Behavioural Equivalences for Co-operating Transactions

Matthew Hennessy

joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de Vries

Concur, September 2015

Outline

Co-operating Transactions what are they?

TransCCS

Behaviour

History bisimulations

Property logics

STM: Software Transactional Memory

- Database technology applied to software
- concurrency control: atomic memory transactions
- lock-free programming in multithreaded programmes
- threads run optimistically
- conflicts are automatically rolled back by system

Implementations:

- Haskell, OCaml, Csharp, Intel Haswell architecture

Issues:

- Language Design
- Implementation strategies
- Semantics what should happen when programs are run

STM: Software Transactional Memory

- Database technology applied to software
- concurrency control: atomic memory transactions
- lock-free programming in multithreaded programmes
- threads run optimistically
- conflicts are automatically rolled back by system

Implementations:

- Haskell, OCaml, Csharp, Intel Haswell architecture Issues:
- Language Design
- Implementation strategies
- Semantics what should happen when programs are run

Standard Transactions on which STM is based

- Transactions provide an abstraction for error recovery in a concurrent setting.
- Guarantees:
- Atomicity: Each transaction either runs in its entirety (commits) or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back
- Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
- Durability: After a transaction commits, its effects are permanent
- Higher levels limit concurrency
- Lower levels have implementation difficulties and precise semantic understanding

Standard Transactions on which STM is based

- Transactions provide an abstraction for error recovery in a concurrent setting.
- Guarantees:
- Atomicity: Each transaction either runs in its entirety (commits) or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back
- Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
- Durability: After a transaction commits, its effects are permanent
- Isolation:
- Higher levels limit concurrency
- Lower levels have implementation difficulties and precise semantic understanding

Communicating/Co-operating Transactions

- We drop isolation completely:
- There is no limit on the co-operation/communication between a transaction and its environment.
- There is no barrier to concurrency
- Understanding the behaviour of these new transactional systems is problematic
- Should guarantee:
- Atomicity: Each transaction will either run in its entirety or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back, together with all effects of the transaction on its environment
- Durability: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)

Communicating/Co-operating Transactions

- We drop isolation completely:
- There is no limit on the co-operation/communication between a transaction and its environment.
- There is no barrier to concurrency
- Understanding the behaviour of these new transactional systems is problematic
- Should guarantee:
- Atomicity: Each transaction will either run in its entirety or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back, together with all effects of the transaction on its environment
- Durability: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)

Programming with Co-operating Transactions

Add to your favourite programming language:

- atomic【......】
- commands commit and abort\&retry

Example: three-way rendezvous

$$
P_{1}\left\|P_{2}\right\| P_{3} \| P_{4}
$$

Problem:

- P_{i} process/transaction subject to failure
- Some coalition of three from $P_{1}, P_{2}, P_{3}, P_{4}$ should decide to collaborate
Result:
- Each P_{j} in the successful coalition outputs id of its partners on channel out ${ }_{j}$

Programming with Co-operating Transactions

Add to your favourite programming language:

- atomic【......】
- commands commit and abort\&retry

Example: three-way rendezvous

$$
P_{1}\left\|P_{2}\right\| P_{3} \| P_{4}
$$

Problem:

- P_{i} process/transaction subject to failure
- Some coalition of three from $P_{1}, P_{2}, P_{3}, P_{4}$ should decide to collaborate
Result:
- Each P_{j} in the successful coalition outputs id of its partners on channel out ${ }_{j}$

Programming with Co-operating Transactions

Add to your favourite programming language:

- atomic〔......】
- commands commit and abort\&retry

Example: three-way rendezvous

$$
P_{1}\left\|P_{2}\right\| P_{3} \| P_{4}
$$

Problem:

- P_{i} process/transaction subject to failure
- Some coalition of three from $P_{1}, P_{2}, P_{3}, P_{4}$ should decide to collaborate
Result:
- Each P_{j} in the successful coalition outputs id of its partners on channel out ${ }_{j}$

Example: three-way rendezvous

$$
P_{1}\left\|P_{2}\right\| P_{3} \| P_{4}
$$

Algorithm for P_{n} :

- Broadcast id n randomly to two arbitrary partners
- Receive ids from two random partners
- Propose coalition with these partners
- Confirm that partners are in agreement:
- if YES, commit and report
- if NO, abort\&retry

Example: three-way rendezvous

$$
P_{1}\left\|P_{2}\right\| P_{3} \| P_{4}
$$

Algorithm for P_{n} :

- Broadcast id n randomly to two arbitrary partners $b!\langle n\rangle \mid b!\langle n\rangle$
- Receive ids from two random partners $b ?(y) . b ?(z)$
- Propose coalition with these partners $s_{y}!\langle n, z\rangle . s_{z}!\langle n, y\rangle$
- Confirm that partners are in agreement:
- if YES, commit and report
- if NO, abort\&retry

Example: three-way rendezvous

$$
P_{1}\left\|P_{2}\right\| P_{3} \| P_{4}
$$

$$
\begin{aligned}
& P_{n} \Leftarrow b!\langle n\rangle|b!\langle n\rangle| \\
& \text { atomic } ¢[b ?(y) \cdot b ?(z) . \\
& s_{y}!\langle n, z\rangle \cdot s_{z}!\langle n, y\rangle . \\
& s_{n} ?\left(y_{1}, z_{1}\right) \cdot s_{n} ?\left(y_{2}, z_{2}\right) . \quad \text { proposing } \\
& \text { if }\{y, z\}=\left\{y_{1}, z_{1}\right\}=\left\{y_{2}, z_{2}\right\} \\
& \text { then commiming } \\
& \text { else abrt\&retry } \rrbracket
\end{aligned}
$$

Co-operating Transactions: Issues

- Language Design and Implementation

in Functional Programming 2013)
- Semantics what should happen when programs are run
- Topic of todays talk

Approach:

- Take a well-studied small language, with well understood semantic theory:
- extend with transactional constructs
- extend existing semantic theory

Co-operating Transactions: Issues

- Language Design and Implementation
- Transaction Synchronisers (Luchangco et al 2005)
- cJoin with commits Bruni, Melgratti, Montanari ENTCS 2004
- Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)
- Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)
- . . . Abstractions for Concurrent Consensus (Spaccasassi, Koutavas, Trends in Functional Programming 2013)
- Semantics what should happen when programs are run
- Topic of todays talk

Approach:

- Take a well-studied small language, with well understood semantic theory: CCS
- extend with transactional constructs
- extend existing semantic theory

CSS

$$
\begin{array}{rllll}
\text { Syntax: } & P, Q & ::= & \sum_{i} \mu_{i} \cdot P_{i} & \text { guarded choice } \\
& & P \mid Q & \mu_{i} \in A c t_{\tau} \\
& & & \text { parallel } & \\
& & & \text { ra. } P & \text { hiding } \\
& & \text { rec X. } & \text { recursion } &
\end{array}
$$

Minimal concurrent programming/specification language:

- Act $_{\tau}$: abstract actions supporting
communication/co-operation
- Concurrency: $P \mid Q$: independent concurrent processes
- Local resources: ν a. P : action a is local to P
- Iteration/Recursion: rec X.P
\square

CCS
$\begin{array}{rlrl}\text { Syntax: } & P, Q \quad::= & \sum \mu_{i} \cdot P_{i} & \text { guarded choice } \quad \mu_{i} \in A c t_{\tau} \\ & P \mid Q & \text { parallel } \\ & \nu a . P & \text { hiding } \\ & \operatorname{rec} X . P & \text { recursion }\end{array}$
Minimal concurrent programming/specification language:

- Act $_{\tau}$: abstract actions supporting communication/co-operation
- Concurrency: $P \mid Q$: independent concurrent processes
- Local resources: ν a. P : action a is local to P
- Iteration/Recursion: recX.P

$$
a \in A c t \quad \leftarrow \text { needs co-operation of } \rightarrow \quad \bar{a} \in A c t
$$

CCS: Executing processes: $P \rightarrow Q$ Reduction semantics:

- Co-operation/Communication:

$$
\text { (尺-сомм) } \sum \mu_{i} . P_{i}\left|\sum \nu_{j} \cdot Q_{j} \rightarrow P_{i}\right| Q_{j} \quad \text { if } \nu_{j}=\overline{\mu_{i}}
$$

- Contextual rules:

$$
\begin{aligned}
& \text { (R-PAR) } \\
& P \rightarrow P^{\prime} \\
& P\left|Q \rightarrow P^{\prime}\right| Q
\end{aligned}
$$

$$
\begin{aligned}
& \text { (R-NEw) } \\
& P \rightarrow P^{\prime} \\
& \nu \text { a. } P \rightarrow \nu \text { a. } P^{\prime}
\end{aligned}
$$

- Housekeeping rules:

$$
\text { (R-Rec) } \mathrm{rec} X . P \rightarrow P\{\operatorname{rec} X . P / X\}
$$

Transaction $\llbracket P \triangleright_{k} Q \rrbracket$
= execute P to completion (commit)

- subject to random aborts
- if aborted, roll back environmental impact of P and initiate Q

Simplification: in $\llbracket P \nabla_{k} Q \rrbracket$ bodies P and Q do not contain active transactions

Syntax: $\quad P, Q \quad:=$ CCS syntax
$\llbracket P \triangleright_{k} Q \rrbracket \quad$ running transaction named k co. P commit
$\llbracket P \triangleright Q \rrbracket \quad$ uninitiated transaction

Transaction $\llbracket P \triangleright_{k} Q \rrbracket$:

- execute P to completion (commit)
- subject to random aborts
- if aborted, roll back environmental impact of P and initiate Q

Simplification: in $\llbracket P \triangleright_{k} Q \rrbracket$ bodies P and Q do not contain active transactions

