
Control theory meets
operational semantics

Pawel Sobocinski, University of Southampton
IFIP WG2.2 Lucca

My previous WG2.2 talks

Lisbon Munich

Today: What’s the big picture?

Plan
• Symmetric monoidal theories

• Applications

• Petri nets (joint work with Owen Stephens and Julian Rathke)

• Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi)

• Ongoing research

• Control theory (joint work with Brendan Fong and Paolo Rapisarda)

• Graph theory (joint work with Apiwat Chantawibul)

• Linear algebra (personal hobby)

Symmetric monoidal syntax
• generators

(e.g.)

• basic tiles

• algebra
A B

k l m

A ; B
A

k l

C
m n

A ⊕ C

Term equality
• diagrams can slide along wires

• wires don’t tangle, i.e.

• sub-diagrams can be replaced with equal diagrams (compositionality)

A
k l

C
m n

A
k l

C
m n

= =

A
k l

C
m n

functoriality

A
k l

m

m

l

=

A
k l

m

m

k

naturality

i.e. pure wiring obeys the same equations as permutations

= =

Equations
• call a SM syntax + equations a symmetric monoidal

theory (SMT)

• any SMT is a special kind of a monoidal category
called PROP (product and permutation category)

• mathematical structures often organise themselves as
arrows of a PROP C — finding an SMT characterisation
T (i.e. T ≅ C) is thus a fully complete axiomatisation

• for a sound and complete axiomatisation, it suffices to
find a faithful homomorphism T → C

PROPs
• (product and permutation categories)

• strict symmetric monoidal (monoidal product is
associative on the nose)

• objects = natural numbers

• monoidal product on objects = addition

• e.g. the PROP F where arrows from m to n are the
functions from [m] = {0,1,…, m-1} to [n]

Example: Functions,
diagrammatically

• SMT M on this data isomorphic to the PROP F of
functions

• i.e. the “commutative monoids are the SMT of functions”

=

=

=

EquationsGenerators

Diagrammatic reasoning example

=

=

=

=

= =

Plan
• Symmetric monoidal theories

• Applications

• Petri nets (joint work with Owen Stephens and Julian Rathke)

• Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi)

• Ongoing research

• Control theory (joint work with Brendan Fong and Paolo Rapisarda)

• Graph theory (joint work with Apiwat Chantawibul)

• Linear algebra (personal hobby)

Petri nets
(CONCUR `10, `11, Petri Nets `14, Reachability Problems `14)

Structure of the paper. In §1 we introduce the two monoid-comonoid
structures that arise from considering cospans and spans of finite sets.
In §2 we introduce sets and relations with contention, and show that the
category of the latter has pullbacks. This allows us, in §3 to consider the
category Sp(Rel

c

f

), a universe where both the monoid-comonoid struc-
tures can be considered. In §4 we discuss multirelations and construct
weak pullbacks, which we then use in §5 to consider another universe
where both the monoid-comonoid structures exist and interact.

Notational conventions. Relations from X to Y are identified with func-
tions X ! 2Y . For k 2 N we abuse notation and denote the kth finite
ordinal {0, 1 . . . , k � 1} with k. For sets X, Y , X + Y

def
= { (x, 0) |x 2

X } [{ (y, 1) | y 2 Y }. Functions are labelled with ! when there is a
unique function with that particular domain and codomain, tw : 2 ! 2
is the function tw(0) = 1 and tw(1) = 0. Given a function f : X ! Y ,

[f] ✓ X ⇥ Y is its graph: [f]
def
= { (x, fx) |x 2 X }. Given a relation

R ✓ X ⇥ Y , Rop

✓ Y ⇥X is the opposite relation.

1 Components of linking diagrams

Let Csp(Set
f

) be the category3 with objects the natural numbers, and
arrows isomorphism classes of cospans k ! x l, where k and l are
considered as finite ordinals. Composition is obtained via pushout in Set

f

,
associativity follows from the universal property. Given k1 ! m1 l

l

and
k2 ! m2 l2, the tensor product is k1 + k2 ! m1 +m2 l1 + l2.

The following diagrams represent certain arrows in Csp(Set
f

). They

(�???r>>>)

� : 1 ! 2 ??? : 1 ! 0

�

: 2 ! 1 >>> : 0 ! 1

have representatives 1
id
�! 1

!
 � 2, 1

id
�! 1

!
 � 0, 2

!
�! 1

id
 � 1 and 0

!
�! 1

id
 � 1.

Our graphical notation calls for further explanation: within the dia-
grams, each link–an undirected multiedge–represents an element of the
carrier set, its connections to boundary ports (elements of the ordinals on
the boundary) are determined in Csp(Set

f

) by the functions from the or-
dinals that represent the boundaries. Each link has a small perpendicular
mark; this is used to distinguish between di↵erent links within diagrams.

