
On Session Typing,
Probabilistic Polynomial Time,
and Cryptographic Experiments

Ugo Dal Lago Giulia Giusti

IFIP WG 2.2, Münster, September 2022

Part I

Cryptography and Concurrency

Concurrency

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .
This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .

This work!

Concurrency

B
eh
av
io
u
ra
l

T
y
p
in
g

Security
Computational

Model

Symbolic
Model

I Adversaries are efficient
randomized algorithms;

I Adversaries are allowed to break
protocols and primitives, but
only with small probability.

I Strings are replaced by symbolic
expressions;

I Adversaries are omnipotent;
I Probability is abstracted away.

I The spi-calculus;
I Applied π-calculi;
I . . .

I Multiparty Sessions for Access Control.
I Cryptographic Synthesis by way of

Multiparty Sessions.
I . . .

I CCS-style PPT
process calculus.

I . . .

This work!

Cryptographic Experiments

Adversary

Key generation

Encryption

∀A.∃ε.Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ε(n)

I An ordinary process term;
I The adversary is now an external process.

PrivKeav
A,Π(n) :

m0,m1 ← A(1n)

k ← Gen(1n)

b← {0, 1}
c← Enc(k,mb)

g ← A(c)

return (b = g)

PRIVK Π :

input m0 from adv ;

input m1 from adv ;

let k = gen() in

let b = flipcoin() in

let c = enc(k ,mb) in

output c to adv ;

input g from adv ;

let r = eq(g , b) in

output r to exp;

Cryptographic Experiments

Adversary

Key generation

Encryption

∀A.∃ε.Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ε(n)

I An ordinary process term;
I The adversary is now an external process.

PrivKeav
A,Π(n) :

m0,m1 ← A(1n)

k ← Gen(1n)

b← {0, 1}
c← Enc(k,mb)

g ← A(c)

return (b = g)

PRIVK Π :

input m0 from adv ;

input m1 from adv ;

let k = gen() in

let b = flipcoin() in

let c = enc(k ,mb) in

output c to adv ;

input g from adv ;

let r = eq(g , b) in

output r to exp;

Cryptographic Experiments

Adversary

Key generation

Encryption

∀A.∃ε.Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ε(n)

I An ordinary process term;
I The adversary is now an external process.

PrivKeav
A,Π(n) :

m0,m1 ← A(1n)

k ← Gen(1n)

b← {0, 1}
c← Enc(k,mb)

g ← A(c)

return (b = g)

PRIVK Π :

input m0 from adv ;

input m1 from adv ;

let k = gen() in

let b = flipcoin() in

let c = enc(k ,mb) in

output c to adv ;

input g from adv ;

let r = eq(g , b) in

output r to exp;

Cryptographic Experiments

Adversary

Key generation

Encryption

∀A.∃ε.Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ε(n)

I An ordinary process term;
I The adversary is now an external process.

PrivKeav
A,Π(n) :

m0,m1 ← A(1n)

k ← Gen(1n)

b← {0, 1}
c← Enc(k,mb)

g ← A(c)

return (b = g)

PRIVK Π :

input m0 from adv ;

input m1 from adv ;

let k = gen() in

let b = flipcoin() in

let c = enc(k ,mb) in

output c to adv ;

input g from adv ;

let r = eq(g , b) in

output r to exp;

Cryptographic Experiments

Adversary

Key generation

Encryption

∀A.∃ε.Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ε(n)

I An ordinary process term;
I The adversary is now an external process.

PrivKeav
A,Π(n) :

m0,m1 ← A(1n)

k ← Gen(1n)

b← {0, 1}
c← Enc(k,mb)

g ← A(c)

return (b = g)

PRIVK Π :

input m0 from adv ;

input m1 from adv ;

let k = gen() in

let b = flipcoin() in

let c = enc(k ,mb) in

output c to adv ;

input g from adv ;

let r = eq(g , b) in

output r to exp;

Cryptographic Experiments

Adversary

Key generation

Encryption

∀A.∃ε.Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ε(n)

I An ordinary process term;
I The adversary is now an external process.

