Control theory meets operational semantics

Pawel Sobocinski, University of Southampton IFIP WG2.2 Lucca

My previous WG2.2 talks

NETS WITH BOUNDARIES

Pawel Sobocinski, University of Southampton IFIP WG2.2, Lisbon, 24/09/2013

Lisbon

Semantics of signal flow
Pawel Sobocinski IFIP WG 2.2 Munich
(joint work with Filippo Bonchi and Fabio Zanasi)
Munich

Today: What's the big picture?

Plan

- Symmetric monoidal theories

- Applications
- Petri nets (joint work with Owen Stephens and Julian Rathke)
- Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi)
- Ongoing research
- Control theory (joint work with Brendan Fong and Paolo Rapisarda)
- Graph theory (joint work with Apiwat Chantawibul)
- Linear algebra (personal hobby)

Symmetric monoidal syntax

- generators (e.g.)

- basic tiles

- algebra

Term equality

- diagrams can slide along wires

- wires don't tangle, i.e.

- sub-diagrams can be replaced with equal diagrams (compositionality)

Equations

- call a SM syntax + equations a symmetric monoidal theory (SMT)
- any SMT is a special kind of a monoidal category called PROP (product and permutation category)
- mathematical structures often organise themselves as arrows of a PROP C - finding an SMT characterisation \mathbf{T} (i.e. $\mathbf{T} \cong \mathbf{C}$) is thus a fully complete axiomatisation
- for a sound and complete axiomatisation, it suffices to find a faithful homomorphism $\mathbf{T} \rightarrow \mathbf{C}$

PROPs

- (product and permutation categories)
- strict symmetric monoidal (monoidal product is associative on the nose)
- objects = natural numbers
- monoidal product on objects = addition
- e.g. the PROP \mathbf{F} where arrows from m to n are the functions from $[m]=\{0,1, \ldots, m-1\}$ to $[n]$

Example: Functions, diagrammatically

- SMT M on this data isomorphic to the PROP F of functions
- i.e. the "commutative monoids are the SMT of functions"

Diagrammatic reasoning example

$$
\overline{=} \quad \square
$$

Plan

- Symmetric monoidal theories
- Applications
- Petri nets (joint work with Owen Stephens and Julian Rathke)
- Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi)
- Ongoing research
- Control theory (joint work with Brendan Fong and Paolo Rapisarda)
- Graph theory (joint work with Apiwat Chantawibul)
- Linear algebra (personal hobby)

Petri nets

(CONCUR `10, `11, Petri Nets `14, Reachability Problems `14)

- all nets can be constructed from these generators
- compositional SOS semantics in terms of 2-labelled transition systems
- 1-safe variant and P/T variant
- in suitable examples, compositionality can be used to (vastly) improve efficiency of model checking
- enables parametric model checking

Example

Signal flow graphs
 (FoSSaCS `13, CONCUR `14, PoPL`15)

- all signal flow graphs can be constructed from these generators
- compositional operational semantics in terms of 2labelled transition systems
- semantics is executable when the direction of signal flow is consistent
- captures a canonical class of linear time-invariant dynamical systems

Example

Connectivity

Petri Nets

Signal Flow

 Graphs

Other generators

Petri Nets
(safe nets)

Signal Flow
Graphs
empty place
place with token

one space buffer

amplify signal (mutiply) by k

Other applications of symmetric monoidal syntax

- Categorical Quantum Information - Abramsky \& Coecke `04, Coecke \& Duncan `08
- Modelling asynchronous circuits - Ghica `14
- Directed acyclic graphs - Fiore \& Campos `13

Capturing semantic equivalence

- Once we know a syntax, and the intended semantics, can we characterise semantic equivalences equationally?
- In Petri nets and signal flow graphs, doing so identifies several interesting algebraic structures

Example 1: Petri nets

 (CALCO `13)

other equations become a bit more involved

Example 2: Signal flow graphs

Hopf algebra

Hopf algebra

- For any principal ideal domain (PID) R, the SMT IH ${ }_{R}$ of interacting Hopf Monoids characterises the PROP LinRelff(R)
- example on the left is for the PID of integers, and gives the equational characterisation of LinRela

