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Resource Analysis of Pi-Calculus: Some Questions

Soter: a coverability / safety verification tool for Erlang that uses abstract
interpretation, via a CCS intermediate representation, to extract a Petri
net model from an input Erlang program.
http://mjolnir.cs.ox.ac.uk/soter Google “soter Erlang”

A source of imprecision of Soter abstraction: unboundedly many Erlang
pids (process ids) are abstracted as finite pid equivalence classes.

Unable to support analysis that requires precision of process identity.

Because mailboxes are merged under the abstraction, certain patterns
of communication cannot be analysed accurately.

Pi-calculus would be a more accurate model: pids can be modelled by
names.

Question

Is there a pi-calculus fragment in which reasoning about process identity
can be made precise, while retaining decidability of the analysis?
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Resource Analysis of Pi-Calculus: Some Questions

Pi-calculus variants (Spi-Calculus and Applied Pi-Calculus) have been used
successfully in reasoning about cryptographic protocols.

Secrecy Problem for Protocol P

Given a secret M , can protocol P leak M?

DEF. Protocol P can leak M if there are (intruder term) I, evaluation
context C, channel c 6∈ bn(C) and term R such that

(P ‖ I)→∗ C[c〈M〉.R]

without renaming fn(M).

Protocol secrecy remains undecidable even under drastic restrictions, e.g.,
bounding message size and encryption depth, but with unbounded sessions
and nonces. (Durgin et al. FMSP’99)

Question

Is there an expressive class of protocols P for which Secrecy is decidable?
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The Pi-Calculus (Milner, Parrow & Walker 1992)

The pi-calculus models communications between processes that exchange
messages along channels.

Messages and channels are represented uniformly by names from a
countable set N .
Processes communicate by synchronising on a pair of send and receive
prefixes:
- a〈b〉 sends message b on channel a
- a(x) receives message x on channel a.

Syntax of π-terms:

P := νx.P | P1 ‖ P2 | M | M∗ process / π-term

M := 0 | π.P | M +M choice

π := a〈b〉 | a(x) | τ prefix

M (choice) and M∗ (replication) are called sequential.
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Operational Semantics

Structural congruence, ≡, is the least relation that respects α-conversion
of bound names, where + and ‖ are associative and commutative with
neutral element 0, satisfying: νa.0 ≡ 0, νa.νb.P ≡ νb.νa.P ,

P ∗ ≡ P ‖ P ∗ Replication

P ‖ νa.Q ≡ νa.(P ‖ Q) (if a 6∈ fn(P )) Scope Extrusion

Reaction relation, →, is the least relation closed under ‖, νa. and ≡, and
satisfying:

(a〈b〉.S +MS) ‖ (a(x).R+MR) → S ‖ R[b/x] (React)

τ.P +M → P (Tau)

(We do not consider labelled transition semantics.)
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E.g. Let S = τ.νb.a〈b〉, and R = a(x).x〈c〉. For prefix π, write π.0 as π.

S∗ ‖ R∗

≡ (Replication)

(τ.νb1.a〈b1〉 ‖ S∗) ‖ (a(x1).x1〈c〉 ‖ R∗)
→ (Tau)

(νb1.a〈b1〉 ‖ S∗) ‖ (a(x1).x1〈c〉 ‖ R∗)
≡ Comm. & assoc. of ‖

(νb1.a〈b1〉) ‖ a(x1).x1〈c〉 ‖ S∗ ‖ R∗

≡ (Scope extrusion)

νb1.
(
a〈b1〉 ‖ a(x1).x1〈c〉

)
‖ S∗ ‖ R∗

→ (React)

νb1.(0 ‖ b1〈c〉) ‖ S∗ ‖ R∗

≡ (≡.1)

(νb1.b1〈c〉) ‖ S∗ ‖ R∗
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Some Resource-Bounded Fragments of Pi-Calculus

Natural fragments arise by restricting the use of channels / restrictions.
(Meyer PhD Thesis 2008)

1 Bounding the depth of communication or depth of nested restrictions:
depth-bounded processes.

2 Bounding the degree of sharing i.e. number of processes sharing a
channel: breadth-bounded processes.

3 Bounding the number of channels used concurrently: name-bounded
processes.

Features of these fragments

Name bounded implies depth bounded; breadth bounded and depth
bounded are incomparable.

They are semantic: membership is undecidable.

