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What’s This Talk About? 
A survey of applications of 

  higher-order model checking 
  (model checking of higher-order recursion schemes) 

  to: 
  automated verification of  
  higher-order functional programs 
  (e.g. “software model checker” for ML) 
 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data programs 
– verification of infinite-data programs 

• safety properties 
• termination 
• non-termination 
• general liveness properties 

 Conclusion 



Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 

Order-0 HORS  
(regular tree grammar) 
    S  → a  c  B 
    B → b  S 

S  → a   
    c  B 
B → b 
      S  
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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 
Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 

HORS 
≈ 

Call-by-name simply-typed λ-calculus 
+ 

recursion, tree constructors 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
 G:  HORS 
 A:  alternating parity tree automaton  
 (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 



Higher-Order Model Checking 

Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 
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Q1. Does every finite path end with “c”? 
        YES! 
Q2. Does “a” occur below “b”? 
        NO! 
 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06]        
(for order-k HORS)    

      p(x) 
     2 
   .. 
  2 
2 



TRecS [K. PPDP09] 
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/ 

 The first practical model checker for HORS 

 Does not immediately suffer from k-EXPTIME 
bottleneck 



HO Model Checking as Generalization of 
Finite State/Pushdown Model Checking 

order-0 ≈ finite state model checking 
order-1 ≈ pushdown model checking 
 

c b 

a 

c b 

a 

c b 

a 
infinite tree 

a 

c b 

transition system ≈ 

Does “a” 
occur 

below “b”? 
Is there a transition 

sequence in which  
“a” occurs after “b”? 



Why HO Model Checking Works? 
(despite k-EXPTIME completeness) 

 Fixed-parameter polynomial time in the size of 
grammars (under certain assumptions) 

 A “certificate” can be checked in polynomial time 
 (cf. NP problems) 

 For finite-state models, HO model checking can 
actually be faster than finite state model checking 
– HORS can compactly represent finite-state systems 

• An order-k HORS of size x can represent a system with                
states 
 
 

– k-EXPTIME algorithm for HO model checking 
≈ PTIME algorithm for finite-state model checking 
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Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data HO programs 
– verification of infinite-data HO programs 

• safety properties [K+ PLDI 2011]… 
• termination [Kuwahara+ ESOP 2014] 
• non-termination [Kuwahara+ CAV 2015] 
• general liveness properties (ongoing) 

 Conclusion 



From Program Verification 
to HO Model Checking 

[K. POPL 2009] 

Program  
Transformation 

Higher-order 
program 
  + 
specification 
(on events or  
output) 

HORS 
(describing all  
event sequences 

or outputs) 
+ 

Tree automaton, 
 recognizing  

valid event sequences 
or outputs 

Model 
Checking 



From Program Verification to Model Checking:  
Example 

let f(x) =  
  if ∗ then close(x)  
  else read(x); f(x) 
in 
let y = open “foo” 
in 
     f (y) 
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 Is the file “foo” 
accessed according  

to read* close? 
Is each path of the tree 

labeled by r*c? 

F x k → + (c k) (r(F x k)) 
S → F d  
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CPS 
Transformation! 

continuation parameter,  
expressing how “foo” is 

accessed after the call returns 
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From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

Sound, complete, and automatic for: 
  - A large class of higher-order programs: 
      simply-typed λ-calculus + recursion  
      + finite base types (e.g. booleans) + exceptions + ... 
  - A large class of verification problems: 
      resource usage verification (or typestate checking),  
      reachability, flow analysis, strictness analysis, ... 



From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

For finite-data HO programs,  
automated verification comes almost free  
from HO model checking! 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data HO programs 
– verification of infinite-data HO programs 

• safety properties 
• termination 
• non-termination 
• general liveness properties 

 Conclusion 



Verification of Higher-order 
Programs with Infinite Data 
(integers, lists, trees, ...) 

 For safety properties (e.g. reachability), 
overapproximation by abstraction of infinite 
data suffice. 

 For other properties (e.g. termination), 
combinations of problem reduction and 
abstraction are required. 



Verification of Higher-order 
Programs with Infinite Data 
(integers, lists, trees, ...) 

 For safety properties (e.g. reachability), 
overapproximation by abstraction of infinite 
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combinations of problem reduction and 
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Predicate Abstraction and CEGAR  
for Higher-Order Model Checking 

[K.&Sato&Unno, PLDI2011] 

Predicate  
abstraction 

Higher-order 
functional program 

Higher-order 
boolean program 

f(g,x)=g(x+1) 

λx.x>0 

F(g, b)=  
  if b then g(true) 
  else g(∗) 
 

Higher-order 
model checking 

Error path 

property satisfied 

property not satisfied 

Program is safe! 

Real 
error 
path? 

yes 
Program is unsafe! 

New 
predicates 



Dealing with algebraic data types 
(e.g. lists) 

Abstraction approach: 
– automata-based [K+ POPL10][Unno+ APLAS 10]... 