PrivKeav
A,Π(n) :

m0,m1 ← A(1n)

k ← Gen(1n)

b← {0, 1}
c← Enc(k,mb)

g ← A(c)

return (b = g)

PRIVK Π :

input m0 from adv ;

input m1 from adv ;

let k = gen() in

let b = flipcoin() in

let c = enc(k ,mb) in

output c to adv ;

input g from adv ;

let r = eq(g , b) in

output r to exp;

Security as Equivalence

∀D. (RAND | D) ∼ (PRANDg | D)

⇓

∀A. (PRIVK Πg | A) ∼ FLIPCOIN

The two involved processes behave
approximately the same.

Πg = (Gen,Enc,Dec)

Enc(m, k) = m⊕ g(k)

Dec(c, k) = c⊕ g(k)

Sends a random
string to D.

Sends a pseudorandom
string obtained through g

to D.

Security as Equivalence

∀D. (RAND | D) ∼ (PRANDg | D)

⇓

∀A. (PRIVK Πg | A) ∼ FLIPCOIN

The two involved processes behave
approximately the same.

Πg = (Gen,Enc,Dec)

Enc(m, k) = m⊕ g(k)

Dec(c, k) = c⊕ g(k)

Sends a random
string to D.

Sends a pseudorandom
string obtained through g

to D.

Security as Equivalence

∀D. (RAND | D) ∼ (PRANDg | D)

⇓

∀A. (PRIVK Πg | A) ∼ FLIPCOIN

The two involved processes behave
approximately the same.

Πg = (Gen,Enc,Dec)

Enc(m, k) = m⊕ g(k)

Dec(c, k) = c⊕ g(k)

Sends a random
string to D.

Sends a pseudorandom
string obtained through g

to D.

Security as Equivalence

∀D. (RAND | D) ∼ (PRANDg | D)

⇓

∀A. (PRIVK Πg | A) ∼ FLIPCOIN

The two involved processes behave
approximately the same.

Πg = (Gen,Enc,Dec)

Enc(m, k) = m⊕ g(k)

Dec(c, k) = c⊕ g(k)

Sends a random
string to D.

Sends a pseudorandom
string obtained through g

to D.

Security as Equivalence

∀D. (RAND | D) ∼ (PRANDg | D)

⇓

∀A. (PRIVK Πg | A) ∼ FLIPCOIN

The two involved processes behave
approximately the same.

Πg = (Gen,Enc,Dec)

Enc(m, k) = m⊕ g(k)

Dec(c, k) = c⊕ g(k)

Sends a random
string to D.

Sends a pseudorandom
string obtained through g

to D.

T
H
E

“U
SU

A
L”

P
R
O
O
F

Part II

The Three Challenges

Randomized Evolution

P

Q1

Qn

.

.

.

p1

pn

I The Qis can be very
different as for the
values they produce

I Their behaviors have
the same structure.

Randomized Evolution

P

Q1

Qn

.

.

.

p1

pn

I The Qis can be very
different as for the
values they produce

I Their behaviors have
the same structure.

Approximate Equivalence

P ∼ Q

Pr[Obs(P) = Obs(Q)] ≥ 1− ε(n)

where ε is a negligible function.

I Process definitions should
be parameterized on n, the
security parameter.

I Roughly speaking, n is the
length of keys.

Polynomial Time Bounds

P [n 7→ k] := P1 7→ P2 7→ · · · 7→ Pm

I For every P there must be a polynomial
q such that m ≤ q(k) for every k.

I Otherwise, e.g., any modern encryption
scheme would be insecure.

Part III

System πDIBLL

π
D
IL

L

B
L
L

Processes

P,Q ::= 0
∣∣ P | Q ∣∣ (ν y) P

∣∣ x〈y〉.P ∣∣ x(y).P
∣∣

!x(y).P
∣∣ x.inl;P

∣∣ x.inr;P
∣∣ x.case(P,Q)

∣∣
[x← v]

∣∣ x.P ∣∣ let x = a in P
∣∣

if v then P else Q

These are exactly the process
expressions of πDILL.

