played by g.

Follows from simple equations,
proved sound for observational
\L equivalence.

Y

vout.(PRAND, | Da) ~ vadv.(PRIVKy, | A)
vout.(RAND | D4) ~ FAIRFLIP



The Proof of Security for II,

It is built out of A
vadv.(PRIVKy, | A), by isolating
the role played by g.

Follows from simple equations,
proved sound for observational
\L equivalence.

Y

vout.(PRAND, | Da) ~ vadv.(PRIVKy, | A)

vout.(RAND | Dy) o FAIRFLIP

Follows easily from the security
of the so-called one-time pad




Wrapping Up

Contributions

» TDIBLL, a type system for polynomial time randomized processes.

» Session types can indeed faithfully model cryptographic experiments
and proofs.
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Wrapping Up

Contributions

7DIBLL, a type system for polynomial time randomized processes.

Session types can indeed faithfully model cryptographic experiments
and proofs.

Future Work

Extending the language of processes with a construct for iteration.

Towards Canetti’s Universal Composability.
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Wrapping Up

Contributions

7DIBLL, a type system for polynomial time randomized processes.

Session types can indeed faithfully model cryptographic experiments
and proofs.

Future Work

Extending the language of processes with a construct for iteration.

Towards Canetti’s Universal Composability.

Thank you! Questions?



Typing Rules for Processes - Standard Operators I

;A0 P T (T1R]
F'Aa::l'@l—VP::T[TlL] r, - ;06 0:xa:1

I''A y:A z:B;,0FY P =T

T®L
[ A, 2:A®B; © FY 2(y).P = T | ]

IM#BILCD I'; A; ©FY Py A I'y; A, © FY Q = z: B

;A AR y z@).(PlQ) = v:A®B TR

IMHEHTL,CT I'; A;©FY P :y: A Fg;A’,x:B;G)I—VQ::T[T I
I AN, 2:A—B; O F vy z).(P|Q) = T

A, y:A,© FY P x:B

T —-R
; A; © FY z(y).P ::x:A—OB[ ]

METL,CT I'; A; ©FY P z: A Ioy; A,z A4, 0 FY Q = T

LA A, OF (wa)(P|Q) = T T




Typing Rules for Processes - Standard Operators 11
pxMHITCT I'; O FY Py A Po,up:A; Ay © FY Q = T
;A0 FY (vu) (u(y).PlQ) =T

[Tcut!]

Dyup:A; Ayy: A0 P e T

TCO
L, upr1: A5 Ay © FY (vy) uly).P o T Teops]
Lup:A; A0 FY P e T
[Ty L]
Ly A 2,4, 0 FY Pla/ul = T
oL v T
'y - ;0K Q:y:A 1R

pxl; - ;0 FY lz(y).Q = z:1,A

I A,z:A, 06 P T I A,z:B;,0F Q=T
[ A, 2: A®B; © FY x.case(P,Q) = T

[T @ L)

I A;©FY P :x:A
Iy A; © FY z.inl;P =t 2: A9 B

[T ) R1]



Typing Rules for Processes - Standard Operators II1

I'' A;© -V P z:B
I' A; © FY zinr;P . z: AP B

[T ® Rs)

I'iA,z:A, 06 P =T
' A, z: A&B; © FY z.inl;P = T

[T&Ly]

A, z:B;,0F P T

T&L
I' A, z: A&B; © VY zinr;P = T | 2

I A;©FY P x: A I''A;© Y Q - z2:B
I; A; © FY z.case(P,Q) = 2: A&B

[T&R)



Typing Rules for Processes - New Operators

;0,0 2:Sp] FY Q = T

[TSL]

;A z:S[p); © WY 2.Q = T
O Y v :S[p| TSR]

I A; © FY (249 = x:S[pl
I A; 0, 2:BF Q =T (TBL)

A z:B;, 0 FY 2.Q =T
@FV’UIIB [TBR]

[; A; © FY [0 = 2:B

OFYa:B I''"A;©, 2:BF P T
I''A; © FY letx=ain P = T

[Tlet}

OFv:B I A;©OF P x:A A0 Q z2: A
I'' A; © FV ifvthen Pelse Q = x: A

[Ty]



Typing Rules for Terms

vars(B), vars(©) C YV Is| <p vars(©), vars(p) €V

Var Strin
©,2:BFYz:B Var] O s:S[pl [ 9l
Q) C 0) C
M [Booll] M [BOOZQ]
OFY true: B OV false: B

typeof (f) = B1,...,Bm — C O Y v : Bi{n « p} vars(p) €V

oY fplvi, ..., vm) : C{n < p} [Fun)



Reduction Rules

2(y).Q | w(u).P = {Q | P{y/u}'} 2().Q | lw(u).P —{Q | P{y/u} | lx(u).P'}

2.inl; P | x.case(Q,R) — {P | Q*} z.inr; P | x.case(Q,R) — {P | R'}
P —{Q} }ier P —{Q} }ier
R|P—=A{R|Q; }ier (v y) P = {(vy) Qi bier

P=R R — {Q; }ier Qi =T; for every i € I
P — {Tiri}iej

a = {v]" bier
[z ] | 2.Q — {Q{v/z}'} let z=a in P — {P{v;/x}" }icr

if true then P else Q — {P'} if false then P else Q — {Q'}
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