
Sylvain Salvati and Igor Walukiewicz
Bordeaux University

A model for behavioural properties of
higher-order programs

Verification of behavioural properties of higher-order programs:

•	 reachability / safety
fail constant is reachable / not reachable

•	 resource usage
every open file is eventually closed

•	 method invocation patterns
m.init should appear before m.usage

•	 fairness properties
if access is demanded infinitely often then it is granted infinitely often

x 0

1 ·

x

�

x 1

0

1 ·

x

�

�

x 1

0

1 ·

Böhm tree of a term

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification in three steps

1. Program → λ-term
 P → M

2.Property → wMSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

[Kobayashi, POPL’09]

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

x 0

1 ·

x

�

x 1

0

1 ·

x

�

�

x 1

0

1 ·

Property:
Every path with a left turn is finite

[Ong, LICS’06]

Our contribution
We reduce this problem to evaluation in a finite model:

This approach links verification to
abstract interpretation and to typing.

1. Program → λ-term
 P → M

2.Property → wMSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Our contribution
We reduce this problem to evaluation in a finite model:

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

• To verify program fragments
• To type programs
• To do abstract interpretation

1. Program → λ-term
 P → M

2.Property → wMSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

• To verify program fragments
• To type programs
• To do abstract interpretation

[Salvati, W. 2013]
[Tsukada, Ong 2014]
[Hofmann, Chen 2014]
[Grellois, Meilles 2015]
[Salvati, W. 2015]

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

• For finite words ➟ semigroups (algebraic theory of regular lang.)

• For infinite words ➟ Wilke algebras

• For finite trees ➟ pre-clones, forest algebras

• For infinite trees ➟

Verification by evaluation:

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

Models with least/greatest fix points can only recognise
boolean combinations of reachability and safety properties.

Semantics: GFP-models

A GFP model

What can finite GFP-models recognise?

Tree automata with trivial acceptance conditions

Every run is accepting.

Models with least/greatest fix points can only recognise
boolean combinations of reachability and safety properties.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

1. Program → λ-term
 P → M

2.Property → wMSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

Thm: For every MSOL property there is effectively a
finitary model recognising it.

max parity condition

Valuation:

Semantics:

if

if

[Kobayashi, Ong LICS’09]
[Salvati, W. ICALP’11][Tsukada, Ong LICS’14][Grellois, Mellies, MFCS’15]

The above semantics works only for Ω-blind automata

automaton accept unconditionally on Ω

Translation to eliminate Ω
from Böhm trees:

How to deal directly with all automata?

How to deal directly with all automata?

Applications of models

Applications of models

Applications of models

Applications of models

The set of SN terms over fixed set of variables is definable in MSOL

Consequences of the transfer theorem

A « synthesis from modules » framework

Consequences of the transfer theorem

Higher-order matching with restricted no of variables

Consequences of the transfer theorem

CONCLUSIONS

A semantics for all MSOL properties of Böhm trees
• stratification property
• a formula for the fix point.

More abstract description of the model

Determine expressive power of finitary models.

Most results on higher-order verification follow from this
construction.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

 Extending verification methods, from transition systems to
 a higher-order program calculus.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation

Extending verification methods, from transition
systems to a higher-order program calculus.

Extending abstract interpretation to
new kinds of models, and higher-order.

Extending typing with new kinds of
types, namely behavioural types.

1. Program → λ-term
 P → M

2.Property → MSOL-formula
 ‘no fail’ → φ

3.Verification
 BT(M)⊨φ

Verification by evaluation:

• Type systems
• Program tranformation
• Transfer theorem

• Verification by evaluation
• Abstraction/refinement
• Evaluating programs directly