I The term a is of course not a process!
I It’s built from first-order function

symbols computing random functions
and which can be evaluated in
probabilistic polynomial time in n.

Output of a
ground value.

Input of a
ground value.

Processes

P,Q ::= 0
∣∣ P | Q ∣∣ (ν y) P

∣∣ x〈y〉.P ∣∣ x(y).P
∣∣

!x(y).P
∣∣ x.inl;P

∣∣ x.inr;P
∣∣ x.case(P,Q)

∣∣
[x← v]

∣∣ x.P ∣∣ let x = a in P
∣∣

if v then P else Q

These are exactly the process
expressions of πDILL.

I The term a is of course not a process!
I It’s built from first-order function

symbols computing random functions
and which can be evaluated in
probabilistic polynomial time in n.

Output of a
ground value.

Input of a
ground value.

Processes

P,Q ::= 0
∣∣ P | Q ∣∣ (ν y) P

∣∣ x〈y〉.P ∣∣ x(y).P
∣∣

!x(y).P
∣∣ x.inl;P

∣∣ x.inr;P
∣∣ x.case(P,Q)

∣∣
[x← v]

∣∣ x.P ∣∣ let x = a in P
∣∣

if v then P else Q

These are exactly the process
expressions of πDILL.

I The term a is of course not a process!
I It’s built from first-order function

symbols computing random functions
and which can be evaluated in
probabilistic polynomial time in n.

Output of a
ground value.

Input of a
ground value.

Processes

P,Q ::= 0
∣∣ P | Q ∣∣ (ν y) P

∣∣ x〈y〉.P ∣∣ x(y).P
∣∣

!x(y).P
∣∣ x.inl;P

∣∣ x.inr;P
∣∣ x.case(P,Q)

∣∣
[x← v]

∣∣ x.P ∣∣ let x = a in P
∣∣

if v then P else Q

These are exactly the process
expressions of πDILL.

I The term a is of course not a process!
I It’s built from first-order function

symbols computing random functions
and which can be evaluated in
probabilistic polynomial time in n.

Output of a
ground value.

Input of a
ground value.

Types

A,B ::= 1
∣∣ A(B

∣∣ !pA
∣∣ A⊗B ∣∣ A⊕B ∣∣ A&B

∣∣
B
∣∣ S[p]

These are (almost) exactly the
types of πDILL

Booleans Strings of length p(n)

Typing Judgments

Γ; ∆; Θ `V P :: x : A

Polynomial variables
Term variables

Unrestricted channels, each
associated with at type and a

polynomial.

Restricted channels

Some Typing Rules

Γ, up : A; ∆, y : A; Θ `V P :: T
[Tcopy]

Γ, up+1 : A; ∆; Θ `V (ν y) u〈y〉.P :: T

Some Typing Rules

Γ1 � Γ2 v Γ
Γ1; ∆1; Θ `V P :: x : A

Γ2; ∆2, x : A; Θ `V Q :: T
[Tcut]

Γ; ∆1,∆2; Θ `V (ν x) (P | Q) :: T

Unresticted environments can be
aggregated, summing up

polynomials.

Some Typing Rules

Θ `V a : A Γ; ∆; Θ, x : A `V P :: T
[Tlet]

Γ; ∆; Θ `V let x = a in P :: T

Terms have to be typable
themselves.

Reduction Semantics

P → D

P 7→ Q

D ⇒ E

Processes rewrite to
distributions of processes.

P → D and
Q ∈ SUPPORT(D).

The Kleisli Lifting of →.

Reduction Semantics

P → D

P 7→ Q

D ⇒ E

Processes rewrite to
distributions of processes.

P → D and
Q ∈ SUPPORT(D).

The Kleisli Lifting of →.