The definition of Csp(Set
f

) enforces some structural restrictions on
links. Indeed, each boundary port must be connected to exactly one link;
ie no two links can be connected to the same boundary port. Any link,
however, can be connected to several ports on each boundary.

Now consider Sp(Set
f

), the category with objects the natural num-
bers, and arrows isomorphism classes of spans k x! l, where k and l

are considered as finite ordinals. Composition is obtained via pullback in

3 Not quite the category of cospans. Again, this is a PROP.

• all nets can be constructed from
these generators

• compositional SOS semantics in
terms of 2-labelled transition
systems

• 1-safe variant and P/T variant

• in suitable examples,
compositionality can be used to
(vastly) improve efficiency of
model checking

• enables parametric model
checking

Set

f

, and associativity is again guaranteed by a universal property, this
time of pullbacks. Again, + gives a tensor product.

The following diagrams represent certain arrows in Sp(Set
f

). They

(⇤ ### V """)

⇤ : 1 ! 2 ### : 1 ! 0 V : 2 ! 1 """ : 0 ! 1

have representatives 1
!
 � 2

id
�! 2, 1

!
 � 0

id
�! 0, 2

id
 � 2

!
�! 1 and 0

id
 � 0

!
�! 1.

In the diagrams, the links again represent elements of the carrier set
but connections to boundary ports are now given by the functions from

the carrier to the boundaries. Due to the definition of Sp(Set
f

), there are
again structural restrictions: each link is connected to exactly one port
on each boundary. Any port, however, can be connected to many links.

The following diagrams represent certain arrows in Csp(Set
f

) and
Sp(Set

f

). As (isomorphism classes of) cospans they are 1 ! 1 1,

(I X)

I : 1 ! 1 X : 2 ! 2

2
tw

�! 2 2, as spans they are 1 1! 1, 2 2
tw

�! 2.

1.1 The algebra of Csp(Setf)

In Fig. 1 we give some of the equations satisfied by the algebra generated
from the components (�???r>>>) and (I X) in Csp(Set

f

): (�UC) and (�A)
show that � is the comultiplication of a cocommutative comonoid. The
symmetric equations hold for

�

, meaning that it is part of a commutative
monoid structure. The Frobenius axioms (F) [6, 15] hold, and the alge-
bra is separable (S). In fact Csp(Set

f

) is the free PROP on (�???r>>>)
satisfying such axioms, where (F), (S) can be understood as witnessing a
distributive law of PROPs; see [16] for the details. In (CC) we indicate
how the (self dual) compact closed structure of Csp(Set

f

) arises.

1.2 The algebra of Sp(Setf)

In Fig. 2 we exhibit some equations satisfied by the components (⇤ ### V """)
and (I X) in Sp(Set

f

): (⇤UC) and (⇤A) show that ⇤ is the multiplication of
a cocommutative comonoid, similarly the symmetric equations, which we
do not illustrate, show that that V is a commutative monoid. Di↵erently
from Fig. 1, here the Frobenius equations do not hold; but rather the
equations of commutative and cocommutative bialgebras: in (B), (V###)
and (⇤V) we show how the monoid and comonoid structures interact in

Example

0

{0/0}

1{0/1}
{1/0}

{0/0}

0

{0/0}

1{0/1}
{1/0}

{0/0}

0

{0/0} 2{0/1}

1{1/0}

{0/0}

{1/1}

3
{0/1}{0/0}

{0/0}
{1/0}

{0/0}

composition
of NFAs

translation to
NFA

translation to
NFAs

composition
of nets

b1 b1

b1 ; b1

Signal flow graphs
• all signal flow graphs can be

constructed from these
generators

• compositional operational
semantics in terms of 2-
labelled transition systems

• semantics is executable
when the direction of signal
flow is consistent

• captures a canonical class of
linear time-invariant
dynamical systems

(FoSSaCS `13, CONCUR `14, PoPL `15)

x k

Example
x

x
x

0

0
0

01 0

0
0

x

x
x

1

0
0

10 1

11

x

x
x

0

1
1

10 1

12

x

x
x

0

2
1

20 2

23

x

x
x

0

3
2

30 3

3
5

…

Petri Nets Signal Flow
Graphs

transition can
connect to

multiple places
copy signal

no further
connections discard signal

place can connect
to multiple
transitions

add signals

no transition emit zero

Connectivity

Other generators

x

k

Petri Nets
(safe nets)

Signal Flow
Graphs

empty place one space buffer

place with token amplify signal
(mutiply) by k

Other applications of
symmetric monoidal syntax

• Categorical Quantum Information - Abramsky &
Coecke `04, Coecke & Duncan `08

• Modelling asynchronous circuits - Ghica `14

• Directed acyclic graphs - Fiore & Campos `13

• …

Capturing semantic
equivalence

• Once we know a syntax, and the intended
semantics, can we characterise semantic
equivalences equationally?

