Program Verification
via Higher-Order Model Checking

Naoki Kobayashi
University of Tokyo

What's This Talk About?

¢ A survey of applications of

higher-order model checking
(model checking of higher-order recursion schemes)

to:
automated verification of

higher-order functional programs
(e.g. "software model checker” for ML)

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ Applications to program verification
- verification of finite-data programs

- verification of infinite-data programs
- safety properties
- termination
* non-termination
- general liveness properties

¢ Conclusion

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-0 HORS 5 >a
(regular tree grammar c B
S >a c B B - ti

B>b S o2

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-0 HORS S —a
(regular tree gramm c B
S >ac B B—>b
Bo>b S o A\
c b
Sa —>a -H>a .7 clx
/N /N /\ /\\
c B ¢ b ¢ b b
| | .
S a

Q
/\
B 3
|

¢ C

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S o Ac

Ax—>a x (A (b x))
S:0, Ato—> o0

Higher-Order Recursion Scheme

(HORS)
¢ Grammar for ~-=-—-*i-= -~ =Livite tree
Tree whose paths
Order-1 HORS are labeled by
S > Ac a™? b™ ¢
Ax—>a x (A (b x) C/\a
S:0, A: 0> 0 aa
b a
S 5 Ac—> a —a - ...- Ib/\a
/\\ 7/ \\ C | b/\
c Abc)c & b T .-
/\ | B
I
c 1
C

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S > AcC

Ax—>a x (A(x)
S0, Ato—> o0

HORS N

Call-by-name simply-typed A-calculus
+

recursion, tree constructors -

Higher-Order Model Checking

(Given
G: HORS
A: alternating parity tree automaton

~

(a formula of modal p-calculus or MSO),

\does A accept Tree(6)?

J

e.g.
- Does every finite path end with "c"?
- Does "a” occur below "b"?

Higher-Order Model Checking

_ J

Order-1 HORS
S > Ac
Ax—>a x (A (b x) c/\a
Sio0, Ato—> o0 b/\a
| " Na
/Ql. Does every finite path end with “c"? ¢ |:I> N
YES! b B
Q2. Does "a” occur below "b"? (l, b
NO! tlf
Cc

Higher-Order Model Checking

Given
G.
A:

_

does A accept Tree(65)?

~

HORS
alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

J

e.g

- Does every finite path end with “c"?

- Does “a"” occur below "b"?

-

p(x)
k-EXPTIME-complete [Ong, LICS06] k_/ 2
(for order-k HORS) 2
2

J

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac. jp/~koba/trecs/

) Type—Based Model Checker for Higher-Order Recursion Scheme — Mozilla Firefox

rE R®ED FrOL EEG Tuhw-dE w-l@D AT

@ - c &y | |J http: /S kbeceitohoku.ac. jp/ " koba/trecs/ S g |_G]'
5] R34 Firefox EFETHLY 0 BEZ1-3

Ij FrantPaze — Kobalab Wiki |_] Type-Bazed Model Ghecker for. Bl | o £ Fe—@BREREIEEN 0,

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit" button. Examples are given below. Currently, our model checker only accepts deterministic Buchn
automata with a trivial acceptance condition.

¢ The first practical model checker for HORS

¢ Does not immediately suffer from k-EXPTIME
bottleneck

LLLLLLLLLLLLLLLLL

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

¢ order-0 ~ finite state model checking
¢order-1 ~ pushdown model checking

infinite tree ~ transition system

/\

¢ b @
AN \@
4 w N C b G
Does "a
| r — A
occur a Is there a transition
below "b"? equence i i
~ ! J N “as" gcuc'.?rcs a?’r\gr ‘ﬁ:’”
C '? _),

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

¢ Fixed-parameter polynomial time in the size of
grammars (under certain assumptions)

¢ A “certificate” can be checked in polynomial time
(cf. NP problems)

¢ For finite-state models, HO model checking can
actually be faster than finite state model checking

- HORS can compactly represent finite-state systems
 An order-k HORS of size x can represent a system with

