
Control theory meets 
operational semantics

Pawel Sobocinski, University of Southampton 
IFIP WG2.2 Lucca 



My previous WG2.2 talks

Lisbon Munich

Today: What’s the big picture?



Plan
• Symmetric monoidal theories

• Applications  

• Petri nets (joint work with Owen Stephens and Julian Rathke) 

• Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi) 
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Symmetric monoidal syntax
• generators 

(e.g.) 

• basic tiles 

• algebra
A B

k l m

A ; B
A

k l

C
m n

A ⊕ C



Term equality
• diagrams can slide along wires  

• wires don’t tangle, i.e. 

• sub-diagrams can be replaced with equal diagrams (compositionality)

A
k l

C
m n

A
k l

C
m n

= =

A
k l

C
m n

functoriality

A
k l

m

m

l

=

A
k l

m

m

k

naturality

i.e. pure wiring obeys the same equations as permutations

= =



Equations
• call a SM syntax + equations a symmetric monoidal 

theory (SMT)

• any SMT is a special kind of a monoidal category 
called PROP (product and permutation category) 

• mathematical structures often organise themselves as 
arrows of a PROP C — finding an SMT characterisation 
T (i.e. T ≅ C) is thus a fully complete axiomatisation 

• for a sound and complete axiomatisation, it suffices to 
find a faithful homomorphism T → C



PROPs
• (product and permutation categories) 

• strict symmetric monoidal (monoidal product is 
associative on the nose) 

• objects = natural numbers 

• monoidal product on objects = addition 

• e.g. the PROP F where arrows from m to n are the 
functions from [m] = {0,1,…, m-1} to [n]



Example: Functions, 
diagrammatically

• SMT M on this data isomorphic to the PROP F of 
functions 

• i.e. the “commutative monoids are the SMT of functions”

=

=

=

EquationsGenerators



Diagrammatic reasoning example

=

=

=

=

= =
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Petri nets
(CONCUR `10, `11, Petri Nets `14, Reachability Problems `14)

Structure of the paper. In §1 we introduce the two monoid-comonoid
structures that arise from considering cospans and spans of finite sets.
In §2 we introduce sets and relations with contention, and show that the
category of the latter has pullbacks. This allows us, in §3 to consider the
category Sp(Rel

c

f

), a universe where both the monoid-comonoid struc-
tures can be considered. In §4 we discuss multirelations and construct
weak pullbacks, which we then use in §5 to consider another universe
where both the monoid-comonoid structures exist and interact.

Notational conventions. Relations from X to Y are identified with func-
tions X ! 2Y . For k 2 N we abuse notation and denote the kth finite
ordinal {0, 1 . . . , k � 1} with k. For sets X, Y , X + Y

def
= { (x, 0) |x 2

X } [ { (y, 1) | y 2 Y }. Functions are labelled with ! when there is a
unique function with that particular domain and codomain, tw : 2 ! 2
is the function tw(0) = 1 and tw(1) = 0. Given a function f : X ! Y ,

[f ] ✓ X ⇥ Y is its graph: [f ]
def
= { (x, fx) |x 2 X }. Given a relation

R ✓ X ⇥ Y , Rop

✓ Y ⇥X is the opposite relation.

1 Components of linking diagrams

Let Csp(Set
f

) be the category3 with objects the natural numbers, and
arrows isomorphism classes of cospans k ! x  l, where k and l are
considered as finite ordinals. Composition is obtained via pushout in Set

f

,
associativity follows from the universal property. Given k1 ! m1  l

l

and
k2 ! m2  l2, the tensor product is k1 + k2 ! m1 +m2  l1 + l2.

The following diagrams represent certain arrows in Csp(Set
f

). They

(�???r>>>)

� : 1 ! 2 ??? : 1 ! 0

�

: 2 ! 1 >>> : 0 ! 1

have representatives 1
id
�! 1

!
 � 2, 1

id
�! 1

!
 � 0, 2

!
�! 1

id
 � 1 and 0

!
�! 1

id
 � 1.

Our graphical notation calls for further explanation: within the dia-
grams, each link–an undirected multiedge–represents an element of the
carrier set, its connections to boundary ports (elements of the ordinals on
the boundary) are determined in Csp(Set

f

) by the functions from the or-
dinals that represent the boundaries. Each link has a small perpendicular
mark; this is used to distinguish between di↵erent links within diagrams.

