
Program Verification
via Higher-Order Model Checking

Naoki Kobayashi
University of Tokyo

What’s This Talk About?
A survey of applications of

 higher-order model checking
 (model checking of higher-order recursion schemes)

 to:
 automated verification of
 higher-order functional programs
 (e.g. “software model checker” for ML)

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data programs
– verification of infinite-data programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

 → a

c B c b

→ a

S

c b

→ a

a

c B

 → ... →

c b

a

c b

a

c b

a

S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

→A c

c A(b c)

→ a

 → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

HORS
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

Higher-Order Model Checking

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

c a
a

b
c

a
b
b
c

a
b
b
b
c

...
Q1. Does every finite path end with “c”?
 YES!
Q2. Does “a” occur below “b”?
 NO!

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

 p(x)
 2
 ..
 2
2

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

 The first practical model checker for HORS

 Does not immediately suffer from k-EXPTIME
bottleneck

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

c b

a

c b

a

c b

a
infinite tree

a

c b

transition system ≈

Does “a”
occur

below “b”?
Is there a transition

sequence in which
“a” occurs after “b”?

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars (under certain assumptions)

 A “certificate” can be checked in polynomial time
 (cf. NP problems)

 For finite-state models, HO model checking can
actually be faster than finite state model checking
– HORS can compactly represent finite-state systems

• An order-k HORS of size x can represent a system with
states

– k-EXPTIME algorithm for HO model checking
≈ PTIME algorithm for finite-state model checking

 p(x)
 2
 ..
 2
2

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars (under certain assumptions)

 A “certificate” can be checked in polynomial time
 (cf. NP problems)

 For finite-state models, HO model checking can
actually be faster than finite state model checking
– HORS can compactly represent finite-state systems

• An order-k HORS of size x can represent a system with
states

– PTIME algorithm for HO model checking
>> PTIME algorithm for finite-state model checking

 p(x)
 2
 ..
 2
2

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data HO programs
– verification of infinite-data HO programs

• safety properties [K+ PLDI 2011]…
• termination [Kuwahara+ ESOP 2014]
• non-termination [Kuwahara+ CAV 2015]
• general liveness properties (ongoing)

 Conclusion

From Program Verification
to HO Model Checking

[K. POPL 2009]

Program
Transformation

Higher-order
program
 +
specification
(on events or
output)

HORS
(describing all
event sequences

or outputs)
+

Tree automaton,
 recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r

 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is

accessed after the call returns

c
+

+

c
+

c
...

r

r

r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

c
+

+

c
+

c
...

r

r

r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

c
+

+

c
+

c
...

r

r

r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
 - A large class of higher-order programs:
 simply-typed λ-calculus + recursion
 + finite base types (e.g. booleans) + exceptions + ...
 - A large class of verification problems:
 resource usage verification (or typestate checking),
 reachability, flow analysis, strictness analysis, ...

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

For finite-data HO programs,
automated verification comes almost free
from HO model checking!

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data HO programs
– verification of infinite-data HO programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Verification of Higher-order
Programs with Infinite Data
(integers, lists, trees, ...)

 For safety properties (e.g. reachability),
overapproximation by abstraction of infinite
data suffice.

 For other properties (e.g. termination),
combinations of problem reduction and
abstraction are required.

Verification of Higher-order
Programs with Infinite Data
(integers, lists, trees, ...)

 For safety properties (e.g. reachability),
overapproximation by abstraction of infinite
data suffice.

 For other properties (e.g. termination),
combinations of problem reduction and
abstraction are required.

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

[K.&Sato&Unno, PLDI2011]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

F(g, b)=
 if b then g(true)
 else g(∗)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

Dealing with algebraic data types
(e.g. lists)

Abstraction approach:
– automata-based [K+ POPL10][Unno+ APLAS 10]...

– pattern-based [Ong&Ramsay POPL11]

 Encoding approach [Sato+ PEPM13] :
– algebraic data as functions
 length function from indices to elements

[τ list] = int × (int → [τ])
 nil = (0, λx. fail)
 cons = λx.λ(len,f).
 (len+1, λi.if i=0 then x else f(i-1))

 hd (len,f) = f(0)
 ...

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data programs
– verification of infinite-data programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Termination Verification
 Goal: prove that a program terminates for

every input (and non-determinism)
Naive approach: abstract a program to a finite

data program, and apply HO model checking
– Problem: many terminating programs are turned into

non-terminating ones by abstraction
e.g. f(x) = if x<0 then 1 else 1+f(x-1) terminating
 f(bx<0) = if bx<0 then 1 else 1+f(*) non-terminating

Our approach [Kuwahara+, ESOP14]
(cf. [Rybalchenko&Podelski] for termination of imperative programs):
– Reduce termination to binary reachability
– Reduce binary reachability to plain reachablity