Examples

$$
\begin{array}{ll}
\llbracket a . b . c o \triangleright_{k} 0 \rrbracket & \nu p . \llbracket a . c o . p \triangleright_{k_{1}} \emptyset \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} 0 \rrbracket \\
\mu X . \llbracket a .(b . c o+c . c o) \triangleright_{k} X \rrbracket & \mu X . \llbracket a . b . c o+a . c . c o) \triangleright_{k} X \rrbracket \\
\mu X . \llbracket a . b . c o \triangleright_{k} X \rrbracket & \mu X . \llbracket a . b . c o+a . c .0) \triangleright_{k} X \rrbracket \\
\llbracket a . c o \triangleright_{k_{1}} \bullet \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket & \nu p . \bar{p}\left|\llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket b . p . c o . \bar{p} \triangleright_{k_{2}} 0 \rrbracket \\
\llbracket a . b . c o+b . a . c o \triangleright_{k} 0 \rrbracket & \nu p . \llbracket a . p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o \triangleright_{k_{2}} 0 \rrbracket
\end{array}
$$

Executing Transactions: $P \rightarrow Q$ reduction semantics

- Co-operation/Communication
- Contextual rules
- Housekeeping rules
- aborts/commits
- roll back management

Executing Transactions: $P \rightarrow Q$ reduction semantics

- Co-operation/Communication
- Contextual rules
- Housekeeping rules
- aborts/commits eg. $\llbracket P \triangleright_{k} Q \rrbracket \rightarrow Q$
- roll back management

Co-operation/Communication

Co-operation means shared destiny:
$\llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot \operatorname{co~} \triangleright_{1} a \rrbracket\left|\llbracket \overline{p_{1}} \cdot \operatorname{co} \cdot c+\overline{p_{2}} \cdot \operatorname{co} \cdot c \triangleright\right| c \rrbracket \mid \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot \operatorname{co~} \triangleright_{L_{2}} b \rrbracket$
$\llbracket a_{1} \cdot a_{2} \cdot c o \triangleright_{k} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot c o \triangleright_{l_{2}} b \rrbracket$ I_{1}, I both succeed together, or both fail
$\llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot \operatorname{co} \triangleright_{1_{1}} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket b_{1} \cdot b_{2} \cdot \operatorname{co~} \triangleright_{k} b \rrbracket$ I_{2}, I both succeed together, or both fail

Co-operation/Communication

Co-operation means shared destiny:

$$
\begin{aligned}
& \llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot \operatorname{co} \triangleright_{1} a \rrbracket\left|\llbracket \overline{p_{1}} \cdot \operatorname{co} \cdot c+\overline{p_{2}} \cdot \operatorname{co} \cdot c \triangleright\right| c \rrbracket \mid \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{2} b \rrbracket \\
& \rightarrow \\
& \llbracket a_{1} \cdot a_{2} \cdot \operatorname{co} \triangleright_{k} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{2} b \rrbracket \\
& I_{1}, l \text { both succeed together, or both fail }
\end{aligned}
$$

$\llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot c o \triangleright_{1} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{k} b \rrbracket$ l_{2}, l both succeed together, or both fail

Co-operation/Communication

Co-operation means shared destiny:

$$
\llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot \operatorname{co~} \triangleright_{1} a \rrbracket\left|\llbracket \overline{p_{1}} \cdot \operatorname{co} \cdot c+\overline{p_{2}} \cdot \operatorname{co} \cdot c \triangleright_{1} c \rrbracket\right| \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{2} b \rrbracket
$$

$$
\llbracket a_{1} \cdot a_{2} \cdot c o \triangleright_{k} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot c o \triangleright_{2} b \rrbracket
$$ I_{1}, l both succeed together, or both fail

$$
\rightarrow
$$

$$
\llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot c o \triangleright_{1} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket b_{1} \cdot b_{2} \cdot \operatorname{co~} \triangleright_{k} b \rrbracket
$$

l_{2}, l both succeed together, or both fail

Co-operation/Communication

Co-operation means shared destiny:

$$
\begin{aligned}
& \llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot \operatorname{co} \triangleright_{1} a \rrbracket\left|\llbracket \overline{p_{1}} \cdot \operatorname{co} \cdot c+\overline{p_{2}} \cdot \operatorname{co} \cdot c \triangleright\right| c \rrbracket \mid \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{2} b \rrbracket \\
& \rightarrow \\
& \llbracket a_{1} \cdot a_{2} \cdot \operatorname{co} \triangleright_{k} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket p_{2} \cdot b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{2} b \rrbracket \\
& I_{1}, l \text { both succeed together, or both fail } \\
& \rightarrow \\
& \llbracket p_{1} \cdot a_{1} \cdot a_{2} \cdot \operatorname{co} \triangleright_{1} a \rrbracket\left|\llbracket c o . c \triangleright_{k} c \rrbracket\right| \llbracket b_{1} \cdot b_{2} \cdot \operatorname{co} \triangleright_{k} b \rrbracket \\
& l_{2}, l \text { both succeed together, or both fail }
\end{aligned}
$$

- shared destiny via fresh renaming of transactions
- shared destiny via distributed transactions

Co-operation/Communication: reduction semantics

- Communication:

$$
\begin{aligned}
& \text { (R-COMM) } \\
& \begin{array}{l}
\llbracket R_{1}\left|\sum \mu_{i} P_{i} \triangleright_{1}-\rrbracket\right| \llbracket R_{2} \mid \sum \nu_{j} Q_{j} \triangleright_{2}-\rrbracket \\
\rightarrow \\
\llbracket R_{1}\left|P_{i} \triangleright_{k}-\rrbracket\right| \llbracket R_{2} \mid Q_{j} \triangleright_{k}-\rrbracket \quad \text { if } \nu_{j}=\overline{\mu_{i}}
\end{array}
\end{aligned}
$$

- Contextual rules:
- Housekeeping rules:

Co-operation/Communication: reduction semantics

- Communication:

$$
\begin{aligned}
& \text { (R-COMM) } \\
& \llbracket R_{1}\left|\sum \mu_{i} P_{i} \triangleright_{1}-\rrbracket\right| \llbracket R_{2} \mid \sum \nu_{j} Q_{j} \triangleright_{I_{2}}-\rrbracket \\
& \rightarrow \vec{~}\left\lfloor R_{1}\left|P_{i} \triangleright_{k}-\rrbracket\right| \llbracket R_{2} \mid Q_{j} \triangleright_{k}-\rrbracket \quad \text { if } \nu_{j}=\overline{\mu_{i}}\right.
\end{aligned}
$$

- Contextual rules:
- Housekeeping rules:

Example

$$
\llbracket \text { a.b.co } \triangleright_{k_{1}} Q \rrbracket\left|\llbracket \bar{b} . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket \bar{a} . c o . A \triangleright_{k_{3}} B \rrbracket
$$

Example

$$
\begin{aligned}
& \llbracket a . b . c o \triangleright_{k_{1}} 0 \rrbracket\left|\llbracket \bar{b} . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket \bar{a} . c o . A \triangleright_{k_{3}} B \rrbracket \\
\rightarrow & \llbracket b . c o \triangleright_{k} 0 \rrbracket\left|\llbracket \bar{b} . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket c o . A \triangleright_{k} B \rrbracket \\
\rightarrow & \llbracket c o \triangleright|0 \rrbracket| \llbracket c o \triangleright|0 \rrbracket| \llbracket c o . A \triangleright \mid B \rrbracket
\end{aligned}
$$

Example

$$
\begin{aligned}
& \rightarrow \llbracket b . c o \triangleright_{k} 0 \rrbracket\left|\llbracket \bar{b} . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket c o . A \triangleright_{k} B \rrbracket \\
& \rightarrow \llbracket c o \triangleright, 0 \rrbracket|\llbracket c o \triangleright, 0 \rrbracket| \llbracket c o . A \triangleright, B \rrbracket
\end{aligned}
$$

Example

$$
\begin{aligned}
& \llbracket \text { a.b.co } \triangleright_{k_{1}} \text { @ } \mid \llbracket \bar{b} . c o \triangleright_{k_{2}} \text { Q }\left|\mid \llbracket \bar{a} . c o . ~ A \triangleright_{k_{3}} B \rrbracket\right. \\
& \rightarrow \llbracket b . c o \triangleright_{k} 0 \rrbracket \mid \llbracket \text { b.co } \triangleright_{k 2} \text { Q } \mid \llbracket \llbracket c o . A \triangleright_{k} B \rrbracket \\
& \rightarrow \llbracket c o \triangleright, 0 \rrbracket|\llbracket c o \triangleright, 0 \rrbracket| \llbracket c o . A \triangleright, B \rrbracket \\
& \rightarrow 0|Q| A \quad \text { via distributed commit / }
\end{aligned}
$$

Example

$$
\begin{aligned}
& \llbracket \text { a.b.co } \triangleright_{k_{1}} \text { @ } \mid \llbracket \bar{b} . c o \triangleright_{k_{2}} \text { Q }\left|\mid \llbracket \bar{a} . c o . ~ A \triangleright_{k_{3}} B \rrbracket\right. \\
& \rightarrow \llbracket b . c o \triangleright_{k} @ \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} \text { Q } \mid \llbracket \llbracket c o . A \triangleright_{k} B \rrbracket \\
& \rightarrow \llbracket c o \triangleright, 0 \rrbracket|\llbracket c o \triangleright, 0 \rrbracket| \llbracket c o . A \triangleright, B \rrbracket \\
& \rightarrow 0|0| A \\
& \text { via distributed commit / } \\
& \rightarrow 0|Q| B \quad \text { via distributed abort / }
\end{aligned}
$$

Environment roll－back：reduction semantics

$$
\begin{aligned}
& \text { (R-ROLLBACK) } \\
& \sum \mu_{i} P_{i}\left|\llbracket R_{2}\right| \sum \nu_{j} Q_{j} \triangleright_{1}-\rrbracket \\
& \rightarrow \\
& \llbracket P_{i} \mid \text { co } \triangleright_{k} \sum \mu_{i} P_{i} \rrbracket\left|\llbracket R_{2}\right| Q_{j} \triangleright_{k}-\rrbracket \quad \text { if } \nu_{j}=\overline{\mu_{i}} \quad{ }_{k \text { fresh }}
\end{aligned}
$$

