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What’s This Talk About? 
A survey of applications of 

  higher-order model checking 
  (model checking of higher-order recursion schemes) 

  to: 
  automated verification of  
  higher-order functional programs 
  (e.g. “software model checker” for ML) 
 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data programs 
– verification of infinite-data programs 

• safety properties 
• termination 
• non-termination 
• general liveness properties 

 Conclusion 



Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 

Order-0 HORS  
(regular tree grammar) 
    S  → a  c  B 
    B → b  S 

S  → a   
    c  B 
B → b 
      S  
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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 
Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 

HORS 
≈ 

Call-by-name simply-typed λ-calculus 
+ 

recursion, tree constructors 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
 G:  HORS 
 A:  alternating parity tree automaton  
 (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 



Higher-Order Model Checking 

Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 
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Q1. Does every finite path end with “c”? 
        YES! 
Q2. Does “a” occur below “b”? 
        NO! 
 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06]        
(for order-k HORS)    

      p(x) 
     2 
   .. 
  2 
2 



TRecS [K. PPDP09] 
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/ 

 The first practical model checker for HORS 

 Does not immediately suffer from k-EXPTIME 
bottleneck 



HO Model Checking as Generalization of 
Finite State/Pushdown Model Checking 

order-0 ≈ finite state model checking 
order-1 ≈ pushdown model checking 
 

c b 

a 

c b 

a 

c b 

a 
infinite tree 

a 

c b 

transition system ≈ 

Does “a” 
occur 

below “b”? 
Is there a transition 

sequence in which  
“a” occurs after “b”? 



Why HO Model Checking Works? 
(despite k-EXPTIME completeness) 

 Fixed-parameter polynomial time in the size of 
grammars (under certain assumptions) 

 A “certificate” can be checked in polynomial time 
 (cf. NP problems) 

 For finite-state models, HO model checking can 
actually be faster than finite state model checking 
– HORS can compactly represent finite-state systems 

• An order-k HORS of size x can represent a system with                
states 
 
 

– k-EXPTIME algorithm for HO model checking 
≈ PTIME algorithm for finite-state model checking 
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   .. 
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Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data HO programs 
– verification of infinite-data HO programs 

• safety properties [K+ PLDI 2011]… 
• termination [Kuwahara+ ESOP 2014] 
• non-termination [Kuwahara+ CAV 2015] 
• general liveness properties (ongoing) 

 Conclusion 



From Program Verification 
to HO Model Checking 

[K. POPL 2009] 

Program  
Transformation 

Higher-order 
program 
  + 
specification 
(on events or  
output) 

HORS 
(describing all  
event sequences 

or outputs) 
+ 

Tree automaton, 
 recognizing  

valid event sequences 
or outputs 

Model 
Checking 



From Program Verification to Model Checking:  
Example 

let f(x) =  
  if ∗ then close(x)  
  else read(x); f(x) 
in 
let y = open “foo” 
in 
     f (y) 
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 Is the file “foo” 
accessed according  

to read* close? 
Is each path of the tree 

labeled by r*c? 

F x k → + (c k) (r(F x k)) 
S → F d  
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continuation parameter,  
expressing how “foo” is 

accessed after the call returns 
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From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

Sound, complete, and automatic for: 
  - A large class of higher-order programs: 
      simply-typed λ-calculus + recursion  
      + finite base types (e.g. booleans) + exceptions + ... 
  - A large class of verification problems: 
      resource usage verification (or typestate checking),  
      reachability, flow analysis, strictness analysis, ... 



From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

For finite-data HO programs,  
automated verification comes almost free  
from HO model checking! 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data HO programs 
– verification of infinite-data HO programs 

• safety properties 
• termination 
• non-termination 
• general liveness properties 

 Conclusion 



Verification of Higher-order 
Programs with Infinite Data 
(integers, lists, trees, ...) 

 For safety properties (e.g. reachability), 
overapproximation by abstraction of infinite 
data suffice. 

 For other properties (e.g. termination), 
combinations of problem reduction and 
abstraction are required. 



Verification of Higher-order 
Programs with Infinite Data 
(integers, lists, trees, ...) 

 For safety properties (e.g. reachability), 
overapproximation by abstraction of infinite 
data suffice. 

 For other properties (e.g. termination), 
combinations of problem reduction and 
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Predicate Abstraction and CEGAR  
for Higher-Order Model Checking 

[K.&Sato&Unno, PLDI2011] 

Predicate  
abstraction 

Higher-order 
functional program 

Higher-order 
boolean program 

f(g,x)=g(x+1) 

λx.x>0 

F(g, b)=  
  if b then g(true) 
  else g(∗) 
 

Higher-order 
model checking 

Error path 

property satisfied 

property not satisfied 

Program is safe! 

Real 
error 
path? 

yes 
Program is unsafe! 

New 
predicates 



Dealing with algebraic data types 
(e.g. lists) 

Abstraction approach: 
– automata-based [K+ POPL10][Unno+ APLAS 10]... 