Reduction Semantics

P → D

P 7→ Q

D ⇒ E

Processes rewrite to
distributions of processes.

P → D and
Q ∈ SUPPORT(D).

The Kleisli Lifting of →.

Reduction Semantics

P → D

P 7→ Q

D ⇒ E

Processes rewrite to
distributions of processes.

P → D and
Q ∈ SUPPORT(D).

The Kleisli Lifting of →.

Reduction Semantics

P → D

P 7→ Q

D ⇒ E

Processes rewrite to
distributions of processes.

P → D and
Q ∈ SUPPORT(D).

The Kleisli Lifting of →.

Reduction Semantics

P → D

P 7→ Q

D ⇒ E

Processes rewrite to
distributions of processes.

P → D and
Q ∈ SUPPORT(D).

The Kleisli Lifting of →.

Part IV

Main Technical Results

Subject Reduction

Theorem

If Γ ; ∆ ` P :: z : C and P 7→ R, then it holds that
Γ ; ∆ ` R :: z : C .

Randomization plays no role.

Subject Reduction

Theorem

If Γ ; ∆ ` P :: z : C and P 7→ R, then it holds that
Γ ; ∆ ` R :: z : C .

Randomization plays no role.

Polytime Soundness

Theorem

For every derivation π typing P , there is a polynomial pπ such
that for every substitution ρ, if Pρ 7→∗ Q, the overall
computational cost of the aforementioned reduction

is bounded by pπ(ρ).

The weight of π, defined
following the structure of P .

Polytime Soundness

Theorem

For every derivation π typing P , there is a polynomial pπ such
that for every substitution ρ, if Pρ 7→∗ Q, the overall
computational cost of the aforementioned reduction

is bounded by pπ(ρ).

The weight of π, defined
following the structure of P .

Confluence

Theorem

If Γ ; ∆ ` P :: T and D ← P → E then either D = E or there
exists F such that D ⇒ F ⇐ E .

Part V

Back To Cryptography

Observational Equivalence

A Notion of Observation
Given a process ` P :: x : B, the fact that P outputs b, written P ↓x b does

not depend on any scheduler, thanks to confluence.

The Definition
Two processes P,Q are observationally equivalent iff for every closing

context C there is ε negligible such that

|Pr[C [P]ρ ↓x b]− Pr[C [Q]ρ ↓x b]| ≤ ε(ρ)

Contexts
A process C in which the hole
[·] occurs only once and such
that ` C [P] :: x : B is said to
be a closing context for P .

Observational Equivalence

A Notion of Observation
Given a process ` P :: x : B, the fact that P outputs b, written P ↓x b does

not depend on any scheduler, thanks to confluence.

The Definition
Two processes P,Q are observationally equivalent iff for every closing

context C there is ε negligible such that

|Pr[C [P]ρ ↓x b]− Pr[C [Q]ρ ↓x b]| ≤ ε(ρ)

Contexts
A process C in which the hole
[·] occurs only once and such
that ` C [P] :: x : B is said to
be a closing context for P .

Observational Equivalence

A Notion of Observation
Given a process ` P :: x : B, the fact that P outputs b, written P ↓x b does

not depend on any scheduler, thanks to confluence.

The Definition
Two processes P,Q are observationally equivalent iff for every closing

context C there is ε negligible such that

|Pr[C [P]ρ ↓x b]− Pr[C [Q]ρ ↓x b]| ≤ ε(ρ)

Contexts
A process C in which the hole
[·] occurs only once and such
that ` C [P] :: x : B is said to
be a closing context for P .

The Proof of Security for Πg

∀D.νout .(PRANDg | D) ∼ νout .(RAND | D)

⇓

∀A.νadv .(PRIVK Πg | A) ∼ FAIRFLIP

The Proof of Security for Πg

Ay
νout .(PRANDg | DA) ∼ νadv .(PRIVK Πg | A)

νout .(RAND | DA) ∼ FAIRFLIP

It is built out of
νadv .(PRIVKΠg

| A), by isolating
the role played by g.