The definition of Csp(Set
f

) enforces some structural restrictions on
links. Indeed, each boundary port must be connected to exactly one link;
ie no two links can be connected to the same boundary port. Any link,
however, can be connected to several ports on each boundary.

Now consider Sp(Set
f

), the category with objects the natural num-
bers, and arrows isomorphism classes of spans k  x! l, where k and l

are considered as finite ordinals. Composition is obtained via pullback in

3 Not quite the category of cospans. Again, this is a PROP.

• all nets can be constructed from 
these generators 

• compositional SOS semantics in 
terms of 2-labelled transition 
systems 

• 1-safe variant and P/T variant 

• in suitable examples, 
compositionality can be used to 
(vastly) improve efficiency of 
model checking  

• enables parametric model 
checking

Set

f

, and associativity is again guaranteed by a universal property, this
time of pullbacks. Again, + gives a tensor product.

The following diagrams represent certain arrows in Sp(Set
f

). They

(⇤ ### V """ )

⇤ : 1 ! 2 ### : 1 ! 0 V : 2 ! 1 """ : 0 ! 1

have representatives 1
!
 � 2

id
�! 2, 1

!
 � 0

id
�! 0, 2

id
 � 2

!
�! 1 and 0

id
 � 0

!
�! 1.

In the diagrams, the links again represent elements of the carrier set
but connections to boundary ports are now given by the functions from

the carrier to the boundaries. Due to the definition of Sp(Set
f

), there are
again structural restrictions: each link is connected to exactly one port
on each boundary. Any port, however, can be connected to many links.

The following diagrams represent certain arrows in Csp(Set
f

) and
Sp(Set

f

). As (isomorphism classes of) cospans they are 1 ! 1  1,

(I X)

I : 1 ! 1 X : 2 ! 2

2
tw

�! 2 2, as spans they are 1 1! 1, 2 2
tw

�! 2.

1.1 The algebra of Csp(Setf)

In Fig. 1 we give some of the equations satisfied by the algebra generated
from the components (�???r>>>) and (I X) in Csp(Set

f

): (�UC) and (�A)
show that � is the comultiplication of a cocommutative comonoid. The
symmetric equations hold for

�

, meaning that it is part of a commutative
monoid structure. The Frobenius axioms (F) [6, 15] hold, and the alge-
bra is separable (S). In fact Csp(Set

f

) is the free PROP on (�???r>>>)
satisfying such axioms, where (F), (S) can be understood as witnessing a
distributive law of PROPs; see [16] for the details. In (CC) we indicate
how the (self dual) compact closed structure of Csp(Set

f

) arises.

1.2 The algebra of Sp(Setf)

In Fig. 2 we exhibit some equations satisfied by the components (⇤ ### V """ )
and (I X) in Sp(Set

f

): (⇤UC) and (⇤A) show that ⇤ is the multiplication of
a cocommutative comonoid, similarly the symmetric equations, which we
do not illustrate, show that that V is a commutative monoid. Di↵erently
from Fig. 1, here the Frobenius equations do not hold; but rather the
equations of commutative and cocommutative bialgebras: in (B), (V### )
and (⇤V) we show how the monoid and comonoid structures interact in



Example

0

{0/0}

1{0/1}
{1/0}

{0/0}

0

{0/0}

1{0/1}
{1/0}

{0/0}

0

{0/0} 2{0/1}
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{0/0}
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3
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{0/0}

composition
of NFAs

translation to
NFA

translation to
NFAs

composition
of nets

b1 b1

b1 ; b1



Signal flow graphs
• all signal flow graphs can be 

constructed from these 
generators 

• compositional operational 
semantics in terms of 2-
labelled transition systems 

• semantics is executable 
when the direction of signal 
flow is consistent 

• captures a canonical class of 
linear time-invariant 
dynamical systems

(FoSSaCS `13, CONCUR `14, PoPL `15)

x k
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Petri Nets Signal Flow 
Graphs

transition can 
connect to 

multiple places
copy signal

no further 
connections discard signal

place can connect 
to multiple 
transitions

add signals

no transition emit zero

Connectivity



Other generators

x

k

Petri Nets 
(safe nets)

Signal Flow 
Graphs

empty place one space buffer

place with token amplify signal 
(mutiply) by k



Other applications of 
symmetric monoidal syntax

• Categorical Quantum Information - Abramsky & 
Coecke `04, Coecke & Duncan `08 

• Modelling asynchronous circuits - Ghica `14  

• Directed acyclic graphs - Fiore & Campos `13 

• …



Capturing semantic 
equivalence

• Once we know a syntax, and the intended 
semantics, can we characterise semantic 
equivalences equationally? 