Environment roll-back: reduction semantics

$$
\begin{aligned}
& \text { (R-ROLLBACK) } \\
& \sum \mu_{i} P_{i}\left|\llbracket R_{2}\right| \sum \nu_{j} Q_{j} \triangleright_{1}-\rrbracket \\
& \rightarrow \\
& \llbracket P_{i} \mid \text { co } \triangleright_{k} \sum \mu_{i} P_{i} \rrbracket\left|\llbracket R_{2}\right| Q_{j} \triangleright_{k}-\rrbracket \quad \text { if } \nu_{j}=\overline{\mu_{i}} \quad k \text { ffesh }
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
& \mathrm{T} 1=\mu X \cdot \llbracket \overline{p_{1}} \cdot \operatorname{co} \cdot a_{1} \triangleright_{k_{1}} X \rrbracket \quad \mathrm{~T} 2=\mu X \cdot \llbracket \overline{p_{2}} \cdot \operatorname{co} \cdot a_{2} \triangleright_{k_{2}} X \rrbracket \\
& \left(p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right)|\mathrm{T} 1| \mathrm{T} 2 \\
\rightarrow & \left.\llbracket b_{1} \mid \operatorname{co~} \triangleright_{k} p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right) \rrbracket\left|\llbracket \operatorname{co} \cdot a_{1} \triangleright_{k} \mathrm{~T} 1 \rrbracket\right| \mathrm{T} 2 & \\
\rightarrow \quad & \left(p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right)|\mathrm{T} 1| \mathrm{T} 2 \quad \text { using } p_{1} \\
\rightarrow & \left.\llbracket b_{2} \mid \operatorname{co~} \triangleright_{k} p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right) \rrbracket|\mathrm{T} 1| \llbracket c o \cdot a_{2} \triangleright_{k} \mathrm{~T} 2 \rrbracket & & \text { using } p_{2}
\end{array}
$$

Example

$$
\begin{aligned}
& \mathrm{T} 1=\mu X \cdot \llbracket \overline{p_{1}} \cdot \mathrm{co} \cdot a_{1} \triangleright_{k_{1}} X \rrbracket \quad \mathrm{~T} 2=\mu X \cdot \llbracket \overline{p_{2}} \cdot \mathrm{co} \cdot \mathrm{a}_{2} \triangleright_{k_{2}} X \rrbracket \\
& \left(p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right)|\mathrm{T} 1| \mathrm{T} 2 \\
\rightarrow \quad & \left.\llbracket b_{1} \mid \operatorname{co} \triangleright_{k} p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right) \rrbracket\left|\llbracket \mathrm{co} \cdot a_{1} \triangleright_{k} \mathrm{~T} 1 \rrbracket\right| \mathrm{T} 2 \\
\rightarrow & \left(p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right)|\mathrm{T} 1| \mathrm{T} 2 \quad \text { abort } k \\
\rightarrow \quad & \left.\llbracket b_{2} \mid \mathrm{co} \triangleright_{k} p_{1} \cdot b_{1}+p_{2} \cdot b_{2}\right) \rrbracket|\mathrm{T} 1| \llbracket \mathrm{co} \cdot a_{2} \triangleright_{k} \mathrm{~T} 2 \rrbracket
\end{aligned}
$$

Environment roll-back:

- Original environment ($p_{1} \cdot b_{1}+p_{2} \cdot b_{2}$) re-instated
- reduction semantics supports consistency

Behavioural equivalences

What transactions should be behavourally indistinguishable?

$$
\begin{aligned}
& \mu X . \llbracket P \mid \operatorname{co~} \triangleright_{k} X \rrbracket \stackrel{?}{\sim}_{\text {behav }} P \\
& \mu X . \llbracket \text { a.b.co } \triangleright_{k} X \rrbracket \stackrel{?}{\overbrace{\text { behav }}} \quad \mu X . \llbracket \text { a.b.co }+ \text { a.c.0 }) \triangleright_{k} X \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \text { a.p.co. } \bar{p} \triangleright_{k_{1}} \oslash \rrbracket \mid \llbracket b . p . c o . \bar{p} \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Example:

Behavioural equivalences

What transactions should be behavourally indistinguishable?

$$
\begin{aligned}
& \mu X . \llbracket P \mid \operatorname{co~} \triangleright_{k} X \rrbracket \stackrel{?}{\sim}_{\text {behav }} P \\
& \mu X . \llbracket \text { a.b.co } \triangleright_{k} X \rrbracket \stackrel{?}{\overbrace{\text { behav }}} \quad \mu X . \llbracket \text { a.b.co }+ \text { a.c.0 }) \triangleright_{k} X \rrbracket \\
& \llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket|\llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket \underset{\overbrace{\text { behav }}}{\stackrel{?}{\sim}} \quad \nu . \bar{p}| \\
& \llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} \oslash \rrbracket \mid \llbracket b . p . c o . \bar{p} \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Example:
The well known equivalence: trace equivalence

$$
\approx_{\mathrm{tr}}
$$

CCS: Action semantics

CCS doing actions:
$P \stackrel{a}{\Rightarrow} Q$ whenever $P|\bar{a} . \mathrm{m} \rightarrow Q| ल$

CCS doing sequences:
$P \stackrel{s}{\Rightarrow} Q, s \in A c t^{\star}$, whenever $P|\bar{s} . \mathrm{m} \rightarrow Q| ल$

CCS Trace equivalence:
$\operatorname{TR}(P)=\left\{s \in A_{c t^{\star}} \mid P \stackrel{s}{\Rightarrow}\right\}$

$$
P \approx_{\mathrm{tr}} Q \text { whenever } \operatorname{TR}(P)=\operatorname{TR}(Q)
$$

TCCS m : committed Action semantics
Transactions doing committed actions:
$P \stackrel{a}{\Longrightarrow} Q$ whenever $P|\overline{\mathrm{a}} . \mathrm{m} \rightarrow Q| \mathrm{M}$
m fresh

Transaction doing committed sequences:
$P \stackrel{s}{\Longleftrightarrow} Q, s \in A c t^{\star}$, whenever $P|\bar{s} . \mathrm{m} \rightarrow Q| \mathrm{m}$
cTrace equivalence for transactions:
$\operatorname{cTR}(P)=\left\{s \in A c t^{\star} \mid P \stackrel{s}{\Longleftrightarrow}\right\}$
$P \approx_{\mathrm{ctr}} Q$ whenever $\operatorname{cTR}(P)=\operatorname{cTR}(Q)$

Examples: trace equivalence

$$
P=\llbracket a . b . c o \triangleright_{k} \mathbb{Q} \rrbracket \quad Q=\nu p . \llbracket \text { a.co. } p \triangleright_{k_{1}} \mathbb{Q} \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} \mathbb{Q} \rrbracket
$$

$P \not \nsim \mathrm{ctr} Q:$
$\Rightarrow \operatorname{cTR}(P)=\{\varepsilon, a b\}$

- $\operatorname{cTR}(Q)=\{\varepsilon, a, a b\}$

- $\operatorname{cTR}(R)=\{\varepsilon, a b\}$
- $\operatorname{cTR}(S)=\{\varepsilon, a b\}$

Examples: trace equivalence

$$
P=\llbracket \text { a.b.co } \triangleright_{k} 0 \rrbracket \quad Q=\nu p . \llbracket \text { a.co. } p \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} 0 \rrbracket
$$

$P \not \approx \mathrm{ctr} Q:$

- $\operatorname{cTR}(P)=\{\varepsilon, a b\}$
- $\operatorname{cTR}(Q)=\{\varepsilon, a, a b\}$
- $\operatorname{cTR}(R)=\{\varepsilon, a b\}$
- $\operatorname{cTR}(S)=\{\varepsilon, a b\}$

Examples: trace equivalence

$$
\begin{aligned}
& P=\llbracket a . b . c o \triangleright_{k} 0 \rrbracket \quad Q=\nu p . \llbracket a . c o . p \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} 0 \rrbracket \\
& P \not \approx_{\mathrm{ctr}} Q \text { : } \\
& \text { - } \operatorname{cTR}(P)=\{\varepsilon, a b\} \\
& \text { - } \operatorname{cTR}(Q)=\{\varepsilon, a, a b\} \\
& \left.R=\mu X . \llbracket a .(b . c o+c .0) \triangleright_{k} X \rrbracket \quad S=\mu X . \llbracket a . b . c o+a . c .0\right) \triangleright_{k} X \rrbracket \\
& R \approx_{\mathrm{ctr}} S: \\
& \text { - } \operatorname{cTR}(R)=\{\varepsilon, a b\} \\
& \text { - } \operatorname{cTR}(S)=\{\varepsilon, a b\}
\end{aligned}
$$

Examples: trace equivalence

$$
\begin{aligned}
& P=\llbracket a . b . c o \triangleright_{k} 0 \rrbracket \quad Q=\nu p . \llbracket a . c o . p \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} 0 \rrbracket \\
& P \not \approx_{\mathrm{ctr}} Q \text { : } \\
& \text { - } \operatorname{cTR}(P)=\{\varepsilon, a b\} \\
& \text { - } \operatorname{cTR}(Q)=\{\varepsilon, a, a b\} \\
& \left.R=\mu X . \llbracket a .(b . c o+c .0) \triangleright_{k} X \rrbracket \quad S=\mu X . \llbracket a . b . c o+a . c .0\right) \triangleright_{k} X \rrbracket \\
& R \approx_{\text {ctr }} S: \\
& \text { - } \operatorname{cTR}(R)=\{\varepsilon, a b\} \\
& \text { - } \operatorname{cTR}(S)=\{\varepsilon, a b\}
\end{aligned}
$$

Justifying Trace equivalence: Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

- A safety property can be formulated as a safety test $T^{(๓}$ which signals on fresh channel m when it detects the bad behaviour

Definition (Passing tests)
P fails safety test $T^{ल}$ whenever $P\left|T^{ल} \rightarrow^{*} P^{\prime}\right| ल$
Example tests:

- $\mu X .(a . X+$ err.m) can not perform err while performing any sequence of as
$>T^{ल}=$ err.ल $\bar{a} \cdot \bar{b}$ can not perform err when a followed by b is offered.
Examples:
- $\left.\mu X . \llbracket a . b . c o \mid \overline{\operatorname{err}} \triangleright_{k} X\right]$ fails safety test $T^{\text {m }}$
- $\mu X . \llbracket a . b . c o+\overline{e r r} \triangleright_{k} X \rrbracket$ passes safety test $T^{(ल}$

Justifying Trace equivalence: Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

- A safety property can be formulated as a safety test $T^{(๓}$ which signals on fresh channel m when it detects the bad behaviour

Definition (Passing tests)
P fails safety test $T^{ल}$ whenever $P\left|T^{ल} \rightarrow^{*} P^{\prime}\right| ल$
Example tests:

- $\mu X .(a . X+$ err.m) can not pefform err while performing any sequence of as
- $T^{\text {ल }}=$ err.ल $\mid \bar{a} \cdot \bar{b}$ can not perform err when a followed by b is offered.