X
states) ZP
)
2

- k-EXPTIME algorithm for HO model checking
~ PTIME algorithm for finite-state model checking

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

¢ Fixed-parameter polynomial time in the size of
grammars (under certain assumptions)

¢ A “certificate” can be checked in polynomial time
(cf. NP problems)

¢ For finite-state models, HO model checking can
actually be faster than finite state model checking

- HORS can compactly represent finite-state systems
» An order-k HORS of size x can represent a system with

X
states) ZP
)
2

- PTIME algorithm for HO model checking
>> PTIME algorithm for finite-state model checking

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ Applications to program verification
- verification of finite-data HO programs

- verification of infinite-data HO programs
- safety properties [K+ PLDI 2011]..
* termination [Kuwahara+ ESOP 2014]
- non-termination [Kuwahara+ CAV 2015]
- general liveness properties (ongoing)

¢ Conclusion

From Program Verification

to HO Model Checking
[K. POPL 2009)

Higher-order

program
+ —
specification

(on events or

Program
Transformation

#

Tree automaton,

output)

HORS

(describing all
event sequences
or outputs)

+

recoghizing

—

Model
Checking

valid event sequences

or outpufts

From Program Verification to Model Checking:

Example
let f(x) = Fxk—> + (c k) (r(F x k)
if * then close(x) [> S > Fd*
else read(x); f(x) /\
in IC N
!ef y = open “foo" I
¢ C rl'
f (y) S
\ #
Is the file "foo" (B

Is each path of the tree
labeled by r*c?

y . J

ccessed according | ——p
to read™ close?

é . :
continuation parameter,

expressing how “foo” is B
accessed after the call returns

N .

From Program |

ot F00) = F x kF—; * (1) (F x k)
if * then close(x) *S - +
else read(x); f(x) e
in e Transformation!
let y = open “foo ,,
in C .
I
f (y) . /+\
c r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according | —p | Is each path of the tree
to read™ close? labeled by r*c?
Y, \ y

From Program Verification to Model Checking:

Example
+
if * then S_)Fd*+
incalse PS
e Transformation!
let y = open “foo ,,
in C .
F I
(y) x AN
c r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according| —y | Is each path of the tree
to read™ close? labeled by r*c?
Y, \ y

From Program Verification to Model Checking:

Example
(c k)

close(x) [=S > Fd*x
. CPS
In o Transformation!
let y = open "foo >
in ¢ v

f (y) ‘ﬁI(/+\

N
Is the file “foo"

ccessed according | ——p

to read™ close?
Y,

c r
|

(

_

Is each path of the tree
labeled by r*c?

\

)

From Program Verification to Model Checking:

Example
(r(F x k))
F»S >Fdx
+
read(x); f(x) e
in e Transformation!
let y = open “foo ,,
in C .
I
f (y) . /+\
c r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according | —p | Is each path of the tree
to read™ close? labeled by r*c?
Y, \ y

From Program Verification
to HO Model Checking

. HORS
Higher-order (describing all
pr'o?r'am _ Program _»evem' se:]uences)_’ Mod e.|
specification (Transformation| . +omaton for Checking

infinite trees

/Sound, complete, and automatic for: \
- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types (e.g. booleans) + exceptions + ..,
- A large class of verification problems:
resource usage verification (or typestate checking),
\ reachability, flow analysis, strictness analysis, ... /

From Program Verification

to HO Model Checking

: HORS
Higher-order (describing all
pro?r'am _ Program _»evem' se:]uences)_’ Mod gl
specification (Transformation| . +omaton for Checking
infinite trees

For finite-data HO programs,

automated verification comes almost free

from HO model checking!
_

/

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ Applications to program verification
- verification of finite-data HO programs

- verification of infinite-data HO programs
- safety properties
- termination
* non-termination
- general liveness properties

¢ Conclusion

Verification of Higher-order
Programs with Infinite Data
(integers, lists, trees, ...)

¢ For safety properties (e.g. reachability),
overapproximation by abstraction of infinite
data suffice.