– pattern-based [Ong&Ramsay POPL11] 

 Encoding approach [Sato+ PEPM13] : 
– algebraic data as functions 
                length  function from indices to elements 

[ τ list ] = int × (int → [τ] ) 
   nil = (0, λx. fail ) 
 cons = λx.λ(len,f). 
         (len+1, λi.if i=0 then x else f(i-1)) 

 hd (len,f) = f(0) 
  ... 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data programs 
– verification of infinite-data programs 

• safety properties 
• termination 
• non-termination 
• general liveness properties 

 Conclusion 



Termination Verification 
 Goal: prove that a program terminates for 

every input (and non-determinism) 
Naive approach: abstract a program to a finite 

data program, and apply HO model checking 
– Problem: many terminating programs are turned into 

non-terminating ones by abstraction 
e.g.  f(x) = if x<0 then 1 else 1+f(x-1)    terminating 
    f(bx<0) = if bx<0 then 1 else 1+f(*)    non-terminating 

Our approach [Kuwahara+, ESOP14]  
(cf. [Rybalchenko&Podelski] for termination of imperative programs): 
– Reduce termination to binary reachability 
– Reduce binary reachability to plain reachablity 



From Termination to Binary 
Reachability for HO Programs 

 Every non-terminating computation must contain an 
infinite chain of recursive calls: 
  main() →* C0[f v0] 

   f vi  →+ Ci+1[f vi+1]  for i=0,1,2,... 
   for some function f 
⇒A sufficient (and necessary) condition for termination: 
   Callf = { (v, w) |main() →* C[f v], f v →+ D[f w]} 
   is well-founded for every function f  
⇒To prove termination, it suffices to 
    - pick a well-founded relation Wf ; and 
    - prove  Callf ⊆ Wf 

     for each f 
 



From Binary Reachability  
to Plain Reachability 

 Goal: check Callf ⊆ Wf 
(where Callf={(v, w)|main()→*C[f v], f v→+ D[f w]}) 

 Approach: reduction to a plain reachability problem 
by program transformation 
– To each function, add an extra argument to record the 

argument of an ancestor call of f. 
– Assert that Wf holds when f is called 

 
fib n = 
    if n<2 then n 
    else fib(n-1)+fib(n-2) 
main() = fib(rand()) 
 
Wfib = {(m,n) | m>n≥0 } 

fib m n = 
   assert(m>n≥0); 
   let m’= if * then m else n in 
    if n<2 then n 
    else fib m’ (n-1)+fib m’ (n-2) 
main() = fib ⊥ (rand()) 
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Verifying Non-Termination 
(or Disproving Termination) of HO programs 
 Goal: prove that a program is non-terminating for 

some input (or for some non-deterministic choice) 
– complementary to termination verification 

 Unsound approach: overapproximate a program by a 
finite data program, and apply HO model checking 

  f(x) = if x<0 then 1 else 1+f(x-1)       terminating 
 f(bx<0) = if bx<0 then 1 else 1+f(*)      non-terminating 

 Our approach [Kuwahara+, CAV15]:  
– combine over- and under-approximation 
– construct a program that outputs an approximation 

of the computation tree of the original program 
– use HO model checking to check that the 

computation tree contains infinite computation  
 



Our Approach: 
Combination of Under-/Over-approximation 

¬x>0 x>0 

∃ 

y=1 

x=0 

y=0 

x=1 

y=1 y=0 

・
・
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・
・
・ 

・
・
・ 

let x=* in 
let y=* in 
   f(x+y) 

pred: x>0 

∃( ...  
   /* case ¬x>0 */ 
, ... 
   /* case x>0 */ 
) 

Only one of the 
branches needs to 
be non-terminating 

・
・
・ 
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∃ 
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・
・
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Our Approach: 
Combination of Under-/Over-approximation 

y=1 

x=0 

y=0 

x=1 

y=1 y=0 

・
・
・ 

・
・
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・
・
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let x=* in 
let y=* in 
   f(x+y) 

pred: x>0 

∃( /* case ¬x>0 */ 
  ∃(/* case ¬0≤y≤x */ 
   ∀( f true /*case x+y>0 */,   
     f false /*case ¬x+y>0 */)  
  ) 
  , ... 
 ) 

pred: 0≤y≤x 

¬x>0 

¬0≤y≤x 
 

x>0 

¬0≤y≤x 
 

0≤y≤x 

∃ ∃ 

∃ 

∀ 

pred: x+y>0 

Overapproximation: 
both branches should 
have an infinite path 
(since we don’t know 
which branch is valid) 

・
・
・ 

∀ ∀ 



Non-Termination Verification: 
Summary 

 Underapproximate non-deterministic computation,  
and check that one of the branches has a non-
terminating path 

 Overapproximate deterministic computation, 
and check that all the branches have non-terminating 
paths 

 Check them by using HO model checking  

… … … 

… 
… … 

∃ 
∀ ∀ 

… … 

… … 

… … ∃ ∃ 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data HO programs 
– verification of infinite-data HO programs 

• safety properties [K+ PLDI2011],… 
• Termination [Kuwahara+ ESOP 2014] 
• non-termination [Kuwahara+ CAV 2015] 
• general liveness properties (ongoing) 

 Conclusion 



Verification of LTL 
properties of HO programs 

 Reduce to fair termination [Vardi 91] 
 

 Extend the termination verification method 
[Kuwahara+ 14] for proving fair termination  
 



Conclusion 
 Higher-order model checking enables automated 

verification of functional programs 
– Various properties (including both safety and liveness 

properties) can be checked by an appropriate combination 
with abstraction and program transformation  

 Do not worry too much about k-EXPTIME 
completeness of HO model checking 
– depending on inputs, recent HO model checkers can 

process inputs of thousands of lines in a few seconds 
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