Examples:

- $\mu X . \llbracket a . b . c o \mid \overline{e r r} \triangleright_{k} X \rrbracket$ fails safety test $T^{ल}$
$-\mu X\left\|a . b . c o+\overline{\operatorname{err}} \nabla_{k} X\right\|$ passes safety test $T^{(ल}$

Justifying Trace equivalence: Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

- A safety property can be formulated as a safety test $T^{(๓}$ which signals on fresh channel m when it detects the bad behaviour

Definition (Passing tests)
P fails safety test $T^{ल}$ whenever $P\left|T^{ल} \rightarrow^{*} P^{\prime}\right| ल$
Example tests:

- $\mu X .(a . X+$ err.m) can not perform err while performing any sequence of as
- $T^{\text {© }}=$ err.ल $\mid \bar{a} \cdot \bar{b}$ can not perform err when a followed by b is offered.

Examples:

- $\mu X . \llbracket a . b . c o \mid \overline{e r r} \triangleright_{k} X \rrbracket$ fails safety test T^{m}
- $\mu X . \llbracket a . b . c o+\overline{e r r} \triangleright_{k} X \rrbracket$ passes safety test T^{m}

Justifying Traces

In CCS:

$P \approx_{\mathrm{tr}} Q$ if and only for every T^{m},
P passes safety test $T^{ल} \Longleftrightarrow Q$ passes safety test $T^{ल}$

In TCCS ${ }^{m}$: conjecture

$P \approx_{\mathrm{tr}} Q$ if and only for every T^{m},
P passes safety test $T^{ल} \Longleftrightarrow Q$ passes safety test $T^{ल}$
See: Concur 2010 for proof in different language of transactions.

Justifying Traces

In CCS:
$P \approx_{\mathrm{tr}} Q$ if and only for every T^{m},
P passes safety test $T^{\varrho} \Longleftrightarrow Q$ passes safety test $T^{ल}$

In TCCS m : conjecture
$P \approx_{\mathrm{tr}} Q$ if and only for ever T^{o},
P passes safety test $T^{\omega} \Longleftrightarrow Q$ passes safety test T^{ω}
See: Concur 2010 for proof in different language of transactions.

Trace equivalence insensitive to presence of deadlocks
In CCS: a.b. $0 \approx_{\mathrm{tr}}$ a.b. $0+a .0$
In TCCS ${ }^{m}$: What constitutes a deadlock?
In TCCS ${ }^{m}$: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences:

- Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

The problem with traces

Trace equivalence insensitive to presence of deadlocks
In CCS: a.b. $0 \approx_{\mathrm{tr}}$ a.b. $0+$ a. 0
In TCCS ${ }^{m}$: What constitutes a deadlock?
In TCCS ${ }^{m}$: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive to deadlocks

- Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference
$\operatorname{In} C C S:$ a.b. $0 \approx_{\mathrm{tr}}$ a.b. $0+$ a. 0
In TCCS ${ }^{m}$: What constitutes a deadlock?
In TCCS ${ }^{m}$: What does insensitive to deadlock mean?
Lots of other possible behavioural equivalences: sensitive to deadlocks

- Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

CCS Bisimulations $\quad P \approx_{\text {bisim }} Q$

The largest relation over processes such that, if $P \approx_{\text {bisim }} Q$ then, for every $\mu \in$ Act $_{\tau}$

- $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ implies $Q \stackrel{\mu}{\Rightarrow} Q^{\prime}$ such that $P^{\prime} \approx_{\text {bisim }} Q^{\prime}$
- $Q \stackrel{\mu}{\Rightarrow} Q^{\prime}$ implies $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ such that $P^{\prime} \approx_{\text {bisim }} Q^{\prime}$ symmetrically

Trace version:
The largest relation over processes such that, if $P \approx_{\text {bisim }} Q$ then, for every $s \in A c t^{*}$,

```
* P\stackrel{5}{=>}\mp@subsup{P}{}{\prime}\mathrm{ implies }Q\stackrel{5}{=>}\mp@subsup{Q}{}{\prime}\mathrm{ such that }\mp@subsup{P}{}{\prime}\mp@subsup{\approx}{\mathrm{ bisim }}{}\mp@subsup{Q}{}{\prime}
- Q \stackrel{s}{=>}\mp@subsup{Q}{}{\prime}\mathrm{ implies }P\stackrel{s}{=>}\mp@subsup{P}{}{\prime}\mathrm{ such that }\mp@subsup{P}{}{\prime}\mp@subsup{\approx}{\mathrm{ bisim }}{}\mp@subsup{Q}{}{\prime}\mathrm{ symmetrically}
```


CCS Bisimulations $\quad P \approx_{\text {bisim }} Q$

The largest relation over processes such that, if $P \approx_{\text {bisim }} Q$ then, for every $\mu \in$ Act $_{\tau}$

- $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ implies $Q \stackrel{\mu}{\Rightarrow} Q^{\prime}$ such that $P^{\prime} \approx_{\text {bisim }} Q^{\prime}$
- $Q \stackrel{\mu}{\Rightarrow} Q^{\prime}$ implies $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ such that $P^{\prime} \approx_{\text {bisim }} Q^{\prime}{ }_{\text {symmetrically }}$

Trace version:

The largest relation over processes such that, if $P \approx_{\text {bisim }} Q$ then, for every $s \in A c t^{*}$,

- $P \stackrel{s}{\Rightarrow} P^{\prime}$ implies $Q \stackrel{\text { s }}{\Rightarrow} Q^{\prime}$ such that $P^{\prime} \approx_{\text {bisim }} Q^{\prime}$
- $Q \stackrel{s}{\Rightarrow} Q^{\prime}$ implies $P \stackrel{s}{\Rightarrow} P^{\prime}$ such that $P^{\prime} \approx_{\text {bisim }} Q^{\prime}{ }_{\text {symmetrically }}$

TCCS m : Bisimulations a suggestion

The largest relation over transactions such that, if $P \approx_{\text {cbisim }} Q$ then, for $s \in A c t^{*}$,

- $P \stackrel{s}{\Longleftrightarrow} P^{\prime}$ implies $Q \stackrel{s}{\Longleftrightarrow} Q^{\prime}$ such that $P^{\prime} \approx_{\text {cbisim }} Q^{\prime}$
- $Q \stackrel{s}{\Longleftrightarrow} Q^{\prime}$ implies $P \stackrel{s}{\Longleftrightarrow} P^{\prime}$ such that $P^{\prime} \approx_{\text {cbisim }} Q^{\prime}$

Question:

TCCS ${ }^{m}$: Bisimulations
 a suggestion

The largest relation over transactions such that, if $P \approx_{\text {cbisim }} Q$ then, for $s \in A c t^{*}$,

- $P \stackrel{s}{\Longleftrightarrow} P^{\prime}$ implies $Q \stackrel{s}{\Longleftrightarrow} Q^{\prime}$ such that $P^{\prime} \approx_{\text {cbisim }} Q^{\prime}$
- $Q \stackrel{s}{\Longleftrightarrow} Q^{\prime}$ implies $P \stackrel{s}{\longmapsto} P^{\prime}$ such that $P^{\prime} \approx_{\text {cbisim }} Q^{\prime}$

Suspicions:

- In CCS: $a .(b .0+c .0) \not \chi_{\text {bisim }}$ a.b.0 + a.c. 0
- In TCCS ${ }^{m}$:
$\left.\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \approx_{c b i s i m} \llbracket a . b . c o+a . c . c o\right) \triangleright_{k} 0 \rrbracket$

TCCS ${ }^{m}$: Bisimulations
 a suggestion

The largest relation over transactions such that, if $P \approx_{\text {cbisim }} Q$ then, for $s \in A c t^{*}$,

- $P \stackrel{s}{\Longleftrightarrow} P^{\prime}$ implies $Q \stackrel{s}{\Longleftrightarrow} Q^{\prime}$ such that $P^{\prime} \approx_{\text {cbisim }} Q^{\prime}$
- $Q \stackrel{s}{\Longleftrightarrow} Q^{\prime}$ implies $P \stackrel{s}{\Longleftrightarrow} P^{\prime}$ such that $P^{\prime} \approx_{\text {cbisim }} Q^{\prime}$

Suspicions:

- In CCS: $a .(b .0+c .0) \not \nsim_{\text {bisim }}$ a.b.0 + a.c. 0
- In TCCS ${ }^{m}$:

$$
\left.\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \approx_{c b i s i m} \llbracket a . b . c o+a . c . c o\right) \triangleright_{k} 0 \rrbracket
$$

Question:

Should $\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \stackrel{?}{\approx}_{\text {behav }} \llbracket a . b . c o+a . c . c o \triangleright_{k} 0 \rrbracket$

Justifying Bisimulations

Robin Milner, Davide Sangiorgi: Barbed Bisimulation. ICALP 1992

We propose in this paper barbed bisimulation as a tool to describe bisimulation-based equivalence uniformly for any calculi possessing
(a) a reduction relation
(b) a convergency predicate which simply detects the possibility of performing some observable action.
This opens interesting perspectives for the adoption of a reduction semantics in process algebras. As a test-case we prove that strong bisimulation of CCS coincides with the congruence induced by barbed bisimulation.

