A model for behavioural properties of
higher-order programs

Sylvain Salvati and lgor Walukiewicz
Bordeaux University

Verification of behavioural properties of higher-order programs:

reachabllity / safety
fail constant is reachable / not reachable

resource usage
every open file is eventually closed

method invocation patterns
m.init should appear before m.usage

fairness properties
If access is demanded infinitely often then it is granted infinitely often

Fct(z) = if x =0 then 1 else Fct(z —1) -z .

if
7
/N /N

Fct(z) = if x =0 then 1 else Fct(z —1) -z .

Y Fct. Ax. if-then-else(z(x), 0, m(Fct(x — 1), x))

z/(l)\m

I yd N

C T if\
z/la m
! |
c—1

Bohm tree of a term

Verification in three steps

1. Program = A-term
P—-=M

2.Property — MSOL-formula
'no falll = @

3.\/eriﬂcation
BT(M)=p

1. Program — A-term 2.Property — WwMSOL-formula 3. Verification
Zieadid 'no falll = BT (M)=wp

/\

Types: 0, A — B

Typed tems: ¢, 7, (MA7ENYHYE At . MB)A=E (Yt . MA)A

[Kobayashi, POPLOY]

1. Program — A-term 2.Property — MSOL-formula 3. Verification
i no falll = @ BT (M)=wp

/\

x € Z | Px) | succ(z,y) | oV | ~p | Voo | VZ.p

1. Program — A-term 2.Property — MSOL-formula

3 . Verification
BT (M)=wp

/N

Every path with a left turn s finrte

Eiiadi N 'no falll =
-
Y Fct. Ax. if-then-else(z(x), 0, m(Fct(x — 1), x))
Property:
if
- ! ~_
SN SN
L 1 o
/N /N
27 :/1 o
/N |
-0
/N
- 1
/N
x 1

[Ong, LICS'06]

_/

1. Program — A-term 2.Property — WwMSOL-formula 3. Verification
Zieadid 'no falll = BT (M)=wp

e
Our contribution

VWe reduce this problem to evaluation in a finite model:

BT(M)E ¢ iff [M]” €F.

This approach links verification to
abstract interpretation and to typing.

g

1. Program — A-term 2.Property — MSOL-formula 3. Verification
i no falll = @ BT (M)=wp

e
Our contribution

VWe reduce this problem to evaluation in a finite model:

BT(M)E ¢ iff [M]” €F.

g

* o verity program fragments
* Jo type programs

» lo do abstract interpretation

1. Program — A-term 2.Property — WMSOL-formula 3. Verification
i no falll = @ BT (M)=wp

: /"R

o verify program fragments

O type programs

0 do abstract interpretation

Salvat, W. 201 3]
[sukada, Ong 2014]
'Hofmann, Chen 2014]
Grellois, Mellles 2015]
Salvat, W. 201 5]

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no fail = BT(M)=

/

For a given ¢ construct a finitary interpretation of AY-terms D, and
a set F' C D s.t. for every A\Y-term M:

Verification by evaluation:

BT(M)E ¢ iff [M]” €F.

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no fail = BT(M)=

/\ﬁ

For a given ¢ construct a finitary interpretation of AY-terms D, and
a set F' C D s.t. for every A\Y-term M:

'Verification by evaluation:

BT(M)E ¢ iff [M]” €F.

For finite words = semigroups (algebraic theory of regular lang.)
For infinite words = Wilke algebras
For finite trees = pre-clones, forest algebras

For infinite trees

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no fail = BT(M)=

/¥

For a given ¢ construct a finitary interpretation of AY-terms D, and
a set F' C D s.t. for every A\Y-term M:

'Verification by evaluation:
BT(M)E ¢ iff [M]” €F.

Models with least/greatest fix points can only recognise
boolean combinations of reachability and safety properties.

Semantics: GFP-models

Types: 0, A — B
Typed tems: ¢4, 2, (MAZENAE, Q2. MB)A2E, (Y2 MA)4

Tree signature: constants have types oor (0 — -+ — 0 — 0).