• In Petri nets and signal flow graphs, doing so
identifies several interesting algebraic structures

Example 1: Petri nets
(CALCO `13)

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

commutative monoid

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

=

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

commutative comonoid

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

=

commutative monoid

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

commutative comonoid

=

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

=;

special Frobenius (bi)monoid

other equations become a bit more involved

special bimonoid (infinite state case)

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

; = ; = (�UC)

; = = ; (�A)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf).

; = ; = (⇤UC)

; = = ; (⇤A)

; ; = ; = (B)

; = (V###)

; = (⇤V)

Fig. 2. Equations in Sp(Setf).

;=;=(�UC)

;==;(�A)

;=;=;=(F)

;=(S)

;=(CC)

Fig.1.EquationsinCsp(Setf).

;=;=(⇤UC)

;==;(⇤A)

;;=;=(B)

;=(V###)

;=(⇤V)

Fig.2.EquationsinSp(Setf).

In addition to the two weak pullback diagrams (†) and (‡), we have a set
minsnc(g0, f1p1) and the projection maps in Rel

M
f

r0 : minsnc(g0, f1p1)! x0, s0 : minsnc(g0, f1p1)! minsnc(g1, f2)

and a set minsnc(g1q0, f2) together with maps

r1 : minsnc(g1q0, f2)! minsnc(g0, f1), s1 : minsnc(g1q0, f2)! x2

The sets minsnc(g0, f1p1), minsnc(g1q0, f2) are not, in general isomorphic,
for similar reasons why theminsnc(f, g) construction fails to be a pullback;
there is, in general, more than one decomposition of a synchronisation into
a linear combination of minimal synchronisations.

This is not a problem, because all that we require is that (f0r0, g2q1s0)
and (f0p0r1, g2s1) have the same image in M

k0 ⇥M

k2 .
To show this, first we use the weak pullback property of (†) to ob-

tain h0 : minsnc(g0, f1p1) ! minsnc(g0, f1), satisfying p0h0 = r0 and
q0h0 = p1s0. The second of these equations, together with the fact that
minsnc(g1q0, f2) is a weak pullback allows us to obtain

� : minsnc(g0, f1p1)! minsnc(g1q0, f2)

that satisfies r1� = h0 and s1� = q1s0. Now, for any � 2 minsnc(g0, f1p1)
we have f0r0� = f0p0h0� = f0p0r1�� and g2q1s0� = g2s1��, so the image
of (f0r0, g2q1s0) is contained in the image of (f0p0r1, g2s1). A symmetric
argument, constructing morphisms h1 : minsnc(g1q0, f2)! minsnc(g1, f2)
and : minsnc(g1q0, f2)! minsnc(g0, f1p1) allows us to demonstrate the
reverse inclusion.

ut

Note that, as indicated in the proof above, the “relational” requirement on
spans is necessary in order to ensure associativity of composition. Again
there is a tensor product inherited from the coproduct in Set

f

.

5.1 The algebra of Spr(Rel

M
f)

While we no longer have to draw contention, in Spr(Rel

M
f

) links can have
multiple connections to boundary ports. We indicate this by

2

5

annotating connections with natural numbers � 2: for in-

stance the diagram to the right is the span 2
a

 �

q 1
b

�!

q 2
where (a0)(0) = (b0)(1) = 1, (a0)(1) = 5 and (b0)(0) = 2.

Considering the diagrams of (�???r>>>) and (I X) in
Spr(Rel

M
f

), all the equations in (�UC), (�A), (F), (S),

(CC) hold in Spr(Rel

M
f

). On the other hand, the structure
in (⇤ ### V """) and (I X) satisfies the equations in (⇤UC), (⇤A),
(B) and (V###). Di↵erently from (⇤V), in Spr(Rel

M
f

) we have the following:

; = (⇤VM)

Below, we show how (�???r>>>) and (⇤ ### V """) interact in Spr(Rel

M
f

).