Justifying Bisimulations: Reduction closure

Requirement: A reduction relation $P \rightarrow Q$ between processes.
Definition:
A relation $P \approx_{\text {behav }} Q$ is reduction-closed if, whenever $P \approx_{\text {behav }} Q$,
(i) $P \rightarrow^{*} P^{\prime}$ implies $Q \rightarrow^{*} Q^{\prime}$ such that $P^{\prime} \approx_{\text {behav }} Q^{\prime}$
(ii) $Q \rightarrow^{*} Q^{\prime}$ implies $P \rightarrow^{*} P^{\prime}$ such that $P^{\prime} \approx_{\text {behav }} Q^{\prime}$

Intuition:
P and Q must maintain the equivalent choice possibilities

Justifying Bisimulations: Contextual equivalence : (varation on m \& s)

Requirements:
(i) A collection of observation relations on processes: e.g. $P \Downarrow a$ P can do the action a
(ii) a parallel operator on processes: e.g. $P \mid Q$

Definition: (Honda Yoshida)
$P \approx{ }_{c x t} Q$ is the largest relation which is

- preserved by parallel composition
- reduction closed
- preserves observations.

Remark:
$P \approx_{c x t} Q$ is definable for many languages

Justifying Bisimulations: Contextual equivalence : (varaition on m \& s)

Requirements:
(i) A collection of observation relations on processes: e.g. $P \Downarrow a$ P can do the action a
(ii) a parallel operator on processes: e.g. $P \mid Q$

Definition: (Honda Yoshida)
$P \approx_{c x t} Q$ is the largest relation which is

- preserved by parallel composition
- reduction closed
- preserves observations.

Remark:
$P \approx_{c \times t} Q$ is definable for many languages

CCS: Justifying Bisimulations

Theorem: $\ln C C S P \approx_{\mathrm{cxt}} Q \Longleftrightarrow P \approx_{\text {bisim }} Q$

Significance:

- Bisimulations provide a sound and complete proof method for contextual equivalence in CCS
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:
In TCCS ${ }^{m}$. $P \approx_{\text {cbisim }} Q$ does NOT imply $P \approx{ }_{c x t} Q$ cbisimulations are unsound
Counter-example:
$\left.-\llbracket a \cdot(b \cdot c o+c \cdot c o) \triangleright_{k} 0\right] \approx$ cbisim $\left.[a \cdot b \cdot c o+a \cdot c \cdot c o) \triangleright_{k} 0\right]$

- $\llbracket a .(b . c o+c . c o) \triangleright_{k}$

CCS: Justifying Bisimulations

Theorem: $\operatorname{In} C C S P \approx_{c x t} Q \Longleftrightarrow P \approx_{\text {bisim }} Q$
Significance:

- Bisimulations provide a sound and complete proof method for contextual equivalence in CCS
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:

In TCCS ${ }^{m}: P \approx_{\text {cbisim }} Q$ does NOT imply $P \approx{ }_{c x t} Q$ cbisimulations are unsound
Counter-example:

CCS: Justifying Bisimulations

Theorem: $\ln \operatorname{CCS} P \approx_{\mathrm{cxt}} Q \Longleftrightarrow P \approx_{\text {bisim }} Q$
Significance:

- Bisimulations provide a sound and complete proof method for contextual equivalence in CCS
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:
In TCCS $^{m}: ~ P \approx_{\text {cbisim }} Q$ does NOT imply $P \approx_{\mathrm{cxt}} Q$ cbisimulations are unsound
Counter-example

CCS: Justifying Bisimulations

Theorem: $\ln C C S \quad P \approx_{\mathrm{cxt}} Q \Longleftrightarrow P \approx_{\text {bisim }} Q$

Significance:

- Bisimulations provide a sound and complete proof method for contextual equivalence in CCS
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:
In CCCS $^{m}: P \approx_{\text {cbisim }} Q$ does NOT imply $P \approx_{c x t} Q$ cbisimulations are unsound
Counter-example:

- $\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \approx_{\text {cbisim }} \llbracket a . b . c o+$ a.c.co $) \triangleright_{k} 0 \rrbracket$
- 【a.(b.co $+c . c o) \triangleright_{k} 0 \rrbracket \not \approx c x t \llbracket a . b . c o+a . c . c o \triangleright_{k} 0 \rrbracket$

The inconvenience

$$
\begin{aligned}
P & =\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \quad Q=\llbracket a . b . c o+a . c . c o \triangleright_{k} 0 \rrbracket \\
& -P \not \nsim c x t^{Q}
\end{aligned}
$$

- because

Moral:

Internal tentative decision states matter

The inconvenience

$$
\begin{aligned}
P & =\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \quad Q=\llbracket a . b . c o+a . c . c o \triangleright_{k} 0 \rrbracket \\
& \text { - } P \not \overbrace{c x t} Q \\
& \text { - because } P\left|\llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \not \approx c x t Q\right| \llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \\
& \text { because }
\end{aligned}
$$

The inconvenience

$$
\begin{aligned}
P= & \llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \quad Q=\llbracket a . b . c o+a . c . c o \triangleright_{k} 0 \rrbracket \\
- & P \not \overbrace{c x t} Q \\
- & \text { because } P|\llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \not \overbrace{c x t} Q| \llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \\
& \text { because } \\
& \bullet P\left|\llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \rightarrow \llbracket b . c o+c . c o \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket c o \triangleright_{k_{1}} 0 \rrbracket \\
& -Q \mid \llbracket \bar{a} . c \circ \triangleright_{k} 0 \rrbracket \rightarrow^{*} ?
\end{aligned}
$$

The inconvenience

$$
P=\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \quad Q=\llbracket a . b . c o+a . c . c \circ \triangleright_{k} 0 \rrbracket
$$

- $P \not \approx_{c x t} Q$
- because $P\left|\llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \not \approx{ }_{c x t} Q\right| \llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket$
- because
$-P\left|\llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \rightarrow \llbracket b . c o+c . c o \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket c o \triangleright_{k_{1}} 0 \rrbracket$
- $Q \mid \llbracket \bar{a} . c o \triangleright_{k} 0 \rrbracket \rightarrow^{*}$?

Moral:
Internal tentative decision states matter

$$
\text { remember CCS: a. }(b . \theta+c . \theta) \not \nsim c x t^{a . b . \theta}+\text { a.c. } \theta
$$

TCCS ${ }^{m}$ Challenge

Find a notion of bisimulation which characterises contextual equivalence $\approx_{\text {cxt }}$

Obstacles:

- some tentative states are relevant:

- some tentative states are not relevant:

History is important:

- record tentative actions
- later decide which actions were really relevant

TCCS ${ }^{m}$ Challenge

Find a notion of bisimulation which characterises contextual equivalence $\approx_{c x t}$

Obstacles:

- some tentative states are relevant:
$\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \not \overbrace{c x t} \llbracket a . b . c o+$ a.c.co $\triangleright_{k} 0 \rrbracket$
- some tentative states are not relevant:

$$
\left.\llbracket a .(b . c o+c .0) \triangleright_{k} 0 \rrbracket \approx_{c x t} \llbracket a . b . c o+a . c .0\right) \triangleright_{k} 0 \rrbracket
$$

- record tentative actions

TCCS ${ }^{m}$ Challenge

Find a notion of bisimulation which characterises contextual equivalence $\approx_{c x t}$

Obstacles:

- some tentative states are relevant:

$$
\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \not \overbrace{c x t} \llbracket a . b . c o+a . c . c o \triangleright_{k} 0 \rrbracket
$$

- some tentative states are not relevant:

$$
\left.\llbracket a .(b . c o+c . \theta) \triangleright_{k} \theta \rrbracket \approx_{c x t} \llbracket a . b . c o+a . c . \theta\right) \triangleright_{k} \otimes \rrbracket
$$

History is important:

- record tentative actions
- later decide which actions were really relevant

History actions

- Tentative external action: $\mathcal{R} \triangleright P \xrightarrow{k(a)} \mathcal{R}^{\prime}, k(a) \triangleright P^{\prime}$
- Internal action: $\mathcal{R} \triangleright P \xrightarrow{\tau} \mathcal{R}^{\prime} \triangleright P^{\prime}$
- housekeeping
- communication
- transaction commit/abort
- records tentative external actions taken
- records retrospectively if tentative actions become
- permanent
- or aborted

History actions

- Tentative external action: $\mathcal{R} \triangleright P \xrightarrow{k(a)} \mathcal{R}^{\prime}, k(a) \triangleright P^{\prime}$
- Internal action: $\mathcal{R} \triangleright P \xrightarrow{\tau} \mathcal{R}^{\prime} \triangleright P^{\prime}$
- housekeeping
- communication
- transaction commit/abort
$\mathcal{R}:$
- records tentative external actions taken
- records retrospectively if tentative actions become
- permanent
- or aborted

History actions

- Tentative external action: $\mathcal{R} \triangleright P \xrightarrow{k(a)} \mathcal{R}^{\prime}, k(a) \triangleright P^{\prime}$
- Internal action: $\mathcal{R} \triangleright P \xrightarrow{\tau} \mathcal{R}^{\prime} \triangleright P^{\prime}$
- housekeeping
- communication
- transaction commit/abort
$\mathcal{R}:$
- records tentative external actions taken
- records retrospectively if tentative actions become
- permanent
- or aborted

Example

$$
\varepsilon \triangleright \llbracket \text { a.p.co } \triangleright_{1} \mathbb{Q} \rrbracket\left|\llbracket b . q . c o \triangleright_{12} \mathbb{Q} \rrbracket\right| \llbracket c . \bar{q} \cdot \bar{p} . \operatorname{co} \triangleright_{/ 3} 0 \rrbracket
$$

Example

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket \text { a.p.co } \triangleright_{1} \emptyset \rrbracket \mid \llbracket b . q . c o \triangleright_{12} \text { @ } \mid \llbracket\left[c . \bar{q} . \bar{p} . c o \triangleright_{13} 0 \rrbracket\right. \\
& \xrightarrow{k_{1}(a)} \\
& \text { fresh } k_{1} \\
& k_{1}(a) \triangleright \llbracket p . c o \triangleright_{k_{1}} \text { © } \rrbracket \mid \llbracket b . q . c o \triangleright_{12} \text { © }\left|\mid \llbracket c . \bar{q} . \bar{p} . c o \triangleright_{3} \text { Q } \rrbracket\right.
\end{aligned}
$$