• In Petri nets and signal flow graphs, doing so 
identifies several interesting algebraic structures



Example 1: Petri nets
(CALCO `13)

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

commutative monoid

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

=

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

commutative comonoid

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

=

commutative monoid

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

commutative comonoid

=



; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

=;

special Frobenius (bi)monoid

other equations become a bit more involved

special bimonoid (infinite state case)

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf ).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V### )

; = (⇤V)

Fig. 2. Equations in Sp(Setf ).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

In addition to the two weak pullback diagrams (†) and (‡), we have a set
minsnc(g0, f1p1) and the projection maps in Rel

M
f

r0 : minsnc(g0, f1p1)! x0, s0 : minsnc(g0, f1p1)! minsnc(g1, f2)

and a set minsnc(g1q0, f2) together with maps

r1 : minsnc(g1q0, f2)! minsnc(g0, f1), s1 : minsnc(g1q0, f2)! x2

The sets minsnc(g0, f1p1), minsnc(g1q0, f2) are not, in general isomorphic,
for similar reasons why theminsnc(f, g) construction fails to be a pullback;
there is, in general, more than one decomposition of a synchronisation into
a linear combination of minimal synchronisations.

This is not a problem, because all that we require is that (f0r0, g2q1s0)
and (f0p0r1, g2s1) have the same image in M

k0 ⇥M

k2 .
To show this, first we use the weak pullback property of (†) to ob-

tain h0 : minsnc(g0, f1p1) ! minsnc(g0, f1), satisfying p0h0 = r0 and
q0h0 = p1s0. The second of these equations, together with the fact that
minsnc(g1q0, f2) is a weak pullback allows us to obtain

� : minsnc(g0, f1p1)! minsnc(g1q0, f2)

that satisfies r1� = h0 and s1� = q1s0. Now, for any � 2 minsnc(g0, f1p1)
we have f0r0� = f0p0h0� = f0p0r1�� and g2q1s0� = g2s1��, so the image
of (f0r0, g2q1s0) is contained in the image of (f0p0r1, g2s1). A symmetric
argument, constructing morphisms h1 : minsnc(g1q0, f2)! minsnc(g1, f2)
and  : minsnc(g1q0, f2)! minsnc(g0, f1p1) allows us to demonstrate the
reverse inclusion.

ut

Note that, as indicated in the proof above, the “relational” requirement on
spans is necessary in order to ensure associativity of composition. Again
there is a tensor product inherited from the coproduct in Set

f

.

5.1 The algebra of Spr(Rel

M
f )

While we no longer have to draw contention, in Spr(Rel

M
f

) links can have
multiple connections to boundary ports. We indicate this by

2

5

annotating connections with natural numbers � 2: for in-

stance the diagram to the right is the span 2
a

 �

q 1
b

�!

q 2
where (a0)(0) = (b0)(1) = 1, (a0)(1) = 5 and (b0)(0) = 2.

Considering the diagrams of (�???r>>>) and (I X) in
Spr(Rel

M
f

), all the equations in (�UC), (�A), (F), (S),

(CC) hold in Spr(Rel

M
f

). On the other hand, the structure
in (⇤ ### V """ ) and (I X) satisfies the equations in (⇤UC), (⇤A),
(B) and (V### ). Di↵erently from (⇤V), in Spr(Rel

M
f

) we have the following:

; = (⇤VM)

Below, we show how (�???r>>>) and (⇤ ### V """ ) interact in Spr(Rel

M
f

).