Expressive, yet still support decidable analyses (e.g. coverability).

Useful for verification. E.g. name boundedness & memory leak.
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Example Revisited: Depth-bounded but Name-unbounded

Let S = τ.νb.a〈b〉, and R = a(x).x〈c〉 as before.

S∗ ‖ R∗ →∗ νb1.b1〈c〉 ‖ S∗ ‖ R∗

→∗ νb1.b1〈c〉 ‖ νb2.b2〈c〉 ‖ S∗ ‖ R∗

→∗ νb1.b1〈c〉 ‖ νb2.b2〈c〉 ‖ · · · ‖ νbn.bn〈c〉 ‖ S∗ ‖ R∗

Thus S∗ ‖ R∗ is:

depth bounded: every reachable term has maximum nested-restriction
depth of 1 (equivalently, every subterm is in the scope of at most 1
restriction).

name unbounded: for each n ≥ 1, a term is reachable that uses n
channels (b1, · · · , bn) concurrently.
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Example: Depth-unbounded

Let θ = a(x).νc.(c〈x〉 ‖ a〈c〉).

a〈c0〉 ‖ θ∗

≡ a〈c0〉 ‖ a(x).νc1.(c1〈x〉 ‖ a〈c1〉) ‖ θ∗

→ νc1.(c1〈c0〉 ‖ a〈c1〉 ‖ θ∗)

≡ νc1.
(
c1〈c0〉 ‖ a〈c1〉 ‖ a(x).νc2.(c2〈x〉 ‖ a〈c2〉) ‖ θ∗

)
→ νc1.

(
c1〈c0〉 ‖ νc2.(c2〈c1〉 ‖ a〈c2〉 ‖ θ∗)

)
→∗ νc1.

(
c1〈c0〉 ‖ νc2.

(
c2〈c1〉 ‖ · · · ‖ νcn.(cn〈cn−2〉 ‖ a〈cn〉 ‖ θ∗)

))
- The subterm a〈cn〉 is in the scope of n restrictions.
- For each n ≥ 1, a term with nested restriction of depth n is reachable.
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Definition: Depth-bounded (DB) Pi-Terms

Nested depth of restriction of P , nestν(P ).

nestν(S) := 0 for sequential S

nestν(P1 ‖ P2) := max(nestν(P1),nestν(P2))

nestν(νa.P ) := 1 + nestν(P ).

Define depth(Q) := min {nestν(Q′) | Q ≡ Q′}.

Example. νa.νb.νc.
(
a(x) ‖ b〈c〉 ‖ c(y)

)︸ ︷︷ ︸
P

≡ νa.a(x) ‖ νc.
(
(νb.b〈c〉) ‖ c(y)

)︸ ︷︷ ︸
Q

nestν(P ) = 3; nestν(Q) = 2; but depth(P ) = depth(Q) = 2.

A π-term P is depth bounded if ∃k ≥ 0 .∀P ′ ∈ Reach(P ) . depth(P ′) ≤ k.

Depth-bounded (DB) terms are a semantic fragment of π-calculus – many
known fragments1 with decidable analyses are subfragments of DB.

1Finite control, bounded, finite handler, structurally stationary, restriction-free, etc.
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Theorem (Meyer 2008) DB π-terms form a well-structured transition
system (WSTS). Thus coverability and termination are decidable.

The set DB :=
⋃
i∈ω DB(i) is highly expressive:

- Terms of DB(0) can represent Petri nets.
- Reachability is undecidable for DB(1).

It is decidable, given k ≥ 0 and a term P , whether P ∈ DB(k); but has
non-PR lower bound (Hüchting et al. CONCUR’14).

Goal. DB is an important resource-bounded fragment for analysing
concurrent and distributed computation, yet we scarcely understand it.

1 Instead of depth bound (a number), we define an expressive
subfragment of DB using a richer structure (finite forests):
tree-compatible pi-terms

2 Develop static analysis of DB π-terms: a feasibly decidable type
system for DB / tree-compatible terms.
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Abstract Syntax Tree AST(P )
- Internal nodes are labelled by active restricted names of P .
- Leaves are labelled by sequential subterms of P .

Example. Let P = νe.

