A model for behavioural properties of higher-order programs

Sylvain Salvati and Igor Walukiewicz Bordeaux University

Verification of behavioural properties of higher-order programs:

- reachability / safety
 fail constant is reachable / not reachable
- resource usage every open file is eventually closed
- method invocation patterns
 m.init should appear before m.usage
- fairness properties
 if access is demanded infinitely often then it is granted infinitely often

$$Fct(x) \equiv if x = 0 then 1 else Fct(x-1) \cdot x$$
.

 $Fct(x) \equiv if x = 0 then 1 else Fct(x-1) \cdot x$.

YFct.
$$\lambda x$$
. **if-then-else** $(z(x), o, m(Fct(x-1), x))$

Böhm tree of a term

Verification in three steps

2.Property \rightarrow MSOL-formula 'no fail' $\rightarrow \phi$

[Kobayashi, POPL'09]

1. Program $\rightarrow \lambda$ -term2. Property \rightarrow MSOL-formula3. VerificationP \rightarrow M'no fail' $\rightarrow \phi$ BT(M)= ϕ

YFct. λx . **if-then-else**(z(x), o, m(Fct(x-1), x))

Property: Every path with a left turn is finite

|Ong, LICS'06|

1. Program $\rightarrow \lambda$ -term2. Property \rightarrow wMSOL-formula3. VerificationP \rightarrow M'no fail' $\rightarrow \phi$ BT(M)= ϕ

Our contribution

We reduce this problem to evaluation in a finite model: $BT(M) \vDash \varphi$ iff $\llbracket M \rrbracket^D \in F$.

This approach links verification to abstract interpretation and to typing.

1. Program $\rightarrow \lambda$ -term2. Property \rightarrow MSOL-formula3. VerificationP \rightarrow M'no fail' $\rightarrow \phi$ BT(M)= ϕ

Our contribution

We reduce this problem to evaluation in a finite model: $BT(M) \vDash \varphi$ iff $\llbracket M \rrbracket^D \in F$.

- To verify program fragments
- To type programs
- To do abstract interpretation

1. Program $\rightarrow \lambda$ -term P $\rightarrow M$

2.Property \rightarrow wMSOL-formula 'no fail' $\rightarrow \phi$

BT(M)⊨φ

3.Verification

- To verify program fragments
- To type programs
- To do abstract interpretation

[Salvati, W. 2013] [Tsukada, Ong 2014] [Hofmann, Chen 2014] [Grellois, Meilles 2015] [Salvati, W. 2015]

1. Program
$$\rightarrow \lambda$$
-term P $\rightarrow M$

2.Property
$$\rightarrow$$
 MSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

 $BT(M) \vDash \varphi$ iff $\llbracket M \rrbracket^D \in F$.

1. Program
$$\rightarrow \lambda$$
-term P $\rightarrow M$

2.Property
$$\rightarrow$$
 MSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

- For finite words semigroups (algebraic theory of regular lang.)
- For infinite words → Wilke algebras
- For finite trees → pre-clones, forest algebras
- For infinite trees →

1. Program
$$\rightarrow \lambda$$
-term P \rightarrow M

2.Property
$$\rightarrow$$
 MSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

Models with least/greatest fix points can only recognise boolean combinations of reachability and safety properties.

Semantics: GFP-models

Types: $o, A \to B$ **Typed tems:** $c^A, x^A, (M^{A \to B}N^A)^B, (\lambda x^A . M^B)^{A \to B}, (Yx^A . M^A)^A$ **Tree signature:** constants have types o or $(o \to \cdots \to o \to o)$.

A GFP model $\mathcal{D}^{\mathcal{A}} = \langle \{D_A\}_{A \in \mathcal{T}}, [\![c]\!], \ldots \rangle$ where $D_o = \text{finite lattice} \qquad D_{A \to B} = \text{mon}[D_A \mapsto D_B]$ $[\![Yf^{A \to A}, M^A]\!]_v = \mathsf{GFP}(\lambda F.[\![M]\!]_{v[F/f]})$

A model can *recognise* a set of terms: a set $F \subseteq \mathcal{D}_0$ defines a set of closed terms $\{M : \llbracket M \rrbracket^{\mathcal{D}} \in F\}.$

What can finite GFP-models recognise?

TAC-automata

Tree automata with trivial acceptance conditions

$$\mathcal{A} = \langle Q, \ \Sigma, \ \delta_i : Q \times \Sigma^{(i)} \to \mathcal{P}(Q^i) \rangle$$

Every run is accepting.

TAC-automaton $\equiv \nu$ -formulas \equiv safety properties

Models with least/greatest fix points can only recognise boolean combinations of reachability and safety properties.

1. Program
$$\rightarrow \lambda$$
-term P $\rightarrow M$

2.Property
$$\rightarrow$$
 MSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

 $BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$

1. Program
$$\rightarrow \lambda$$
-term P \rightarrow M

2.Property
$$\rightarrow$$
 wMSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

Thm: For every MSOL property there is effectively a finitary model recognising it.