Example 2: Signal flow graphs
=

=

=

=

=

=

=

= =

= =

=

= = =

=

=

=

=

=

=

=

==

==

=

===

Hopf algebra Hopf algebra



• For any principal ideal 
domain (PID) R, the 
SMT IHR of interacting 
Hopf Monoids 
characterises the PROP 
LinRelff(R) 

• example on the left is 
for the PID of integers, 
and gives the 
equational 
characterisation of 
LinRelQ

=

=

=

=

=

=

p p p p (p ≠ 0) = =

= =

Interacting Hopf monoids



• PROP of linear relations over the rationals 

• arrows m to n are linear subspaces of Qm × Qn 

• composed as relations

• monoidal product is direct sum 

• IH is isomorphic to LinRel

LinRelQ



SMT for signal flow: IHk[x]

• Isomorphism between IHk[x] and LinRelk(x) 

• The field of fractions of k[[x]] is the field of Laurent series 
k((x)) 

• streams infinite in the future, but finite in the past 

• There is a faithful homomorphism LinRelk(x) → LinRelk((x)) 

• So the graphical calculus is a sound and complete 
language for linear relations over Laurent series



Full abstraction and realisability

• Full Abstraction 

• in any two circuits where the direction of flow is 
consistent, they have the same operational 
semantics iff they can be shown equal 
equationally 

• Realisability 

• any circuit can be rewritten (in at least one way) 
so that the direction of flow is consistent

Bonchi, S, Zanasi, PoPL`15



Example - implementing Fibonacci

1-x-x2x = x
x

x x

x
x

x x

=

x

x

=

x
=

x
=

x

x
x

x
x

x
=

x
x

x
1-x-x2

is the generating 
function for the 

Fibonacci sequence



Plan
• Symmetric monoidal theories 

• Applications  

• Petri nets (joint work with Owen Stephens and Julian Rathke) 

• Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi) 

• Ongoing research

• Control theory (joint work with Brendan Fong and Paolo Rapisarda) 

• Graph theory (joint work with Apiwat Chantawibul) 

• Linear algebra (personal hobby)



Ongoing research

• using the diagrammatic language in control 
theory (with B. Fong and P. Rapisarda)

• connections with graph theory (with A. 
Chantawibul) 

• graphical linear algebra (personal hobby)



Signal flow graphs and 
controllability

• In work so far, the denation of a circuit is a linear 
relation over the field of Laurent series  

• streams infinite in the future and finite in the past 

• Every behaviour is controllable



Signal flow with biinfinite 
stream semantics

• extending to streams infinite in both directions (kZ) 
adds uncontrollable behaviours 

• a canonical subtheory of IHk[x] gives us a sound 
and complete equational characterisation for 
LinRelkZ



Ongoing research

• using the diagrammatic language in control 
theory (with B. Fong and P. Rapisarda) 

• connections with graph theory (with A. 
Chantawibul)

• graphical linear algebra (personal hobby)



Motivation

• often useful to know whether a string diagram can be decomposed in 
a “good” way 

• e.g. in a Petri net (Reachability Problems ’14) to enable divide-and-
conquer compositional model checking 

• graph theory gives us ideas for nice ways of decomposing graphs, as 
well as powerful metrics that measure how “difficult” a graph is 

• e.g. structural metrics such as path width, tree width, clique 
width, rank width, …



Example: rank decomposition

1

2

4

3

1

2

4

3

1 2 4 3

1 2

3

4

0 1

1 1

1

2

3 4

0 1

1 1

1

2
3
4

1

1
0

1

2

3
4

1

1
1 1

2

3
4

1

1
1 1

2

3

4 1
1
0

for simple graphs

Can we understand 
this as an algebraic 

expression?

rank of a decomposition 
= maximal matrix rank

rank width = rank of 
optimal decomposition 

(minmax/infsup flavour)



Decompositions in an SMT

• An SMT for open simple graphs 

• Rank decompositions can be written as 
expressions in the SMT 

• Relies on a technical notion, an extended notion of 
matrix called U-matrix 

• Working on general theory of decompositions for 
SMTs, with rank decomposition of a simple graph 
as special case

(Chantawibul, S., MFPS`15)



Ongoing research

• using the diagrammatic language in control 
theory (with B. Fong and P. Rapisarda) 

• connections with graph theory (with A. 
Chantawibul) 

• graphical linear algebra (personal hobby)



Factorisations
• In the theory of interacting Hopf monoids, every diagram can be factorised as a 

span or a cospan of matrices  

• This translates to the two different ways one can think of linear spaces

as solutions of  
homogeneous equations

as linear combinations  
of basis vectors
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Goal
• Develop a resource for linear algebra without the 

notions of  

• vector space as “set of vectors” 

• linear space as a set generated by basis 
elements 

• etc.. 

• See http://graphicallinearalgebra.net

http://graphicallinearalgebra.net