LinRela

- PROP of linear relations over the rationals
- arrows m to n are linear subspaces of $\mathbf{Q}^{m} \times \mathbf{Q}^{n}$
- composed as relations
- monoidal product is direct sum
- IH is isomorphic to LinRel

SMT for signal flow: $\mathbf{I H}_{k[x]}$

- Isomorphism between $\mathbf{I H}_{k[x]}$ and $\operatorname{LinRel}_{k(x)}$
- The field of fractions of $k[[x]]$ is the field of Laurent series $k((x))$
- streams infinite in the future, but finite in the past
- There is a faithful homomorphism $\operatorname{LinRel}_{k(x)} \rightarrow \operatorname{LinRel}_{k((x))}$
- So the graphical calculus is a sound and complete language for linear relations over Laurent series

Full abstraction and realisability

 Bonchi, S, Zanasi, PoPL`15- Full Abstraction
- in any two circuits where the direction of flow is consistent, they have the same operational semantics iff they can be shown equal equationally
- Realisability
- any circuit can be rewritten (in at least one way) so that the direction of flow is consistent

Example - implementing Fibonacci

$$
\frac{x}{1-x-x^{2}}
$$

is the generating
function for the
Fibonacci sequence

Plan

- Symmetric monoidal theories
- Applications
- Petri nets (joint work with Owen Stephens and Julian Rathke)
- Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi)
- Ongoing research
- Control theory (joint work with Brendan Fong and Paolo Rapisarda)
- Graph theory (joint work with Apiwat Chantawibul)
- Linear algebra (personal hobby)

Ongoing research

- using the diagrammatic language in control theory (with B. Fong and P. Rapisarda)
- connections with graph theory (with A. Chantawibul)
- graphical linear algebra (personal hobby)

Signal flow graphs and controllability

- In work so far, the denation of a circuit is a linear relation over the field of Laurent series
- streams infinite in the future and finite in the past
- Every behaviour is controllable

Signal flow with biinfinite stream semantics

- extending to streams infinite in both directions ($\mathrm{k}^{\mathbf{z}}$) adds uncontrollable behaviours
- a canonical subtheory of $\mathbf{I H}_{k[x]}$ gives us a sound and complete equational characterisation for LinRel ${ }_{k z}$

Ongoing research

- using the diagrammatic language in control theory (with B. Fong and P. Rapisarda)
- connections with graph theory (with A. Chantawibul)
- graphical linear algebra (personal hobby)

NVB+in?

- often useful to know whether a string diagram can be decomposed in a "good" way
- e.g. in a Petri net (Reachability Problems '14) to enable divide-andconquer compositional model checking
- graph theory gives us ideas for nice ways of decomposing graphs, as well as powerful metrics that measure how "difficult" a graph is
- e.g. structural metrics such as path width, tree width, clique width, rank width, ...

Example: rank decomposition for simple graphs

rank of a decomposition
= maximal matrix rank
rank width = rank of
optimal decomposition
(minmax/infsup flavour)

Can we understand this as an algebraic expression?

Decompositions in an SMT (Chantawibul, S., MFPS'15)

- An SMT for open simple graphs
- Rank decompositions can be written as expressions in the SMT
- Relies on a technical notion, an extended notion of matrix called U-matrix
- Working on general theory of decompositions for SMTs, with rank decomposition of a simple graph as special case

Ongoing research

- using the diagrammatic language in control theory (with B. Fong and P. Rapisarda)
- connections with graph theory (with A. Chantawibul)
- graphical linear algebra (personal hobby)

Factorisations

- In the theory of interacting Hopf monoids, every diagram can be factorised as a span or a cospan of matrices
- This translates to the two different ways one can think of linear spaces
as solutions of homogeneous equations

$x+y=0$	$2 \mathrm{y}-\mathrm{z}=0$
x	х
y	
z	

Cospans
as linear combinations of basis vectors

$a[1,-1,0]+b[0,1,2]$

Spans

Goal

- Develop a resource for linear algebra without the notions of
- vector space as "set of vectors"
- linear space as a set generated by basis elements
- etc..
- See http://graphicallinearalgebra.net