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

$$\mathcal{A} = \langle Q, \Sigma, \delta_i : Q \times \Sigma^{(i)} \to \mathcal{P}(Q^i), \frac{rk : Q \to [m]}{\max \text{ parity condition}}$$

$$M: o \qquad [M] \in \mathcal{P}(Q)$$
$$M: o \to o \qquad [M] \in \mathcal{P}(Q \times [m]) \to \mathcal{P}(Q)$$

$$q \in [\![M]\!]\{(q',i),(q'',j)\}$$

For a given φ construct a finitary interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

 $BT(M) \vDash \varphi$ iff $\llbracket M \rrbracket^D \in F$.

$$M: o \qquad [M] \in \mathcal{P}(Q)$$
$$M: o \to o \qquad [M] \in \mathcal{P}(Q \times [m]) \to \mathcal{P}(Q)$$

 $S_o = \mathcal{P}(Q) \qquad \qquad S_{A \to B} = \mathcal{D}_A \to \mathcal{S}_B \\ \mathcal{D}_o = \mathcal{P}(Q \times [m]) \qquad \qquad \mathcal{D}_{A \to B} = \mathcal{D}_A \to \mathcal{D}_B$

$$S_o = \mathcal{P}(Q) \qquad \qquad S_{A \to B} = \mathcal{D}_A \to \mathcal{S}_B$$
$$\mathcal{D}_o = \mathcal{P}(Q \times [m]) \qquad \qquad \mathcal{D}_{A \to B} = \mathcal{D}_A \to \mathcal{D}_B$$

$$S_o = \mathcal{P}(Q) \qquad \qquad S_{A \to B} = \mathcal{D}_A \to \mathcal{S}_B$$
$$\mathcal{D}_o = \mathcal{P}(Q \times [m]) \qquad \qquad \mathcal{D}_{A \to B} = \mathcal{D}_A \to \mathcal{D}_B$$

Lifting operation $d|_r$ for $d \in D_A$ and $r \in [m]$.

$$\mathcal{S}_o = \mathcal{P}(Q)$$
$$\mathcal{D}_o = \mathcal{P}(Q \times [m])$$

 $\mathcal{S}_{A \to B} = \mathcal{D}_A \to \mathcal{S}_B$ $\mathcal{D}_{A \to B} = \mathcal{D}_A \to \mathcal{D}_B$

 $\llbracket M, v \rrbracket \in \mathcal{S}_A \qquad \langle\!\langle M, v \rangle\!\rangle \in \mathcal{D}_A$

 $\langle\!\langle M, v \rangle\!\rangle(\vec{f}) = \{(q, r) : q \in \llbracket M, v \! \mid_r \rrbracket(\vec{f})\}$ $[\![M,v]\!](\vec{f}) = \{q : (q,0) \in \langle\!\langle M,v \rangle\!\rangle(\vec{f})\} .$

$$S_{o} = \mathcal{P}(Q) \qquad \qquad S_{A \to B} = \mathcal{D}_{A} \to \mathcal{S}_{B}$$
$$\mathcal{D}_{o} = \mathcal{P}(Q \times [m]) \qquad \qquad \mathcal{D}_{A \to B} = \mathcal{D}_{A} \to \mathcal{D}_{B}$$
$$\llbracket M, v \rrbracket \in \mathcal{S}_{A} \qquad \langle \langle M, v \rangle \rangle \in \mathcal{D}_{A}$$

$$\begin{split} \llbracket x, v \rrbracket \vec{f} &= \{q : (q, 0) \in v(x)(\vec{f})\} \\ \llbracket a, v \rrbracket f_1 \dots f_k &= \{q : \exists_{(q_1, \dots, q_k) \in \delta_{\mathcal{A}}(q, a)}. \forall_{i=1, \dots, k}. \ (q_i, 0) \in f_i \mid_{rk(q_i)} \} \\ \llbracket \lambda x. M, v \rrbracket f &= \llbracket M, v \llbracket f/x \rrbracket \rrbracket \\ \llbracket MN, v \rrbracket &= \llbracket M, v \rrbracket \langle \langle N, v \rangle \rangle \\ \llbracket Y, v \rrbracket f &= \dots \end{split}$$

[Kobayashi, Ong LICS'09] [Salvati, W. ICALP' I I][Tsukada, Ong LICS' I 4][Grellois, Mellies, MFCS' I 5]

$$\begin{split} \llbracket x, v \rrbracket \vec{f} = &\{q : (q, 0) \in v(x)(\vec{f})\} \\ \llbracket a, v \rrbracket f_1 \dots f_k = &\{q : \exists_{(q_1, \dots, q_k) \in \delta_{\mathcal{A}}(q, a)}. \forall_{i=1, \dots, k}. (q_i, 0) \in f_i |_{rk(q_i)}\} \\ \llbracket \lambda x. M, v \rrbracket f = &\llbracket M, v [f/x] \rrbracket \\ \llbracket MN, v \rrbracket = &\llbracket M, v \rrbracket \langle \langle N, v \rangle \rangle \\ \llbracket Y, v \rrbracket f = \dots \end{split}$$

The above semantics works only for Ω -blind automata $\delta(\Omega, q) = \{\emptyset\} \qquad \text{for all } q$ automaton accept unconditionally on Ω $YM \mapsto Y(\lambda \vec{x}. e(M\vec{x}))$ Translation to eliminate Ω from Böhm trees: $BT(M^e)$ BT(M)e How to deal directly with all automata?