– pattern-based [Ong&Ramsay POPL11] 

 Encoding approach [Sato+ PEPM13] : 
– algebraic data as functions 
                length  function from indices to elements 

[ τ list ] = int × (int → [τ] ) 
   nil = (0, λx. fail ) 
 cons = λx.λ(len,f). 
         (len+1, λi.if i=0 then x else f(i-1)) 

 hd (len,f) = f(0) 
  ... 
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Applications to program verification 
– verification of finite-data programs 
– verification of infinite-data programs 
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Termination Verification 
 Goal: prove that a program terminates for 

every input (and non-determinism) 
Naive approach: abstract a program to a finite 

data program, and apply HO model checking 
– Problem: many terminating programs are turned into 

non-terminating ones by abstraction 
e.g.  f(x) = if x<0 then 1 else 1+f(x-1)    terminating 
    f(bx<0) = if bx<0 then 1 else 1+f(*)    non-terminating 

Our approach [Kuwahara+, ESOP14]  
(cf. [Rybalchenko&Podelski] for termination of imperative programs): 
– Reduce termination to binary reachability 
– Reduce binary reachability to plain reachablity 



From Termination to Binary 
Reachability for HO Programs 

 Every non-terminating computation must contain an 
infinite chain of recursive calls: 
  main() →* C0[f v0] 

   f vi  →+ Ci+1[f vi+1]  for i=0,1,2,... 
   for some function f 
⇒A sufficient (and necessary) condition for termination: 
   Callf = { (v, w) |main() →* C[f v], f v →+ D[f w]} 
   is well-founded for every function f  
⇒To prove termination, it suffices to 
    - pick a well-founded relation Wf ; and 
    - prove  Callf ⊆ Wf 

     for each f 
 



From Binary Reachability  
to Plain Reachability 

 Goal: check Callf ⊆ Wf 
(where Callf={(v, w)|main()→*C[f v], f v→+ D[f w]}) 

 Approach: reduction to a plain reachability problem 
by program transformation 
– To each function, add an extra argument to record the 

argument of an ancestor call of f. 
– Assert that Wf holds when f is called 

 
fib n = 
    if n<2 then n 
    else fib(n-1)+fib(n-2) 
main() = fib(rand()) 
 
Wfib = {(m,n) | m>n≥0 } 

fib m n = 
   assert(m>n≥0); 
   let m’= if * then m else n in 
    if n<2 then n 
    else fib m’ (n-1)+fib m’ (n-2) 
main() = fib ⊥ (rand()) 
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Verifying Non-Termination 
(or Disproving Termination) of HO programs 
 Goal: prove that a program is non-terminating for 

some input (or for some non-deterministic choice) 
– complementary to termination verification 

 Unsound approach: overapproximate a program by a 
finite data program, and apply HO model checking 

  f(x) = if x<0 then 1 else 1+f(x-1)       terminating 
 f(bx<0) = if bx<0 then 1 else 1+f(*)      non-terminating 

 Our approach [Kuwahara+, CAV15]:  
– combine over- and under-approximation 
– construct a program that outputs an approximation 

of the computation tree of the original program 
– use HO model checking to check that the 

computation tree contains infinite computation  
 



Our Approach: 
Combination of Under-/Over-approximation 
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y=0 

x=1 
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・
・
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・
・
・ 

・
・
・ 

let x=* in 
let y=* in 
   f(x+y) 

pred: x>0 

∃( ...  
   /* case ¬x>0 */ 
, ... 
   /* case x>0 */ 
) 

Only one of the 
branches needs to 
be non-terminating 

・
・
・ 
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Our Approach: 
Combination of Under-/Over-approximation 

y=1 

x=0 

y=0 

x=1 

y=1 y=0 

・
・
・ 

・
・
・ 

・
・
・ 

let x=* in 
let y=* in 
   f(x+y) 

pred: x>0 

∃( /* case ¬x>0 */ 
  ∃(/* case ¬0≤y≤x */ 
   ∀( f true /*case x+y>0 */,   
     f false /*case ¬x+y>0 */)  
  ) 
  , ... 
 ) 

pred: 0≤y≤x 

¬x>0 

¬0≤y≤x 
 

x>0 

¬0≤y≤x 
 

0≤y≤x 

∃ ∃ 

∃ 

∀ 

pred: x+y>0 

Overapproximation: 
both branches should 
have an infinite path 
(since we don’t know 
which branch is valid) 

・
・
・ 

∀ ∀ 



Non-Termination Verification: 
Summary 

 Underapproximate non-deterministic computation,  
and check that one of the branches has a non-
terminating path 

 Overapproximate deterministic computation, 
and check that all the branches have non-terminating 
paths 

 Check them by using HO model checking  

… … … 

… 
… … 

∃ 
∀ ∀ 

… … 

… … 

… … ∃ ∃ 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

Applications to program verification 
– verification of finite-data HO programs 
– verification of infinite-data HO programs 

• safety properties [K+ PLDI2011],… 
• Termination [Kuwahara+ ESOP 2014] 
• non-termination [Kuwahara+ CAV 2015] 
• general liveness properties (ongoing) 

 Conclusion 



Verification of LTL 
properties of HO programs 

 Reduce to fair termination [Vardi 91] 
 

 Extend the termination verification method 
[Kuwahara+ 14] for proving fair termination  
 



Conclusion 
 Higher-order model checking enables automated 

verification of functional programs 
– Various properties (including both safety and liveness 

properties) can be checked by an appropriate combination 
with abstraction and program transformation  

 Do not worry too much about k-EXPTIME 
completeness of HO model checking 
– depending on inputs, recent HO model checkers can 

process inputs of thousands of lines in a few seconds 
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