From Termination to Binary
Reachability for HO Programs

 Every non-terminating computation must contain an
infinite chain of recursive calls:
 main() →* C0[f v0]

 f vi →+ Ci+1[f vi+1] for i=0,1,2,...
 for some function f
⇒A sufficient (and necessary) condition for termination:
 Callf = { (v, w) |main() →* C[f v], f v →+ D[f w]}
 is well-founded for every function f
⇒To prove termination, it suffices to
 - pick a well-founded relation Wf ; and
 - prove Callf ⊆ Wf

 for each f

From Binary Reachability
to Plain Reachability

 Goal: check Callf ⊆ Wf
(where Callf={(v, w)|main()→*C[f v], f v→+ D[f w]})

 Approach: reduction to a plain reachability problem
by program transformation
– To each function, add an extra argument to record the

argument of an ancestor call of f.
– Assert that Wf holds when f is called

fib n =
 if n<2 then n
 else fib(n-1)+fib(n-2)
main() = fib(rand())

Wfib = {(m,n) | m>n≥0 }

fib m n =
 assert(m>n≥0);
 let m’= if * then m else n in
 if n<2 then n
 else fib m’ (n-1)+fib m’ (n-2)
main() = fib ⊥ (rand())

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data programs
– verification of infinite-data programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Verifying Non-Termination
(or Disproving Termination) of HO programs
 Goal: prove that a program is non-terminating for

some input (or for some non-deterministic choice)
– complementary to termination verification

 Unsound approach: overapproximate a program by a
finite data program, and apply HO model checking

 f(x) = if x<0 then 1 else 1+f(x-1) terminating
 f(bx<0) = if bx<0 then 1 else 1+f(*) non-terminating

 Our approach [Kuwahara+, CAV15]:
– combine over- and under-approximation
– construct a program that outputs an approximation

of the computation tree of the original program
– use HO model checking to check that the

computation tree contains infinite computation

Our Approach:
Combination of Under-/Over-approximation

¬x>0 x>0

∃

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(...
 /* case ¬x>0 */
, ...
 /* case x>0 */
)

Only one of the
branches needs to
be non-terminating

・
・
・

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(...
 /* case ¬0≤y≤x */)
, ...
)

pred: 0≤y≤x

¬x>0 x>0

∃

¬0≤y≤x

∃

Under-approximation:
case for ¬x>0∧ 0≤y≤x

is discarded

discarded

・
・
・

0≤y≤x

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(...
 /* case ¬0≤y≤x */)
, ...
)

pred: 0≤y≤x

Under-approximation:
case for ¬x>0∧ 0≤y≤x

is discarded

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x

0≤y≤x

∃ ∃

∃

・
・
・

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(/* case ¬0≤y≤x */
 ...)
, ...
)

pred: 0≤y≤x

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x

0≤y≤x

∃ ∃

∃

pred: x+y>0
・
・
・

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(/* case ¬0≤y≤x */
 ∀(f true /*case x+y>0 */,
 f false /*case ¬x+y>0 */)
)
 , ...
)

pred: 0≤y≤x

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x

0≤y≤x

∃ ∃

∃

∀

pred: x+y>0

Overapproximation:
both branches should
have an infinite path
(since we don’t know
which branch is valid)

・
・
・

∀ ∀

Non-Termination Verification:
Summary

 Underapproximate non-deterministic computation,
and check that one of the branches has a non-
terminating path

 Overapproximate deterministic computation,
and check that all the branches have non-terminating
paths

 Check them by using HO model checking

… … …

…
… …

∃
∀ ∀

… …

… …

… … ∃ ∃

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data HO programs
– verification of infinite-data HO programs

• safety properties [K+ PLDI2011],…
• Termination [Kuwahara+ ESOP 2014]
• non-termination [Kuwahara+ CAV 2015]
• general liveness properties (ongoing)

 Conclusion

Verification of LTL
properties of HO programs

 Reduce to fair termination [Vardi 91]

 Extend the termination verification method
[Kuwahara+ 14] for proving fair termination

Conclusion
 Higher-order model checking enables automated

verification of functional programs
– Various properties (including both safety and liveness

properties) can be checked by an appropriate combination
with abstraction and program transformation

 Do not worry too much about k-EXPTIME
completeness of HO model checking
– depending on inputs, recent HO model checkers can

process inputs of thousands of lines in a few seconds

	Program Verification �via Higher-Order Model Checking
	What’s This Talk About?
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Model Checking
	Higher-Order Model Checking
	Higher-Order Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Outline
	From Program Verification�to HO Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to HO Model Checking�
	From Program Verification�to HO Model Checking�
	Outline
	Verification of Higher-order Programs with Infinite Data (integers, lists, trees, ...)
	Verification of Higher-order Programs with Infinite Data (integers, lists, trees, ...)
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Dealing with algebraic data types (e.g. lists)
	Outline
	Termination Verification
	From Termination to Binary Reachability for HO Programs
	From Binary Reachability �to Plain Reachability
	Outline
	Verifying Non-Termination�(or Disproving Termination) of HO programs
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Non-Termination Verification: Summary
	Outline
	Verification of LTL properties of HO programs
	Conclusion