Follows from simple equations,
proved sound for observational

equivalence.

Follows easily from the security
of the so-called one-time pad

The Proof of Security for Πg

Ay
νout .(PRANDg | DA) ∼ νadv .(PRIVK Πg | A)

νout .(RAND | DA) ∼ FAIRFLIP

It is built out of
νadv .(PRIVKΠg

| A), by isolating
the role played by g.

Follows from simple equations,
proved sound for observational

equivalence.

Follows easily from the security
of the so-called one-time pad

The Proof of Security for Πg

Ay
νout .(PRANDg | DA) ∼ νadv .(PRIVK Πg | A)

νout .(RAND | DA) ∼ FAIRFLIP

It is built out of
νadv .(PRIVKΠg

| A), by isolating
the role played by g.

Follows from simple equations,
proved sound for observational

equivalence.

Follows easily from the security
of the so-called one-time pad

The Proof of Security for Πg

Ay
νout .(PRANDg | DA) ∼ νadv .(PRIVK Πg | A)

νout .(RAND | DA) ∼ FAIRFLIP

It is built out of
νadv .(PRIVKΠg

| A), by isolating
the role played by g.

Follows from simple equations,
proved sound for observational

equivalence.

Follows easily from the security
of the so-called one-time pad

Wrapping Up

Contributions
I πDIBLL, a type system for polynomial time randomized processes.
I Session types can indeed faithfully model cryptographic experiments
and proofs.

Future Work
I Extending the language of processes with a construct for iteration.
I Towards Canetti’s Universal Composability.

Thank you! Questions?

Wrapping Up

Contributions
I πDIBLL, a type system for polynomial time randomized processes.
I Session types can indeed faithfully model cryptographic experiments
and proofs.

Future Work
I Extending the language of processes with a construct for iteration.
I Towards Canetti’s Universal Composability.

Thank you! Questions?

Wrapping Up

Contributions
I πDIBLL, a type system for polynomial time randomized processes.
I Session types can indeed faithfully model cryptographic experiments
and proofs.

Future Work
I Extending the language of processes with a construct for iteration.
I Towards Canetti’s Universal Composability.

Thank you! Questions?

Typing Rules for Processes - Standard Operators I
Γ; ∆; Θ `V P :: T

[T1L]
Γ; ∆, x : 1; Θ `V P :: T

[T1R]
Γ; · ; Θ `V 0 :: x : 1

Γ; ∆, y : A, x : B; Θ `V P :: T
[T ⊗ L]

Γ; ∆, x : A⊗B; Θ `V x(y).P :: T

Γ1 � Γ2 v Γ Γ1; ∆; Θ `V P :: y : A Γ2; ∆′; Θ `V Q :: x : B
[T ⊗R]

Γ; ∆, ∆′; Θ `V (ν y) x〈y〉.(P | Q) :: x : A⊗B

Γ1 � Γ2 v Γ Γ1; ∆; Θ `V P :: y : A Γ2; ∆′, x : B; Θ `V Q :: T
[T (L]

Γ; ∆, ∆′, x : A(B; Θ `V (ν y) x〈y〉.(P | Q) :: T

Γ; ∆, y : A; Θ `V P :: x : B
[T (R]

Γ; ∆; Θ `V x(y).P :: x : A(B

Γ1 � Γ2 v Γ Γ1; ∆; Θ `V P :: x : A Γ2; ∆′, x : A; Θ `V Q :: T
[Tcut]

Γ; ∆, ∆′; Θ `V (ν x) (P | Q) :: T

Typing Rules for Processes - Standard Operators II
p ∗ Γ1 � Γ2 v Γ Γ1; ·; Θ `V P :: y : A Γ2, up : A; ∆; Θ `V Q :: T

[Tcut !]
Γ; ∆; Θ `V (ν u) (!u(y).P | Q) :: T

Γ, up : A; ∆, y : A; Θ `V P :: T
[Tcopy]