Example

$$
k_{1}(a) k_{2}(b) \triangleright \llbracket p . c o \triangleright_{k_{1}} 0 \rrbracket\left|\llbracket q . c o \triangleright_{k_{2}} 0 \rrbracket\right| \mid \llbracket c . \bar{q} \cdot \bar{p} . c o \triangleright_{/ 3} \mathbb{Q} \rrbracket
$$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket \text { a.p.co } \triangleright_{1} 0 \rrbracket \mid \llbracket \text { b.q.co } \triangleright_{12} 0 \rrbracket \left\lvert\, \llbracket c .\left[\begin{array}{lll}
\text { q. } \\
\text {.p.co } \\
\triangleright_{13} & 0 \rrbracket
\end{array}\right.\right. \\
& \xrightarrow{k_{1}(a)} \\
& \text { fresh } k_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{k_{2}(b)} \\
& \text { fresh } k_{2}
\end{aligned}
$$

Example

$$
k_{1}(a) k_{2}(b) \triangleright \llbracket p . \operatorname{co~} \triangleright_{k_{1}} 0 \rrbracket\left|\llbracket q . \operatorname{co~} \triangleright_{k_{2}} 0 \rrbracket\right| \mid \llbracket c . \bar{q} \cdot \bar{p} . \operatorname{co} \triangleright_{13} \mathbb{Q} \rrbracket
$$

$$
\xrightarrow{k_{3}(c)}
$$

$$
\text { fresh } k_{3}
$$

$k_{1}(a) k_{2}(b) k_{3}(c) \triangleright \llbracket p . c o \triangleright_{k_{1}} \oslash \rrbracket\left|\llbracket q . \operatorname{co~} \triangleright_{k_{2}} \oslash \rrbracket\right| \llbracket \bar{q} . \bar{p} . c o \triangleright_{k_{3}} 0 \rrbracket$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket \text { a.p.co } \triangleright_{1} 0 \rrbracket \mid \llbracket \text { b.q.co } \triangleright_{12} 0 \rrbracket \mid \llbracket \subset . \bar{q} . \bar{p} . c o \triangleright_{/ 3} 0 \rrbracket \\
& \xrightarrow{k_{1}(a)} \quad \text { fresh } k_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{k_{2}(b)} \\
& \text { fresh } k_{2}
\end{aligned}
$$

Example

$$
k_{1}(a) k_{2}(b) \triangleright \llbracket p . c \circ \triangleright_{k_{1}} 0 \rrbracket\left|\llbracket q . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket c . \bar{q} \cdot \bar{p} . \operatorname{co} \triangleright_{/ 3} \mathbb{Q} \rrbracket
$$

$$
\xrightarrow{k_{3}(c)}
$$

$$
\xrightarrow{\tau}
$$

communication
$k_{1}(a) k_{4}(b) k_{4}(c) \triangleright \llbracket p . c o \triangleright_{k_{1}}$ Q $\mid \llbracket \subset \subset \triangleright_{k_{4}}$ Q $\left|\mid \llbracket \bar{p} c o \triangleright_{k_{4}}\right.$ Q \rrbracket
$k_{5}(a) k_{5}(b) k_{5}(c) \triangleright \llbracket c o \triangleright_{k_{5}}$ © $\rrbracket \mid \llbracket c o \triangleright_{k_{5}}$ Q $\rrbracket \mid \llbracket c o \triangleright_{k_{5}}$ On

$$
\begin{aligned}
& \xrightarrow{k_{1}(a)} \\
& \text { fresh } k_{1} \\
& k_{1}(a) \triangleright \llbracket p . c o \triangleright_{k_{1}} \text { Q }\left|\left|\llbracket b . q . c o \triangleright_{12} 0 \rrbracket\right| \llbracket c . \bar{q} . \bar{p} . c o \triangleright_{13} 0 \rrbracket\right. \\
& \xrightarrow{k_{2}(b)} \\
& \text { fresh } k_{2}
\end{aligned}
$$

Example

$$
k_{1}(a) k_{2}(b) \triangleright \llbracket p . c \circ \triangleright_{k_{1}} 0 \rrbracket\left|\llbracket q . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket c . \bar{q} \cdot \bar{p} . \operatorname{co} \triangleright_{/ 3} \mathbb{Q} \rrbracket
$$

$$
\xrightarrow{k_{3}(c)}
$$ fresh k_{3}

 $\xrightarrow{\tau}$ communication

$$
\xrightarrow{\tau}
$$

communication

$$
\begin{aligned}
& \xrightarrow{k_{1}(a)} \\
& \text { fresh } k_{1} \\
& k_{1}(a) \triangleright \llbracket p . c o \triangleright_{k_{1}} \text { Q }\left|\left|\llbracket b . q . c o \triangleright_{12} 0 \rrbracket\right| \llbracket c . \bar{q} . \bar{p} . c o \triangleright_{13} 0 \rrbracket\right. \\
& \xrightarrow{k_{2}(b)} \\
& \text { fresh } k_{2}
\end{aligned}
$$

Example

$$
k_{1}(a) k_{2}(b) \triangleright \llbracket p . c \circ \triangleright_{k_{1}} 0 \rrbracket\left|\llbracket q . c o \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket c . \bar{q} \cdot \bar{p} . \operatorname{co} \triangleright_{/ 3} \mathbb{Q} \rrbracket
$$

$$
\xrightarrow{k_{3}(c)}
$$ fresh k_{3}

$\xrightarrow{\tau}$ communication
 $\xrightarrow{\tau}$ distributed commit

$$
k_{5}(c o) k_{5}(c o) k_{5}(c o) \triangleright 0|0| 0
$$

$$
\begin{aligned}
& \xrightarrow{k_{1}(a)} \\
& \text { fresh } k_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{k_{2}(b)} \\
& \text { fresh } k_{2}
\end{aligned}
$$

What is recorded in \mathcal{R} ?

$\mathcal{R}: I \longrightarrow_{\text {frite }}\{k(a), k(\mathrm{co}), k(\mathrm{ab}) \mid k a \operatorname{transaction,~} \mathrm{a}$ an action $\}$

- I: an index set

Intuition: $R \triangleright P$
$\mathcal{R}(i)=k(a): k$ is the current name (in P) of transaction used in ith external interaction

Note: Historical names are forgotten

What is recorded in \mathcal{R} ?

$\mathcal{R}: I \longrightarrow_{\text {finite }}\{k(a), k(\mathrm{co}), k(\mathrm{ab}) \mid k a$ transaction, a an action $\}$

- I: an index set

Intuition: $R \triangleright P$
$\mathcal{R}(i)=k(a): k$ is the current name (in P) of transaction used in ith external interaction

Note: Historical names are forgotten

History actions: inference rules

- External actions
- Commiting/aborting rules
- Communication
- Contextual rules
- Housekeeping rules

History actions: inference rules

Tentative external actions:

$$
\begin{aligned}
& P \xrightarrow{a} P^{\prime} \quad \text { in } c c s \\
& \mathcal{R} \triangleright \llbracket P \triangleright_{I} Q \rrbracket \xrightarrow{k(a)} \mathcal{R}\{k / I\}, k(a) \triangleright \llbracket P^{\prime} \triangleright_{k} Q \rrbracket \\
& \mathcal{R} \triangleright \Sigma \mu_{i} \cdot P_{i} \xrightarrow{k(a)} \mathcal{R}, k(a) \triangleright \llbracket P_{j} \mid \operatorname{co~} \triangleright_{k} \Sigma \mu_{i} . P_{i} \rrbracket \quad \mu_{j}=a
\end{aligned}
$$

Intuition:
k is a fresh transaction in the environment requesting a communication on a

History actions: inference rules

Communication

$$
\begin{aligned}
& \mathcal{R} \triangleright P \xrightarrow{k(a)} \mathcal{R} \sigma, k(a) \triangleright P^{\prime} \\
& \mathcal{K} \triangleright Q \xrightarrow{k(\bar{a})} \mathcal{K} \pi, k(\bar{a}) \triangleright Q^{\prime} \\
& \mathcal{R}, \mathcal{K} \triangleright P\left|Q \xrightarrow{\tau} \mathcal{R} \sigma \pi, \mathcal{K} \pi \sigma \triangleright P^{\prime}\right| Q^{\prime}
\end{aligned}
$$

Intuition:

- standard CCS communication rule
- histories need updating

History actions: Committing/Aborting

$$
\begin{aligned}
& \text { (R-CO) } \\
& \frac{P \xrightarrow{c o} P^{\prime} \quad \text { in } c c s}{\mathcal{R} \triangleright \llbracket P \triangleright_{k} Q \rrbracket \xrightarrow{\tau} \text { cok } \mathcal{R} \backslash_{\text {co }} \triangleright \triangleright P}
\end{aligned}
$$

Intuition:

- $\mathcal{R} \backslash_{\text {co }} k$ records that all tentative actions $k(a)$ are now permanent transforms every $k(a)$ in \mathcal{R} to k (co)

History actions: Committing/Aborting

Intuition:

- $\mathcal{R} \backslash_{\text {co }} k$ records that all tentative actions $k(a)$ are now permanent transforms every $k(a)$ in \mathcal{R} to $k(0)$

Example:

$$
k_{3}(a) k_{2}(b) k_{3}(c) \triangleright \llbracket c o . P \triangleright_{k_{3}} 0 \rrbracket\left|\llbracket b . c o . R \triangleright_{k_{2}} 0 \rrbracket\right| \llbracket c o . Q \triangleright_{k_{3}} 0 \rrbracket
$$

$$
\stackrel{\tau}{\rightarrow \mathrm{cok}}
$$

$$
k_{3}(c o) k_{2}(b) k_{3}(c o) \triangleright P\left|\llbracket b . c o . R \triangleright_{k_{2}} \oslash \rrbracket\right| Q
$$

