
Program Verification
via Higher-Order Model Checking

Naoki Kobayashi
University of Tokyo

What’s This Talk About?
A survey of applications of

 higher-order model checking
 (model checking of higher-order recursion schemes)

 to:
 automated verification of
 higher-order functional programs
 (e.g. “software model checker” for ML)

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data programs
– verification of infinite-data programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

 → a

c B c b

→ a

S

c b

→ a

a

c B

 → ... →

c b

a

c b

a

c b

a

S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

→A c

c A(b c)

→ a

 → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

HORS
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

Higher-Order Model Checking

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

c a
a

b
c

a
b
b
c

a
b
b
b
c

...
Q1. Does every finite path end with “c”?
 YES!
Q2. Does “a” occur below “b”?
 NO!

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

 p(x)
 2
 ..
 2
2

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

 The first practical model checker for HORS

 Does not immediately suffer from k-EXPTIME
bottleneck

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

c b

a

c b

a

c b

a
infinite tree

a

c b

transition system ≈

Does “a”
occur

below “b”?
Is there a transition

sequence in which
“a” occurs after “b”?

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars (under certain assumptions)

 A “certificate” can be checked in polynomial time
 (cf. NP problems)

 For finite-state models, HO model checking can
actually be faster than finite state model checking
– HORS can compactly represent finite-state systems

• An order-k HORS of size x can represent a system with
states

– k-EXPTIME algorithm for HO model checking
≈ PTIME algorithm for finite-state model checking

 p(x)
 2
 ..
 2
2

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars (under certain assumptions)

 A “certificate” can be checked in polynomial time
 (cf. NP problems)

 For finite-state models, HO model checking can
actually be faster than finite state model checking
– HORS can compactly represent finite-state systems

• An order-k HORS of size x can represent a system with
states

– PTIME algorithm for HO model checking
>> PTIME algorithm for finite-state model checking

 p(x)
 2
 ..
 2
2

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data HO programs
– verification of infinite-data HO programs

• safety properties [K+ PLDI 2011]…
• termination [Kuwahara+ ESOP 2014]
• non-termination [Kuwahara+ CAV 2015]
• general liveness properties (ongoing)

 Conclusion

From Program Verification
to HO Model Checking

[K. POPL 2009]

Program
Transformation

Higher-order
program
 +
specification
(on events or
output)

HORS
(describing all
event sequences

or outputs)
+

Tree automaton,
 recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is

accessed after the call returns

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
 f (y)

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
 - A large class of higher-order programs:
 simply-typed λ-calculus + recursion
 + finite base types (e.g. booleans) + exceptions + ...
 - A large class of verification problems:
 resource usage verification (or typestate checking),
 reachability, flow analysis, strictness analysis, ...

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

For finite-data HO programs,
automated verification comes almost free
from HO model checking!

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data HO programs
– verification of infinite-data HO programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Verification of Higher-order
Programs with Infinite Data
(integers, lists, trees, ...)

 For safety properties (e.g. reachability),
overapproximation by abstraction of infinite
data suffice.

 For other properties (e.g. termination),
combinations of problem reduction and
abstraction are required.

Verification of Higher-order
Programs with Infinite Data
(integers, lists, trees, ...)

 For safety properties (e.g. reachability),
overapproximation by abstraction of infinite
data suffice.

 For other properties (e.g. termination),
combinations of problem reduction and
abstraction are required.

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

[K.&Sato&Unno, PLDI2011]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

F(g, b)=
 if b then g(true)
 else g(∗)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

Dealing with algebraic data types
(e.g. lists)

Abstraction approach:
– automata-based [K+ POPL10][Unno+ APLAS 10]...

– pattern-based [Ong&Ramsay POPL11]

 Encoding approach [Sato+ PEPM13] :
– algebraic data as functions
 length function from indices to elements

[τ list] = int × (int → [τ])
 nil = (0, λx. fail)
 cons = λx.λ(len,f).
 (len+1, λi.if i=0 then x else f(i-1))

 hd (len,f) = f(0)
 ...

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data programs
– verification of infinite-data programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Termination Verification
 Goal: prove that a program terminates for

every input (and non-determinism)
Naive approach: abstract a program to a finite

data program, and apply HO model checking
– Problem: many terminating programs are turned into

non-terminating ones by abstraction
e.g. f(x) = if x<0 then 1 else 1+f(x-1) terminating
  f(bx<0) = if bx<0 then 1 else 1+f(*) non-terminating

Our approach [Kuwahara+, ESOP14]
(cf. [Rybalchenko&Podelski] for termination of imperative programs):
– Reduce termination to binary reachability
– Reduce binary reachability to plain reachablity

From Termination to Binary
Reachability for HO Programs

 Every non-terminating computation must contain an
infinite chain of recursive calls:
 main() →* C0[f v0]

 f vi →+ Ci+1[f vi+1] for i=0,1,2,...
 for some function f
⇒A sufficient (and necessary) condition for termination:
 Callf = { (v, w) |main() →* C[f v], f v →+ D[f w]}
 is well-founded for every function f
⇒To prove termination, it suffices to
 - pick a well-founded relation Wf ; and
 - prove Callf ⊆ Wf

 for each f

From Binary Reachability
to Plain Reachability

 Goal: check Callf ⊆ Wf
(where Callf={(v, w)|main()→*C[f v], f v→+ D[f w]})