Γ, up+1 : A; ∆; Θ `V (ν y) u〈y〉.P :: T

Γ, up : A; ∆; Θ `V P :: T
[T !pL]

Γ; ∆, x :!pA; Θ `V P{x/u} :: T
Γ; · ; Θ `V Q :: y : A

[T !pR]
p ∗ Γ; · ; Θ `V !x(y).Q :: x :!pA

Γ; ∆, x : A; Θ `V P :: T Γ; ∆, x : B; Θ `V Q :: T
[T ⊕ L]

Γ; ∆, x : A⊕B; Θ `V x.case(P,Q) :: T

Γ; ∆; Θ `V P :: x : A
[T ⊕R1]

Γ; ∆; Θ `V x.inl;P :: x : A⊕B

Typing Rules for Processes - Standard Operators III

Γ; ∆; Θ `V P :: x : B
[T ⊕R2]

Γ; ∆; Θ `V x.inr;P :: x : A⊕B

Γ; ∆, x : A; Θ `V P :: T
[T&L1]

Γ; ∆, x : A&B; Θ `V x.inl;P :: T

Γ; ∆, x : B; Θ `V P :: T
[T&L2]

Γ; ∆, x : A&B; Θ `V x.inr;P :: T

Γ; ∆; Θ `V P :: x : A Γ; ∆; Θ `V Q :: x : B
[T&R]

Γ; ∆; Θ `V x.case(P,Q) :: x : A&B

Typing Rules for Processes - New Operators
Γ; ∆; Θ, x : S[p] `V Q :: T

[TSL]
Γ; ∆, x : S[p]; Θ `V x.Q :: T

Θ `V v : S[p]
[TSR]

Γ; ∆; Θ `V [x← v] :: x : S[p]

Γ; ∆; Θ, x : B `V Q :: T
[TBL]

Γ; ∆, x : B; Θ `V x.Q :: T

Θ `V v : B [TBR]
Γ; ∆; Θ `V [x← v] :: x : B

Θ `V a : B Γ; ∆; Θ, x : B `V P :: T
[Tlet]

Γ; ∆; Θ `V let x = a in P :: T

Θ `V v : B Γ; ∆; Θ `V P :: x : A Γ; ∆; Θ `V Q :: x : A
[Tif]

Γ; ∆; Θ `V if v then P else Q :: x : A

Typing Rules for Terms

vars(B), vars(Θ) ⊆ V
[V ar]

Θ, z : B `V z : B

|s| ≤ p vars(Θ), vars(p) ⊆ V
[String]

Θ `V s : S[p]

vars(Θ) ⊆ V
[Bool1]

Θ `V true : B
vars(Θ) ⊆ V

[Bool2]
Θ `V false : B

typeof (f) = B1, . . . , Bm → C Θ `V vi : Bi{n← p} vars(p) ⊆ V
[Fun]

Θ `V fp(v1, . . . , vm) : C{n← p}

Reduction Rules

x〈y〉.Q | x(u).P → {Q | P{y/u}1} x〈y〉.Q | !x(u).P → {Q | P{y/u} | !x(u).P 1}

x.inl;P | x.case(Q,R)→ {P | Q1} x.inr;P | x.case(Q,R)→ {P | R1}

P → {Qri
i }i∈I

R | P → {R | Qri
i }i∈I

P → {Qri
i }i∈I

(ν y) P → {(ν y) Qri
i }i∈I

P ≡ R R→ {Qri
i }i∈I Qi ≡ Ti for every i ∈ I
P → {T ri

i }i∈I

[x← v] | x.Q→ {Q{v/x}1}
a ↪→ {vrii }i∈I

let x = a in P → {P{vi/x}ri}i∈I

if true then P else Q→ {P 1} if false then P else Q→ {Q1}

	Cryptography and Concurrency
	The Three Challenges
	System DIBLL
	Main Technical Results
	Back To Cryptography