History actions: Committing/Aborting

$$
\begin{aligned}
& \text { (R-CO) } \\
& \text {. . }
\end{aligned}
$$

(R-BCAST)

$$
\mathcal{R} \triangleright P \xrightarrow{\tau}_{\text {cok }} \mathcal{R}^{\prime} \triangleright P^{\prime}
$$

$$
\mathcal{K} \triangleright Q \xrightarrow{\tau}_{\text {cok }} \mathcal{K}^{\prime} \triangleright Q^{\prime}
$$

(R-IGNORE)

$$
\mathcal{R} \triangleright P \xrightarrow{\tau}_{\operatorname{cok}} \mathcal{R}^{\prime} \triangleright P^{\prime}
$$

$$
\mathcal{R}, \mathcal{K} \triangleright P \mid Q{\xrightarrow{\tau}{ }_{\text {cok }} \mathcal{R}^{\prime}, \mathcal{K} \triangleright P \mid Q}^{\text {. }}
$$

Intuition:

- All components of the distributed transaction k must commit $\xrightarrow{\text { co }}$ simultaneously

History bisimulations
 $\mathcal{R} \triangleright P \approx_{\text {bisim }} \mathcal{K} \triangleright Q$

The largest relation over configurations such that, if
$\mathcal{R} \triangleright P \approx_{\text {bisim }} \mathcal{K} \triangleright Q$ then, for every μ
$-\mathcal{R} \triangleright P \stackrel{\mu}{\Rightarrow} \mathcal{R}^{\prime} \triangleright P^{\prime}$ implies $\mathcal{K} \triangleright Q \stackrel{\mu}{\Rightarrow} \mathcal{K}^{\prime} \triangleright Q^{\prime}$ such that $\mathcal{R}^{\prime} \triangleright Q^{\prime} \approx_{\text {bisim }} \mathcal{K}^{\prime} \triangleright Q^{\prime}$

- symmetrically $\mathcal{K} \triangleright Q \stackrel{\mu}{\Rightarrow} \mathcal{K}^{\prime} \triangleright Q^{\prime}$ implies $\ldots .$.
- Records \mathcal{R}, \mathcal{K} are consistent: they agree on committed actions.

Intuition:
Permanent actions must match

Consistent: for every index $i \in I, \mathcal{R}(i)=k(\operatorname{co})$ iff $\mathcal{K}(i)=k^{\prime}($ co $)$

History bisimulations $\quad \mathcal{R} \triangleright P \approx_{\text {bisim }} \mathcal{K} \triangleright Q$

The largest relation over configurations such that, if
$\mathcal{R} \triangleright P \approx_{\text {bisim }} \mathcal{K} \triangleright Q$ then, for every μ
$-\mathcal{R} \triangleright P \stackrel{\mu}{\Rightarrow} \mathcal{R}^{\prime} \triangleright P^{\prime}$ implies $\mathcal{K} \triangleright Q \stackrel{\mu}{\Rightarrow} \mathcal{K}^{\prime} \triangleright Q^{\prime}$ such that $\mathcal{R}^{\prime} \triangleright Q^{\prime} \approx_{\text {bisim }} \mathcal{K}^{\prime} \triangleright Q^{\prime}$

- symmetrically $\mathcal{K} \triangleright Q \stackrel{\mu}{\Rightarrow} \mathcal{K}^{\prime} \triangleright Q^{\prime}$ implies $\ldots .$.
- Records \mathcal{R}, \mathcal{K} are consistent: they agree on committed actions.

Intuition:

Permanent actions must match
Consistent: for every index $i \in I, \mathcal{R}(i)=k(c o)$ iff $\mathcal{K}(i)=k^{\prime}(c o)$

A problem

$$
\begin{aligned}
& \llbracket a . b . c o \triangleright_{k} 0 \rrbracket \quad \approx_{c x t} \llbracket a . b . c o+\text { a.c. } 0 \triangleright_{k} 0 \rrbracket \text { dififucut to prove } \\
& \text { But } P=\llbracket \text { a.b.co } \triangleright_{k} 0 \rrbracket \not \ddot{z}_{\text {bisim }} \llbracket \text { a.b.co }+ \text { a.c. } 0 \triangleright_{k} 0 \rrbracket=Q
\end{aligned}
$$

Because

A problem

$$
\begin{aligned}
& \llbracket a . b . c o \triangleright_{k} 0 \rrbracket \\
& \text { But } P=\llbracket a . b . c o \triangleright_{k} 0 \rrbracket \not \approx_{\text {cxt }} \quad \llbracket a . b . c o+a . c .0 \triangleright_{k} 0 \rrbracket \\
& \bullet \epsilon \triangleright Q . b . c o+a . c .0 \triangleright_{k} 0 \rrbracket=Q \\
& \bullet \epsilon \triangleright P \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket c .0 \triangleright_{k_{1}} 0 \rrbracket \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket b . c \circ \triangleright_{k_{1}} 0 \rrbracket \xrightarrow{k_{2}(c)} \quad \text { dificult to prove } \\
& k_{2}(c) \triangleright \llbracket 0 \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

A problem

$$
\begin{aligned}
& \llbracket a . b . c o \triangleright_{k} 0 \rrbracket \\
\text { But } P=\llbracket a . b . c o \triangleright_{k} 0 \rrbracket & \not \approx_{\text {cxt }} \quad \llbracket a . b . c o+a . c .0 \triangleright_{k} 0 \rrbracket \\
\bullet & \epsilon \triangleright Q \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket c .0 \triangleright_{k_{1}} 0 \rrbracket \xrightarrow{k_{2}(c)} k_{2}(a) k_{2}(c) \triangleright \llbracket 0 \triangleright_{k_{2}} 0 \rrbracket \\
\bullet & \epsilon \triangleright P \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket b . c o \triangleright_{k_{1}} 0 \rrbracket \xrightarrow{k_{2}(c)} \quad ? ?
\end{aligned}
$$

A solution:
Allow free degenerate tentative actions: $\mathcal{R} \triangleright S \xrightarrow{k(x)} \mathcal{R}, k(\mathrm{ab}) \triangleright S$
Because:

A problem

$$
\begin{aligned}
& \llbracket a . b . c o \triangleright_{k} 0 \rrbracket \\
\text { But } P=\llbracket a . b . c o \triangleright_{k} 0 \rrbracket & \not \approx_{\text {cxt }} \quad \llbracket a . b . c o+a . c .0 \triangleright_{k} 0 \rrbracket \\
\bullet & \epsilon \triangleright Q \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket c .0 \triangleright_{k_{1}} 0 \rrbracket \xrightarrow{k_{2}(c)} k_{2}(a) k_{2}(c) \triangleright \llbracket 0 \triangleright_{k_{2}} 0 \rrbracket \\
\bullet & \epsilon \triangleright P \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket b . c o \triangleright_{k_{1}} 0 \rrbracket \xrightarrow{k_{2}(c)} \quad ? ?
\end{aligned}
$$

A solution:
Allow free degenerate tentative actions: $\mathcal{R} \triangleright S \xrightarrow{k(x)} \mathcal{R}, k(\mathrm{ab}) \triangleright S$
Because:
$\triangleright \epsilon \triangleright P \xrightarrow{k_{1}(a)} \xrightarrow{k_{2}(c)} k_{1}(a) k_{2}(\mathrm{ab}) \triangleright \llbracket b . c o \triangleright_{k_{1}} \quad 0 \rrbracket$

$$
\xrightarrow{\tau}_{\mathrm{ab}} k_{1}(a) k_{2}(\mathrm{ab}) \triangleright 0
$$

- and $k_{2}(a) k_{2}(b) \triangleright \llbracket 0 \triangleright_{k_{2}} Q \rrbracket \approx_{\text {bisim }} k_{1}(a) k_{2}(\mathrm{ab}) \triangleright 0$

Justifying bisimulations

In TCCS m

$$
P \approx_{\text {bisim }} Q \quad \text { iff } \quad P \approx_{\text {cxt }} Q
$$

History bisimulations give a sound and complete proof method for contextual equivalence of transactions

Fossacs 2014

Inequivalent systems

In CCS:

- $P=$ a.c. $(d .0+e .0)+$ a.c.e. $0 \not \approx \mathrm{cxt}$ a. $(c . d .0+c . e .0)=Q$
- because $P \not \approx_{\text {bisim }} Q$
- because P and Q satisfy different behavioural properties $P \vDash\langle a\rangle[c](\langle d\rangle \operatorname{tr} \wedge\langle e\rangle \operatorname{tr})$ while $Q \nLeftarrow\langle a\rangle[c](\langle d\rangle \operatorname{tr} \wedge\langle e\rangle \operatorname{tr})$

- $P \not \approx_{\mathrm{cxt}} Q$
- because $P \not \approx$ bisim Q
- because

Inequivalent systems

In CCS:

- $P=$ a.c. $(d .0+e .0)+$ a.c.e.0 $\not \approx \mathrm{cxt}$ a. $(c . d .0+c . e .0)=Q$
- because $P \not \approx$ bisim Q
- because P and Q satisfy different behavioural properties $P \models\langle a\rangle[c](\langle d\rangle \operatorname{tr} \wedge\langle e\rangle \operatorname{tr})$ while $Q \not \vDash\langle a\rangle[c](\langle d\rangle \operatorname{tr} \wedge\langle e\rangle \operatorname{tr})$
- because $P \not \approx_{\text {bisim }} Q$
- because

Inequivalent systems

In CCS:

- $P=$ a.c. $(d .0+e .0)+$ a.c.e. $0 \not \approx \mathrm{cxt}$ a. $(c . d .0+c . e .0)=Q$
- because $P \not \approx$ bisim Q
- because P and Q satisfy different behavioural properties
$P \models\langle a\rangle[c](\langle d\rangle \operatorname{tr} \wedge\langle e\rangle \operatorname{tr})$ while $Q \not \vDash\langle a\rangle[c](\langle d\rangle \operatorname{tr} \wedge\langle e\rangle \operatorname{tr})$

In TCCS ${ }^{\text {m }}$:

$$
\begin{aligned}
& P=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket \\
& Q=\nu p . \bar{p}\left|\llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket \mid \llbracket . p . c o . \bar{p} \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

- $P \not \approx \mathrm{cxt} Q$
- because $P \not \approx_{\text {bisim }} Q$
- because ???