¢ For other properties (e.g. termination),
combinations of problem reduction and
abstraction are required.

Verification of Higher-order
Programs with Infinite Data
(integers, lists, trees, ...)

¢ For safety properties (e.g. reachability),
overapproximation by abstraction of infinite
data suffice.

¢ For other properties (e.g. termination),
combinations of problem reduction and
abstraction are required.

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

f(g,x)=g(x+1 [K.&Satod&Unno, PLDI2011]

Program is unsafe!
Higher-order
unctional progra

l

ax x>0 | Predicate
' abstraction

l

@er-or‘der
boolean program
F(g., b)=

if b then g(true)
else g(*)

Error path

property not satisfied

Higher-order
odel checking

property satisfied
Program is safe!

Dealing with algebraic data types
(e.g. lists)

¢ Abstraction approach:
- automata-based [K+ POPL10][Unno+ APLAS 10]...
- pattern-based [Ong&Ramsay POPL11]

¢ Encoding approach [sato+ PEPM13] :

- algebraic data as functions
length function from indices to elements

[© list] = int x (int — [t])
nil = (0, Ax. fail)

cons = Ax.A\(len,f).
(len+1, Ai.if i=0 then x else f(i-1))

hd (len,f) = f(0)

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ Applications to program verification
- verification of finite-data programs

- verification of infinite-data programs
- safety properties
- termination
* non-termination
- general liveness properties

¢ Conclusion

Termination Verification

¢ Goal: prove that a program terminates for
every input (and non-determinism)

¢ Naive approach: abstract a program to a finite
data program, and apply HO model checking

- Problem: many terminating programs are turned into
non-terminating ones by abstraction
e.g. f(x) = if x<0 then 1 else 1+f(x-1) terminating
2> f(b,.o) = if b,,o then 1 else 1+f(*) non-terminating
¢ Our approach [Kuwahara+, ESOP14]

(cf. [Rybalchenko&Podelski] for termination of imperative programs):
- Reduce termination to binary reachability
- Reduce binary reachability to p/ain reachablity

From Termination to Binary
Reachability for HO Programs

¢ Every non-terminating computation must contain an
infinite chain of recursive calls:

main() >* Co[f vol
fv. % C.[f v..,,] fori=0,1,2,...
for some function f
— A sufficient (and necessary) condition for termination:
Call; = { (v, w) Imain() »>* C[f v], f v >* D[f wl}
is well-founded for every function f
— To prove termination, it suffices to
- pick a well-founded relation W; ; and
- prove Call. c W,
for each f

¢ Goal: check Call; ¢ W;
(where Call.={(v, w)|main()=>*C[f v], f v—>* D[f w]})

From Binary Reachability
to Plain Reachability

¢ Approach: reduction to a plain reachability problem
by program transformation

- To each function, add an extra argument to record the
argument of an ancestor call of f.

- Assert that W; holds when f is called

.

W

o

fib n =

if <2 then n

~

else fib(n-1)+fib(n-2)

main() = fib(rand())

fib = {(m,n) | m>n>0}

/

/fib mhn= \
assert(m>n=0);
let m'= if * thenm else nin
if n<2 thenn
else fib m' (n-1)+fib m' (n-2)
main() = fib L (rand())
- /

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ Applications to program verification
- verification of finite-data programs

- verification of infinite-data programs
- safety properties
- termination
* non-termination
- general liveness properties

¢ Conclusion

Verifying Non-Termination
(or Disproving Termination) of HO programs

¢ Goal: prove that a program is non-terminating for
some input (or for some non-deterministic choice)
- complementary to termination verification
¢ Unsound approach: overapproximate a program by a
finite data program, and apply HO model checking
f(x) = if x<0 then 1 else 1+f(x-1) terminating
> f(b,.) = if b,.o then 1 else 1+f(*) non-terminating
¢ Our approach [Kuwahara+, CAV15]:
- combine over- and under-approximation

- construct a program that outputs an approximation
of the computation tree of the original program