(
νa.a(x) ‖

(
νc.
(
(νb.b〈c〉) ‖ c〈e〉

)))
AST(P ) = e

a c

a(x) b c〈e〉

b〈c〉

T = e

c

a

b

Fix a forest (T ,�); write < for �+. Let φ : N → T . Say P φ-matches T
if for each trace 〈x1, · · · , xn, S〉 in AST(P ), φ(x1) < · · · < φ(xn) in T .

Example. P id-matches T .

Lemma. P is DB iff there exists a finite forest T and φ : N → T such
that for all Q ∈ Reach(P ), some congruent of Q φ-matches T .
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Simple types generated by finite forest T

Fix a finite forest (T ,�), writing < for �+.
Recall: P φ-matches T just if for each trace 〈x1, · · · , xn, S〉 in AST(P ),
φ(x1) < · · · < φ(xn) in T .

Approach. Define φ statically, using simple types.

Simple types generated by T (or just types), are of the form

TT 3 τ := t | t[τ ]

where t ∈ T is called a base type. Cf. sorts (Milner 1993).

1 A name of type t ∈ T can only be used as a message.

2 A name of type t[τ ] is used as a channel to transmit a name of type τ .

Define base(t[τ ]) := t and base(t) := t.
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T -annotated π-terms and T -compatibility

A T -annotated term is just a π-term except restrictions take the form
νx : τ.P . The semantics is the same, except type annotations are
preserved when a name is duplicated or renamed by structural congruence.

DEF. A T -annotated P is T -compatible if P has a congruent that
matches T .

Lemma (Canonical Witness for T -Compatibility)

There is a transformation Φ on T -annotated π-terms such that for all P ,
(i) Φ(P ) matches T , and (ii) Φ(P ) ≡ P iff P is T -compatible.

Observation. If every Q ∈ Reach(P ) is T -compatible, then P is DB.

Goal. Develop a type system such that typability implies DB.

S.T.P. (i) Subject Reduction: Let P → P ′. If P is typable, so is P ′.
(ii) Reduction of typable terms preserves T -compatiblity.
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Overview of the Type System

Typing judgement: Γ `T P , where Γ is a set of T -annotated names, x : τ .

Salient features
1 Typing is defined on normal forms P ∈ Pnf , where
X = {x1 : τ1, · · · , xn : τn}

Pnf 3 N ::= νX.
∏
i∈I

Ai

A ::=
∑
i∈I

πi.Ni |
(∑
i∈I

πi.Ni

)∗
2 The typing rules guarantee that reduction preserves T -compatibility, a

property of congruence classes.

3 While typing rules are compositional, the parameter T is “global”.

4 Type inference: If T is unknown, type checking generates a constraint
system which is polytime solvable.
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How to Cheat Scope Extrusion

Want to prove: Assume P → P ′ (and P typable). If P is T -compatible,
so is P ′.

Problem: Scope extrusion can break T -compatibility. E.g. When the scope
of νb is extruded in the following communication:

(νb : tb.a〈b〉.S) ‖ (νc : tc.a(x).R) → νb : tb.(S ‖ νc : tc.R[b/x])

the reductum may not match T !

Key idea

- In some situations, the effect of scope extrusion can be achieved by
migrating the (substituted) receiver, R[b/x], of the synchronising pair, so
as to enter the scope of the restriction operator νb. E.g.

(νb.a〈b〉.S) ‖ a(x).R → (νb.S ‖ R[b/x]) ‖ 0

- The type system is designed to capture these situations.
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Migration of the Receiver Is Not Always Possible

Migration of the Receiver:

(νb.a〈b〉.S) ‖ a(x).R → (νb.S ‖ R[b/x]) ‖ 0

However it is not always possible / sound. For example:

(νb.a〈b〉.S) ‖ (νc.a(x).R(x, c)) 6→ (νb.S ‖ R(x, c)[b/x]) ‖ (νc.0)
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The Typing System

∀i ∈ I. Γ, X `T Ai
∀i ∈ I. ∀x : τx ∈ X. x /P i =⇒ base(Γ(fn(Ai))) < base(τx)

Γ `T νX.
∏
i∈I

Ai
Par

∀i ∈ I. Γ `T πi.Pi
Γ `T

∑
i∈Iπi.Pi

Choice
Γ `T A
Γ `T A∗

Repl
Γ `T A

Γ `T τ .A
Tau

a : ta[τb] ∈ Γ b : τb ∈ Γ Γ `T Q
Γ `T a〈b〉.Q

Out

a : ta[τx] ∈ Γ Γ, x : τx `T P
base(τx) ≤ ta ∨

(
∀i ∈ I. Miga(x).P (i) =⇒ base(Γ(fn(Ai) \ {a})) < ta

)
Γ `T a(x).νX.