 Approach: reduction to a plain reachability problem
by program transformation
– To each function, add an extra argument to record the

argument of an ancestor call of f.
– Assert that Wf holds when f is called

fib n =
 if n<2 then n
 else fib(n-1)+fib(n-2)
main() = fib(rand())

Wfib = {(m,n) | m>n≥0 }

fib m n =
 assert(m>n≥0);
 let m’= if * then m else n in
 if n<2 then n
 else fib m’ (n-1)+fib m’ (n-2)
main() = fib ⊥ (rand())

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data programs
– verification of infinite-data programs

• safety properties
• termination
• non-termination
• general liveness properties

 Conclusion

Verifying Non-Termination
(or Disproving Termination) of HO programs
 Goal: prove that a program is non-terminating for

some input (or for some non-deterministic choice)
– complementary to termination verification

 Unsound approach: overapproximate a program by a
finite data program, and apply HO model checking

 f(x) = if x<0 then 1 else 1+f(x-1) terminating
 f(bx<0) = if bx<0 then 1 else 1+f(*) non-terminating

 Our approach [Kuwahara+, CAV15]:
– combine over- and under-approximation
– construct a program that outputs an approximation

of the computation tree of the original program
– use HO model checking to check that the

computation tree contains infinite computation

Our Approach:
Combination of Under-/Over-approximation

¬x>0 x>0

∃

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(...
 /* case ¬x>0 */
, ...
 /* case x>0 */
)

Only one of the
branches needs to
be non-terminating

・
・
・

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(...
 /* case ¬0≤y≤x */)
, ...
)

pred: 0≤y≤x

¬x>0 x>0

∃

¬0≤y≤x

∃

Under-approximation:
case for ¬x>0∧ 0≤y≤x

is discarded

discarded

・
・
・

0≤y≤x

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(...
 /* case ¬0≤y≤x */)
, ...
)

pred: 0≤y≤x

Under-approximation:
case for ¬x>0∧ 0≤y≤x

is discarded

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x

0≤y≤x

∃ ∃

∃

・
・
・

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(/* case ¬0≤y≤x */
 ...)
, ...
)

pred: 0≤y≤x

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x

0≤y≤x

∃ ∃

∃

pred: x+y>0
・
・
・

Our Approach:
Combination of Under-/Over-approximation

y=1

x=0

y=0

x=1

y=1 y=0

・
・
・

・
・
・

・
・
・

let x=* in
let y=* in
 f(x+y)

pred: x>0

∃(/* case ¬x>0 */
 ∃(/* case ¬0≤y≤x */
 ∀(f true /*case x+y>0 */,
 f false /*case ¬x+y>0 */)
)
 , ...
)

pred: 0≤y≤x

¬x>0

¬0≤y≤x

x>0

¬0≤y≤x

0≤y≤x

∃ ∃

∃

∀

pred: x+y>0

Overapproximation:
both branches should
have an infinite path
(since we don’t know
which branch is valid)

・
・
・

∀ ∀

Non-Termination Verification:
Summary

 Underapproximate non-deterministic computation,
and check that one of the branches has a non-
terminating path

 Overapproximate deterministic computation,
and check that all the branches have non-terminating
paths

 Check them by using HO model checking

… … …

…
… …

∃
∀ ∀

… …

… …

… … ∃ ∃

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

Applications to program verification
– verification of finite-data HO programs
– verification of infinite-data HO programs

• safety properties [K+ PLDI2011],…
• Termination [Kuwahara+ ESOP 2014]
• non-termination [Kuwahara+ CAV 2015]
• general liveness properties (ongoing)

 Conclusion

Verification of LTL
properties of HO programs

 Reduce to fair termination [Vardi 91]

 Extend the termination verification method
[Kuwahara+ 14] for proving fair termination

Conclusion
 Higher-order model checking enables automated

verification of functional programs
– Various properties (including both safety and liveness

properties) can be checked by an appropriate combination
with abstraction and program transformation

 Do not worry too much about k-EXPTIME
completeness of HO model checking
– depending on inputs, recent HO model checkers can

process inputs of thousands of lines in a few seconds

	Program Verification �via Higher-Order Model Checking
	What’s This Talk About?
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Model Checking
	Higher-Order Model Checking
	Higher-Order Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Outline
	From Program Verification�to HO Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to HO Model Checking�
	From Program Verification�to HO Model Checking�
	Outline
	Verification of Higher-order Programs with Infinite Data (integers, lists, trees, ...)
	Verification of Higher-order Programs with Infinite Data (integers, lists, trees, ...)
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Dealing with algebraic data types (e.g. lists)
	Outline
	Termination Verification
	From Termination to Binary Reachability for HO Programs
	From Binary Reachability �to Plain Reachability
	Outline
	Verifying Non-Termination�(or Disproving Termination) of HO programs
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Non-Termination Verification: Summary
	Outline
	Verification of LTL properties of HO programs
	Conclusion