- use HO model checking to check that the
computation tree contains infinite computation

Our Approach:

Combination of Under-/Over-approximation

- A pred: x>0]\

let x=*
let y=*

S f(><+y) y

Only one of the
branches heeds to

/ %\ be non-terminating

/* case x>0 */

' ® e o

/* case x>0 */

J

A

Our Approach:

qCT xX=*in pred: O
let y=* TR

_ f(x+y)
- o
3(/* case ~x>0 */
(... ~x>0 x>0
/* case -0<y<x */) =

L -Oslny
. Under-approximation: | |
) case for x>0/ O<y<x
\ is discarded

Our Approach:
Combination of Under-/Over-approximation

Apr‘ed x>0]\ o /\

f 0
let x=7 T% pred: O<y<x | ;\ /\
|e’ry= YOY1 Y0y1°

- P
4 ™ 3"

3(/* case ~x>0 */ S
(... x50 0
/* case -0<y<x */) 3 A

I
e 20<y<x _ Osv<
' Under-approximation: | OSIYSX —?’—X
\ is discarded

Our Approach:
Combination of Under-/Over-approximation

Apr‘ed x>0]\ e /\

-
let x="* j pred: O<y<x /\ /\)

let y="> pred: x+y>0 y =0 v 1’ Y =0 v 1

-
. Ny

3(/* case ~x>0 */ _
3(/* case -0<y<x */ -x>0 x>0
y N
, ... "OSIYS" -.Oslysx OSYSX
)

N /

Our Approach:
Combination of Under-/Over-approximation

Apred x>0]\ e /\

-
let x=* j pred: O<y<x /\ /\)

let y=*

pred: x+y>0 y0y1 YOY1
_ flx+] . -
Overapproximation: R .
both branches should .
have an infinite path
é(/* casP” (since we don't know 3
se which branch is valid)) /\
V(f true /*case x+y>0 */, ~x|>0 x|>0
f false /*case —x+y>0 */) J =
| T
) "Osy=x -Osysx Osysx
|

Q7 oo AN

Non-Termination Verification:
Summary

¢ Underapproximate non-deterministic computation,
and check that one of the branches has a non-
terminating path

¢ Overapproximate deterministic computation,
and check that all the branches have non-terminating
paths

¢ Check them by using HO model checking

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ Applications to program verification
- verification of finite-data HO programs

- verification of infinite-data HO programs
- safety properties [K+ PLDI2011],..
- Termination [Kuwahara+ ESOP 2014]
- non-termination [Kuwahara+ CAV 2015]
- general liveness properties (ongoing)

¢ Conclusion

Verification of LTL
properties of HO programs

¢ Reduce to fair termination [vardi 91]

¢ Extend the termination verification method
[Kuwahara+ 14] for proving fair termination

Conclusion

¢ Higher-order model checking enables automated
verification of functional programs

- Various properties (including both safety and liveness
properties) can be checked by an appropriate combination
with abstraction and program transformation

¢ Do not worry too much about k-EXPTIME
completeness of HO model checking

- depending on inputs, recent HO model checkers can
process inputs of thousands of lines in a few seconds

	Program Verification �via Higher-Order Model Checking
	What’s This Talk About?
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Model Checking
	Higher-Order Model Checking
	Higher-Order Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Outline
	From Program Verification�to HO Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to HO Model Checking�
	From Program Verification�to HO Model Checking�
	Outline
	Verification of Higher-order Programs with Infinite Data (integers, lists, trees, ...)
	Verification of Higher-order Programs with Infinite Data (integers, lists, trees, ...)
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Dealing with algebraic data types (e.g. lists)
	Outline
	Termination Verification
	From Termination to Binary Reachability for HO Programs
	From Binary Reachability �to Plain Reachability
	Outline
	Verifying Non-Termination�(or Disproving Termination) of HO programs
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Our Approach:�Combination of Under-/Over-approximation
	Non-Termination Verification: Summary
	Outline
	Verification of LTL properties of HO programs
	Conclusion