∏
i∈I

Ai
In
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Rule Par

∀i ∈ I. Γ, X `T Ai
∀i ∈ I. ∀(x : τx) ∈ X.

(
x /P i =⇒ base(Γ(fn(Ai))) < base(τx)

)
Γ `T νX.

∏
i∈I

Ai︸ ︷︷ ︸
P

Par

Recall: Normal form P has shape νX.
∏
i∈I Ai.

Say Ai is linked to Aj in P , written i↔P j, if
∃(x : τ) ∈ X .x ∈ fn(Ai) ∩ fn(Aj).

Define the tied-to relation, aP , as the transitive closure of ↔P .

Say that a name y ∈ X is tied to Ai in P , written y /P i, if
∃j ∈ I. y ∈ fn(Aj) ∧ j aP i.

Other Versions of Typing Systems: T with multiplicities, to model
replication more accurately.
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Rule In

a : ta[τx] ∈ Γ Γ, x : τx `T P
base(τx) ≤ ta ∨

(
∀i ∈ I. Miga(x).P (i) =⇒ base(Γ(fn(Ai) \ {a})) < ta

)
Γ `T a(x).νX.

∏
i∈I

Ai
In

Given an input-prefixed normal form a(y).P where P = νX.
∏
i∈I Ai, we

say that Ai is migratable in a(y).P , written Miga(y).P (i), if x is tied to Ai
in νX.

∏
i∈I Ai.
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Soundness

Say Γ is P -safe if for each x ∈ fn(P ) and (y : τ) ∈ bnν(P ),
base(Γ(x)) < base(τ).

Lemma (Subject Reduction)

Let P,Q ∈ Pnf and Γ be a P -safe environment. If Γ `T P and P → Q
then Γ `T Q.

Say P is T -shaped if all its subterms are T -compatible.

Theorem (Invariance of T -shapeness)
Let P,Q ∈ Pnf with P → Q and, Γ be a P -safe environment such that
Γ `T P . Then, if P is T -shaped, so is Q.

Hence, if ∅ `T P and T -compatible, then P is DB.
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Type Inference

The type system generates two types of constraints on base types.

1 Equality between types, inducing equality between base types.

2 Ancestor relation, <, between base types.

Lemma (Feasible Type Inference)

There is an (polytime) algorithm that decides Typability: Given
P ∈ Pnf , are there finite forest T and P -safe Γ such that Γ `T P?
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Example

Take normal form P = νa b c.(A∗ ‖ a〈c〉) where

A = a(x).νd.
(
a〈d〉 ‖ b〈x〉

)
Type inference yields:

T satisfying constraints: tb < ta < t

typing of names: a : ta[t], b : tb[t], c : t, d : t

satisfying ∅ `T P .

Φ(P ) = b

a

A∗ c

a〈c〉

→ b

a

A∗ c d

b〈c〉 a〈d〉
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Nested-Data Class Memory Automata (NDCMA)

NDCMA (Cotton-Barratt, Murawski & O., LATA 2015) are a version of
class memory automata whose data set is a finite-depth forest in which
every non-leaf node has infinitely many children.

Here we view NDCMA as a transition system.

Theorem

Pi-terms that are typable and tree-compatible are equi-expressive with
NDCMA:

1 Given a typable pi-term P , there is a NDCMA AP such that P and
AP are weakly bisimilar as transition systems.

2 The converse is also true: given a NDCMA A there is a typable
pi-term PA such that A and PA are weakly bisimilar.
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Conclusion

1 We have developed a static analysis for depth-bounded π-terms, an
important resource-bounded fragment of π-calculus.

2 We have constructed a sound type system for tree-compatible terms;
type checking and type inference are polytime computable.

3 Pi-terms that are typable are equi-expressive with nested-data class
memory automata (NDCMA).

Further Directions
1 Develop a more precise analysis of the DB fragment, using

context-sensitivity and subtyping.

2 We plan to develop Soter Version 2.0, which will use a new
abstraction based on the π-calculus as the intermediate model of
computation.

3 Conjecture. Secrecy is decidable for depth-bounded protocols.
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