There are too many functions in \mathcal{S}_A .

It is not decidable which of those are semantics of terms [Loader].

How to deal directly with all automata?

There are too many functions in \mathcal{S}_A .

It is not decidable which of those are semantics of terms [Loader].

It suffices to require that all functions $f \in \mathcal{D}_{A \to B}$ satisfy:

 $\forall g \in \mathcal{D}_A. \ \forall q \in Q. \ (f(g)) \Downarrow_q = (f(g \downarrow_{rk(q)})) \Downarrow_q \qquad (\texttt{strat})$

where $f \Downarrow_q = \{r : (q, r) \in f\}$, and $f \Downarrow_q(g) = (f(g)) \Downarrow_q$.

Thm: For a given φ we can construct an interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

 $BT(M) \vDash \varphi$ iff $\llbracket M \rrbracket^D \in F$.

1. Decidability of the model-checking problem for MSO Given an property φ and term M:

- construct the model \mathcal{D}^{φ} , and
- calculate the semantics of M in \mathcal{D}^{φ} .

4. Transfer theorem for MSO

Thm (Transfer)[Salvati & W.] Fix a signature Σ , set of types \mathcal{T} , and a set of variables \mathcal{X} (all finite sets). For every MSOL formula φ there is an MSOL formula $\widehat{\varphi}$ s.t. for every term M over Σ , \mathcal{T} , \mathcal{X} :

 $M \vDash \widehat{\varphi}$ iff $BT(M) \vDash \varphi$

Consequences of the transfer theorem $M \models \widehat{\varphi}$ iff $BT(M) \models \varphi$

The set of SN terms over fixed set of variables is definable in MSOL

For a fixed \mathcal{T} and \mathcal{X} there is an MSOL formula defining the set of terms $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$ having a normal form.

Take φ defining the set of finite trees and consider $\hat{\varphi}$.

Consequences of the transfer theorem $M \models \widehat{\varphi}$ iff $BT(M) \models \varphi$

A « synthesis from modules » framework Given λY -terms M_1, \ldots, M_k and a formula φ . Decide if one can construct from these terms a λY term Ksuch that $eval(K) \vDash \varphi$.

- We can restrict to solutions K of the form
 (λx₁...x_k. N)M₁,...,M_k
 for some term N without constants and λ-abstractions.
- Let ψ be a formula defining terms of this form.
- There is a solution iff the formula $\psi \wedge \hat{\varphi}$ is satisfiable.

$$M\vDash\widehat{\varphi} \quad \text{ iff } \quad eval(M)\vDash\varphi$$

Consequences of the transfer theorem $M \models \widehat{\varphi}$ iff $BT(M) \models \varphi$

Higher-order matching with restricted no of variables For a fixed \mathcal{X} . Given M and K (without fixpoints) decide if there is a substitution σ such that

 $M\sigma =_{\beta} K$

Substitution Σ can use only terms from $Terms(\Sigma, \mathcal{T}, \mathcal{X})$.

- Let shape(N) be MSOL formula defining the set of terms in $Terms(\Sigma, \mathcal{T}, \mathcal{X})$ that can be obtained from N by substitutions.
- Let $\varphi \equiv shape(K)$.
- There is desired σ iff the formula $shape(M) \wedge \widehat{\varphi}$ is satisfiable.

If there is a solution then there is a finite one.

CONCLUSIONS

A semantics for all MSOL properties of Böhm trees

- stratification property
- a formula for the fix point.

Most results on higher-order verification follow from this construction.

More abstract description of the model

Determine expressive power of finitary models.

1. Program $\rightarrow \lambda$ -term $P \rightarrow M$

2.Property \rightarrow MSOL-formula 'no fail' $\rightarrow \phi$

Extending verification methods, from transition systems to a higher-order program calculus.

1. Program
$$\rightarrow \lambda$$
-term P $\rightarrow M$

2.Property
$$\rightarrow$$
 MSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct an interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

 $BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$

1. Program $\rightarrow \lambda$ -term $P \rightarrow M$

2.Property \rightarrow MSOL-formula 'no fail' $\rightarrow \phi$

Extending verification methods, from transition systems to a higher-order program calculus.

Extending abstract interpretation to new kinds of models, and higher-order.

Extending typing with new kinds of types, namely behavioural types.

1. Program
$$\rightarrow \lambda$$
-term P $\rightarrow M$

2.Property
$$\rightarrow$$
 MSOL-formula 'no fail' $\rightarrow \phi$

For a given φ construct an interpretation of λ Y-terms D, and a set $F \subseteq D$ s.t. for every λ Y-term M:

$$BT(M) \vDash \varphi \quad \text{iff} \quad \llbracket M \rrbracket^D \in F.$$

- Type systems
- Program tranformation
- Transfer theorem

- Verification by evaluation
- Abstraction/refinement
- Evaluating programs directly