Example 2: Signal flow graphs
=

=

=

=

=

=

=

= =

= =

=

= = =

=

=

=

=

=

=

=

==

==

=

===

Hopf algebra Hopf algebra

• For any principal ideal
domain (PID) R, the
SMT IHR of interacting
Hopf Monoids
characterises the PROP
LinRelff(R)

• example on the left is
for the PID of integers,
and gives the
equational
characterisation of
LinRelQ

=

=

=

=

=

=

p p p p (p ≠ 0) = =

= =

Interacting Hopf monoids

• PROP of linear relations over the rationals

• arrows m to n are linear subspaces of Qm × Qn

• composed as relations

• monoidal product is direct sum

• IH is isomorphic to LinRel

LinRelQ

SMT for signal flow: IHk[x]

• Isomorphism between IHk[x] and LinRelk(x)

• The field of fractions of k[[x]] is the field of Laurent series
k((x))

• streams infinite in the future, but finite in the past

• There is a faithful homomorphism LinRelk(x) → LinRelk((x))

• So the graphical calculus is a sound and complete
language for linear relations over Laurent series

Full abstraction and realisability

• Full Abstraction

• in any two circuits where the direction of flow is
consistent, they have the same operational
semantics iff they can be shown equal
equationally

• Realisability

• any circuit can be rewritten (in at least one way)
so that the direction of flow is consistent

Bonchi, S, Zanasi, PoPL`15

Example - implementing Fibonacci

1-x-x2x = x
x

x x

x
x

x x

=

x

x

=

x
=

x
=

x

x
x

x
x

x
=

x
x

x
1-x-x2

is the generating
function for the

Fibonacci sequence

Plan
• Symmetric monoidal theories

• Applications

• Petri nets (joint work with Owen Stephens and Julian Rathke)

• Signal flow graphs (joint work with Filippo Bonchi and Fabio Zanasi)

• Ongoing research

• Control theory (joint work with Brendan Fong and Paolo Rapisarda)

• Graph theory (joint work with Apiwat Chantawibul)

• Linear algebra (personal hobby)

Ongoing research

• using the diagrammatic language in control
theory (with B. Fong and P. Rapisarda)

• connections with graph theory (with A.
Chantawibul)

• graphical linear algebra (personal hobby)

Signal flow graphs and
controllability

• In work so far, the denation of a circuit is a linear
relation over the field of Laurent series

• streams infinite in the future and finite in the past

• Every behaviour is controllable

Signal flow with biinfinite
stream semantics

• extending to streams infinite in both directions (kZ)
adds uncontrollable behaviours

• a canonical subtheory of IHk[x] gives us a sound
and complete equational characterisation for
LinRelkZ

Ongoing research

• using the diagrammatic language in control
theory (with B. Fong and P. Rapisarda)

• connections with graph theory (with A.
Chantawibul)

• graphical linear algebra (personal hobby)

Motivation

• often useful to know whether a string diagram can be decomposed in
a “good” way

• e.g. in a Petri net (Reachability Problems ’14) to enable divide-and-
conquer compositional model checking

• graph theory gives us ideas for nice ways of decomposing graphs, as
well as powerful metrics that measure how “difficult” a graph is

• e.g. structural metrics such as path width, tree width, clique
width, rank width, …

Example: rank decomposition

1

2

4

3

1

2

4

3

1 2 4 3

1 2

3

4

0 1

1 1

1

2

3 4

0 1

1 1

1

2
3
4

1

1
0

1

2

3
4

1

1
1 1

2

3
4

1

1
1 1

2

3

4 1
1
0

for simple graphs

Can we understand
this as an algebraic

expression?

rank of a decomposition
= maximal matrix rank

rank width = rank of
optimal decomposition

(minmax/infsup flavour)

Decompositions in an SMT

• An SMT for open simple graphs

• Rank decompositions can be written as
expressions in the SMT

• Relies on a technical notion, an extended notion of
matrix called U-matrix

• Working on general theory of decompositions for
SMTs, with rank decomposition of a simple graph
as special case

(Chantawibul, S., MFPS`15)

Ongoing research

• using the diagrammatic language in control
theory (with B. Fong and P. Rapisarda)

• connections with graph theory (with A.
Chantawibul)

• graphical linear algebra (personal hobby)

Factorisations
• In the theory of interacting Hopf monoids, every diagram can be factorised as a

span or a cospan of matrices

• This translates to the two different ways one can think of linear spaces

as solutions of
homogeneous equations

as linear combinations
of basis vectors

x+y=0

x

y

z

2y-z=0

2

x

y

z

x+y=0
2y-z=0

2

x

y

z

Cospans

a[1, -1, 0]

a

b[0, 1, 2]

2 b

a[1, -1, 0]+b[0,1,2]

2

a

b

Spans

Goal
• Develop a resource for linear algebra without the

notions of

• vector space as “set of vectors”

• linear space as a set generated by basis
elements

• etc..

• See http://graphicallinearalgebra.net

http://graphicallinearalgebra.net