A GFP model
DA — <{DA}A6T7 [[C]], . o > where

D, = finite lattice Da g =mon|Dy+— Dg]

[[YfA_)A- MA]]U — GFP()\F-[[M]]U[F/f])

A model can recognise a set of terms:
a set F' C Dy defines a set of closed terms {M : [M]" € F}.

What can finite GF

TAC-automata

omoe

els recognise!

Tree automata with trivial acceptance conditions

A=(Q, B, §;: Q x X = P(Q"))

Every run is accepting.

TAC-automaton = rv-formulas

= safety properties

Models with least/greatest fix points can only recognise
boolean combinations of reachability and safety properties.

1. Program — A-term 2.Property — MSOL-formula

P = M 'no fail' = ¢

3 . Verification
BT(M)=p

M

'Verification by evaluation:

For a given ¢ construct a finitary interpretation of AY-terms D, and

a set F' C D s.t. for every A\Y-term M:

BT(M)E ¢ iff [M]° eF

1. Program — A-term 2.Property — WMSOL-formula | |3. Verification
P— M 'no failll = BT(M)=p

/¥

For a given ¢ construct a finitary interpretation of AY-terms D, and
a set F' C D s.t. for every A\Y-term M:

'Verification by evaluation:
BT(M)E ¢ iff [M]” €F.

Thm: For every MSOL property there is effectively a
finitary model recognising it.

For a given ¢ construct a finitary interpretation of AY-terms D, and
a set ' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” eF.

A=1(Q, I, §; : @ x T = P(Q"), Irk : @ = [m])
max parity condrtion

M :o [M] € P(Q)
M:0—=o0 [M] € P(Q x [m]) — P(Q)

q € [M}{(d,2),(¢",5)}

M :o

M :0— o

[M] € P(Q x [m]) = P(Q)

q € [M]i(d",9),(q",7)}

/]

(¢",7) € v(x)

For a given ¢ construct a finitary interpretation of AY-terms D, and
a set ' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” eF.

M: o [M] € P(Q)
[M] € P(Q x [m]) = P(Q)

So :P(Q) Saop =Dy — Sp
DO :P(Q X [m]) DA—>B :DA — DB

So :P(Q) S — D — O

DO :P(Q X [m]) DA—>B :DA e DB
Valuation: v(z?) € Dy
Semantics: [MA 0] € Sa

q € |M,v] if

So :P(Q) S — D — O
DO :P(Q X [m]) DA—>B :DA e DB

Lifting operation d|, ford € D4 and r € [m)].

q € [M,v],] it

[Az. M, o] f =[M,v|f/z]]
[[MNv ?}]] :[[M7 U]]<<N,”U>>

Y,v]f=...

[Kobayashi, Ong LICS'09]
[Salvati, WL ICALP'| |][Tsukada, Ong LICS | 4][Grellois, Mellies, MFCS™| 5]

[z, 0] f ={q : (¢,0) € v(z)(f)}
N,) i o e i =R TR S DR G po b o (O U S i)
[Az. M, v]f =[M,v[f/z|]
[MN,v] =[M,v](N,v)
Y, v]f=...

The above semantics works only for 2-blind automata

6(Q2,q) = {0} for all ¢

automaton accept unconditionally on €2

YM +— YT e(MZ))
Translation to eliminate Q)

from Bohm trees: BT (M)
BT(M)

. Q!

How to deal directly with all automata?

There are too many functions in Sy.

It is not decidable which of those are semantics of terms |Loader].

How to deal directly with all automata?

There are too many functions in Sy.

It is not decidable which of those are semantics of terms |Loader].

It suflices to require that all functions f € Dy_, g satisty:

Vg € Da. Vg € Q. (f(9))Vq = (f(9lr(g)) g (strat)

where fll, = {r:(g,7) € f}, and qu(g) e (f(g))Uq

Thm: For a given ¢ we can construct an interpretation of AY-terms D, and
a set I' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” €F.