In CCS: property logic HML

Properties: $\phi \quad::=\langle\mu\rangle \phi \quad|\quad \neg \phi \quad| \quad \wedge_{\{i \in I\}} \phi_{i}$
Satisfaction:

- $P \models\langle\mu\rangle \phi$ if $P \stackrel{\mu}{\Rightarrow} Q$, where $Q \models \phi$
- $P \vDash \wedge_{\{i \in!\}} \phi_{i}$ if \ldots....

Well-known result:
$P \not \nsim$ bisim Q iff $P \models \phi, Q \not \models \phi$ for some property $\phi \in \mathrm{HML}$
Intuition:
ϕ is a reason for the different behaviour between P and Q

In TCCS m : Why are P, Q different ?

$$
P=\llbracket \text { a.b.co } \triangleright_{k} 0 \rrbracket \quad Q=\nu p . \llbracket \text { a.co. } p \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} 0 \rrbracket
$$

- P can perform tentative actions a, b in same transaction, which can subsequently become permanent
- Q can only tentatively perform a, b in independent transactions

Intuition unsupported by current action semantics:

$$
\xrightarrow{k_{1}(a)}
$$

$$
k_{1}(a) \triangleright \llbracket b . \operatorname{co} \triangleright_{k_{1}} Q \rrbracket
$$

$$
\xrightarrow{k_{2}(b)} \quad k_{2}(a) k_{2}(b) \triangleright \llbracket b . c \circ \triangleright_{k_{2}} \oplus \rrbracket
$$

In TCCS m : Why are P, Q different ?
$P=\llbracket a . b . c o \triangleright_{k} 0 \rrbracket \quad Q=\nu p . \llbracket a . c o . p \triangleright_{k_{1}}$ 0】 $\mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}}$ 0】
Intuition:

- P can perform tentative actions a, b in same transaction, which can subsequently become permanent
- Q can only tentatively perform a, b in independent transactions

Intuition unsupported by current action semantics:

In TCCS m : Why are P, Q different ?
$P=\llbracket$ a.b.co $\triangleright_{k} 0 \rrbracket \quad Q=\nu p . \llbracket$ a.co.p $\triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . b . c o \triangleright_{k_{2}} 0 \rrbracket$
Intuition:

- P can perform tentative actions a, b in same transaction, which can subsequently become permanent
- Q can only tentatively perform a, b in independent transactions

Intuition unsupported by current action semantics:

$$
\begin{aligned}
\varepsilon \triangleright P & \xrightarrow{k_{1}(a)} k_{1}(a) \triangleright \llbracket b . \operatorname{co~} \triangleright_{k_{1}} \quad 0 \rrbracket \\
& \xrightarrow{k_{2}(b)} k_{2}(a) k_{2}(b) \triangleright \llbracket b . c \circ \triangleright_{k_{2}} \quad 0 \rrbracket
\end{aligned}
$$

History is important

Recall $\mathcal{R} \triangleright P$

- $\mathcal{R}: I \longrightarrow\{k(a), k(c o), k(a b) \mid k a$ transaction name $\}$
- $\mathcal{R}(i)=k(a): k$ is the current name in P of ith interaction

New Configurations:
 remember historic actions

$H ; \mathcal{R} \triangleright P$ where

- H equivalence relation over names
- $H=k_{1} \sim k_{2}$ means k_{1}, k_{2} are the same transactions
- $\mathcal{R}(i)$ is the historic name used in ith interaction

Example:

History is important

Recall $\mathcal{R} \triangleright P$

- $\mathcal{R}: I \longrightarrow\{k(a), k(c o), k(a b) \mid k a$ transaction name $\}$
- $\mathcal{R}(i)=k(a): k$ is the current name in P of ith interaction

New Configurations: remember historic actions
$H ; \mathcal{R} \triangleright P$ where

- H equivalence relation over names
- $H \models k_{1} \sim k_{2}$ means k_{1}, k_{2} are the same transactions
- $\mathcal{R}(i)$ is the historic name used in ith interaction

Example:

History is important

Recall $\mathcal{R} \triangleright P$

- $\mathcal{R}: I \longrightarrow\{k(a), k(c o), k(a b) \mid k a$ transaction name $\}$
- $\mathcal{R}(i)=k(a): k$ is the current name in P of ith interaction

New Configurations:
$H ; \mathcal{R} \triangleright P$ where

- H equivalence relation over names
- $H \models k_{1} \sim k_{2}$ means k_{1}, k_{2} are the same transactions
- $\mathcal{R}(i)$ is the historic name used in ith interaction

Example:

$$
\begin{aligned}
\varepsilon \triangleright P & \xrightarrow{k_{1}(a)}\left\{k_{1}\right\}: k_{1}(a) \triangleright \llbracket b . c o \triangleright_{k_{1}} 0 \rrbracket \\
& \xrightarrow{k_{2}(b)}\left\{k_{1}, k_{2}\right\} ; k_{1}(a) k_{2}(b) \triangleright \llbracket c \circ \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

In TCCS ${ }^{m}$: property logic trHML
Properties: $\phi \quad::=\langle k(a)\rangle \phi|\langle\tau\rangle \phi| \operatorname{Isco}(k)|\neg \phi| \wedge_{\{i \in I\}} \phi_{i}$
Satisfaction:
$-H ; \mathcal{R} \triangleright P \models\langle k(a)\rangle \phi$ if $H ; \mathcal{R} \triangleright P \xrightarrow{k^{\prime}(a)} H^{\prime} ; \mathcal{R}^{\prime} \triangleright Q$, where

- $H^{\prime} ; \mathcal{R}^{\prime} \triangleright Q \models \phi$
- $E \vDash k \sim k^{\prime}$
- $H ; \mathcal{R} \triangleright P \models \operatorname{Isco}(k)$ if $\exists i, \mathcal{R}(i)=k^{\prime}(\mathrm{co}), H \models k \sim k^{\prime}$

In TCCS ${ }^{m}$: property logic trHML
Properties: $\phi \quad::=\langle k(a)\rangle \phi|\langle\tau\rangle \phi| \operatorname{Isco}(k)|\neg \phi| \wedge_{\{i \in I\}} \phi_{i}$
Satisfaction:

- $H ; \mathcal{R} \triangleright P \models\langle k(a)\rangle \phi$ if $H ; \mathcal{R} \triangleright P \xrightarrow{k^{\prime}(a)} H^{\prime} ; \mathcal{R}^{\prime} \triangleright Q$, where
- $H^{\prime} ; \mathcal{R}^{\prime} \triangleright Q \models \phi$
- $E \models k \sim k^{\prime}$
- $H ; \mathcal{R} \triangleright P \models \operatorname{Isco}(k)$ if $\exists i, \mathcal{R}(i)=k^{\prime}(\mathrm{co}), H \models k \sim k^{\prime}$

Example:

$$
\begin{gathered}
P=\llbracket a . b . c o \triangleright_{k_{1}} 0 \rrbracket \quad Q=\nu p . \llbracket a . p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c \circ \triangleright_{k_{2}} 0 \rrbracket \\
\epsilon \triangleright P \quad \models\langle k(a)\rangle\langle k(b)\rangle \operatorname{Isco}(k) \\
\epsilon \triangleright Q \quad \neq \ldots
\end{gathered}
$$

In TCCS m ：property logic trHML
Conjecture：
$P \not \approx$ bisim Q iff $P \models \phi, Q \not \models \phi$ for some property $\phi \in \operatorname{trHML}$
Example：

$$
\begin{aligned}
& P=\llbracket a . c o \triangleright_{k_{1}} \text { 0】 } \mid \llbracket b . c o \triangleright_{k_{2}} \text { 0】 } \\
& Q=\nu p . \bar{p}\left|\llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} Q \rrbracket\right| \llbracket b . p . c o . \bar{p} \triangleright_{k_{2}} Q \rrbracket
\end{aligned}
$$

In TCCS ${ }^{m}$: property logic trHML
Conjecture:
$P \not \approx$ bisim Q iff $P \models \phi, Q \not \models \phi$ for some property $\phi \in \operatorname{trHML}$
Example:

$$
\begin{aligned}
P & =\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} \mathbb{Q} \rrbracket \\
Q & =\nu p . \bar{p}\left|\llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket \mid \text { b.p.co. } \bar{p} \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

$$
P \neq \text { ????? }
$$

$$
Q \not \vDash \text { ???? }
$$

In TCCS ${ }^{m}$: property logic trHML
Conjecture:
$P \not \approx$ bisim Q iff $P \models \phi, Q \not \models \phi$ for some property $\phi \in \operatorname{trHML}$
Example:

$$
\begin{aligned}
P & =\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} \mathbb{Q} \rrbracket \\
Q & =\nu p . \bar{p}\left|\llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket \mid \text { b.p.co. } \bar{p} \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

$$
P \neq \text { ????? }
$$

$$
Q \not \vDash \text { ???? }
$$

In TCCS ${ }^{m}$: property logic trHML
Conjecture:
$P \not \approx$ bisim Q iff $P \vDash \phi, Q \not \models \phi$ for some property $\phi \in \operatorname{trHML}$
Example:

$$
\begin{aligned}
P & =\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket \\
Q & =\nu p . \bar{p}\left|\llbracket a . p . c o . \bar{p} \triangleright_{k_{1}} 0 \rrbracket\right| \llbracket b . p . c o . \bar{p} \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

$$
P \vDash \text { ????? }
$$

$$
Q \nmid \equiv \text { ???? }
$$

$$
P \models\langle k(a)\rangle\langle k(b)\rangle \operatorname{Isco}(k)
$$

$$
Q \not \vDash\langle k(a)\rangle\langle k(b)\rangle \operatorname{Isco}(k)
$$

Some work done. More to do.

- Language design and implementation
- Behavioural semantics
- Decision procedures for equivalence upcoming PhD thesis: Carlo Spaccasassi
- More expressive transaction constructs.
eg. nested transactions
- Variations
- Reversible programming languages
- Web services: long running transactions with compensations

The end

THANKS

Joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de Vries