Applications of models

1. Decidability of the model-checking problem for MSO
Given an property ¢ and term M:

e construct the model D?¥, and

e calculate the semantics of M in D¥.

AD

dlications of moc

3. Program transformation

(Ax. a x (YF(bx)))c

ac(Y F(bc)

o

)
C Y F(bc)

els

Applications of models

3. Program transformation

(Az. a x (YF(bx)))c

a® = « when « is atomic
(a—=B)* = a®*—=[a]—B° ?”F(bc))
c Y F(bc)
ai?Y}{c)
[)\aia.M, ’U: :)\xo‘.)\y[o‘]. case y[o‘]{d S [M, U[d/ma“}desa i) Yng%)
[MN,v] =[M,v][N,v] [N]" J

a,v] =Xz Ay
case ygo]{dl — case yg)]{dg _y gPla)da delxz}dQGSO}dleso

{Yv(oz—>oz)—>oz]\47 ’U} :Y(a°—>a°)—>a‘ ()\Zlia. . [M, U] ZEa. [[YM]]U) :

Applications of models

4. Transfer theorem for MSO

Thm (Transfer)|Salvati & W.]

Fix a signature >, set of types 7, and a set of variables X
(all finite sets).

For every MSOL formula ¢ there is an MSOL formula ¢ s.t.
for every term M over X, T, X:

MEJ iff BT(M)Eg

Conseqguences of the transfer theorem
M= oe it BT e

The set of SN terms over fixed set of variables is definable in MSOL

For a fixed 7 and X there is an MSOL formula defining
the set of terms M € Terms(3,7T,X) having a normal form.

Take ¢ defining the set of finite trees and consider (.

Conseqguences of the transfer theorem
WHEG i B =

A « synthesis from modules » framework
Given \Y-terms M, ..., M; and a formula .

Decide if one can construct from these terms a \Y term K
such that eval(K) F ¢.

e We can restrict to solutions K of the form
()\$1 « oo Lk N)Ml,...,Mk
for some term N without constants and M-abstractions.

e Let ¢ be a formula defining terms of this form.

e There is a solution iff the formula) A { is satisfiable.

MEQp iff eval(M) F ¢

Conseqguences of the transfer theorem
WHEG i B =

Higher-order matching with restricted no of variables
For a fixed X. Given M and K (without fixpoints)
decide if there is a substitution o such that

MO'I@K

Substitution ¥ can use only terms from Terms(3,7,X).

o Let shape(N) be MSOL formula defining the set of terms in Terms(3, 7T, X)
that can be obtained from N by substitutions.

o Let ¢ = shape(K).
e There is desired o iff the formula shape(M) A { is satisfiable.

If there is a solution then there is a finite one.

CONCLUSIONS

A semantics for all MSOL properties of Bohm trees

» stratification property
» a formula for the fix point.

Most results on higher-order verification follow from this
construction.

More abstract description of the model

Determine expressive power of finitary models.

1. Program — A-term 2.Property — MSOL-formula

\

P = M 'no fail' = ¢

3 . Verification
BT(M)=w

Extending verification methods, from transition systems to

a higher-order program calculus.

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no fail = BT(M)=

N, e a- : /N\—“
Verification by evaluation:

For a given ¢ construct an interpretation of AY-terms D, and
a set ' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” eF

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no fail = BT(M)=

[Verification by evaluation

Extending verification methods, from transition
systems to a higher-order program calculus.

Extending abstract interpretation to
new kinds of models, and higher-order.

\
\\ Extending typing with new kinds of
types, namely behavioural types.

1. Program — A-term 2.Property — MSOL-formula 3. Verification
P— M no fail = BT(M)=

N, e a- : /N\—“
Verification by evaluation:

For a given ¢ construct an interpretation of AY-terms D, and
a set ' C D s.t. for every AY-term M:

BT(M)E ¢ iff [M]” eF

* lype systems * Verification by evaluation
Program tranformation » Abstraction/refinement
* Transfer theorem * Evaluating programs directly

