
Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Behavioural Equivalences for Co-operating
Transactions

Matthew Hennessy

joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de Vries

Concur, September 2015

1/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Outline

Co-operating Transactions what are they?

TransCCS

Behaviour

History bisimulations

Property logics

2/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

STM: Software Transactional Memory

I Database technology applied to software

I concurrency control: atomic memory transactions

I lock-free programming in multithreaded programmes

I threads run optimistically

I conflicts are automatically rolled back by system

Implementations:

I Haskell, OCaml, Csharp, Intel Haswell architecture

Issues:

I Language Design

I Implementation strategies

I Semantics what should happen when programs are run

3/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

STM: Software Transactional Memory

I Database technology applied to software

I concurrency control: atomic memory transactions

I lock-free programming in multithreaded programmes

I threads run optimistically

I conflicts are automatically rolled back by system

Implementations:

I Haskell, OCaml, Csharp, Intel Haswell architecture

Issues:

I Language Design

I Implementation strategies

I Semantics what should happen when programs are run

3/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Standard Transactions on which STM is based

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I Guarantees:
I Atomicity: Each transaction either runs in its entirety

(commits) or not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent

I Isolation:
I Higher levels limit concurrency
I Lower levels have implementation difficulties and precise

semantic understanding

4/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Standard Transactions on which STM is based

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I Guarantees:
I Atomicity: Each transaction either runs in its entirety

(commits) or not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent

I Isolation:
I Higher levels limit concurrency
I Lower levels have implementation difficulties and precise

semantic understanding

4/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Communicating/Co-operating Transactions

I We drop isolation completely:
I There is no limit on the co-operation/communication between

a transaction and its environment.
I There is no barrier to concurrency
I Understanding the behaviour of these new transactional

systems is problematic

I Should guarantee:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back, together with all effects of the
transaction on its environment

I Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

5/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Communicating/Co-operating Transactions

I We drop isolation completely:
I There is no limit on the co-operation/communication between

a transaction and its environment.
I There is no barrier to concurrency
I Understanding the behaviour of these new transactional

systems is problematic

I Should guarantee:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back, together with all effects of the
transaction on its environment

I Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

5/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Programming with Co-operating Transactions

Add to your favourite programming language:

I atomicJ.K
I commands commit and abort&retry

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Problem:

I Pi process/transaction subject to failure

I Some coalition of three from P1, P2, P3, P4 should decide to
collaborate

Result:

I Each Pj in the successful coalition outputs id of its partners
on channel outj

6/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Programming with Co-operating Transactions

Add to your favourite programming language:

I atomicJ.K
I commands commit and abort&retry

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Problem:

I Pi process/transaction subject to failure

I Some coalition of three from P1, P2, P3, P4 should decide to
collaborate

Result:

I Each Pj in the successful coalition outputs id of its partners
on channel outj

6/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Programming with Co-operating Transactions

Add to your favourite programming language:

I atomicJ.K
I commands commit and abort&retry

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Problem:

I Pi process/transaction subject to failure

I Some coalition of three from P1, P2, P3, P4 should decide to
collaborate

Result:

I Each Pj in the successful coalition outputs id of its partners
on channel outj

6/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Algorithm for Pn:

I Broadcast id n randomly to two arbitrary partners
b!〈n〉 | b!〈n〉

I Receive ids from two random partners b?(y) .b?(z)

I Propose coalition with these partners sy !〈n, z〉 .sz !〈n, y〉

I Confirm that partners are in agreement:
I if YES, commit and report
I if NO, abort&retry

7/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Algorithm for Pn:

I Broadcast id n randomly to two arbitrary partners
b!〈n〉 | b!〈n〉

I Receive ids from two random partners b?(y) .b?(z)

I Propose coalition with these partners sy !〈n, z〉 .sz !〈n, y〉

I Confirm that partners are in agreement:
I if YES, commit and report
I if NO, abort&retry

7/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Pn ⇐ b!〈n〉 | b!〈n〉 |
atomicJb?(y) .b?(z) .

sy !〈n, z〉 .sz !〈n, y〉 . proposing

sn?(y1, z1) .sn?(y2, z2) . confirming

if {y , z} = {y1, z1} = {y2, z2}
then commit | outn!〈y , z〉
else abrt&retry K

8/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operating Transactions: Issues
I Language Design and Implementation

I Transaction Synchronisers (Luchangco et al 2005)

I cJoin with commits Bruni, Melgratti, Montanari ENTCS 2004

I Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)

I Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)

I . . . Abstractions for Concurrent Consensus (Spaccasassi, Koutavas, Trends

in Functional Programming 2013)

I
I Semantics what should happen when programs are run

I Topic of todays talk

Approach:

I Take a well-studied small language, with well understood
semantic theory: CCS

I extend with transactional constructs

I extend existing semantic theory

9/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operating Transactions: Issues
I Language Design and Implementation

I Transaction Synchronisers (Luchangco et al 2005)

I cJoin with commits Bruni, Melgratti, Montanari ENTCS 2004

I Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)

I Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)

I . . . Abstractions for Concurrent Consensus (Spaccasassi, Koutavas, Trends

in Functional Programming 2013)

I
I Semantics what should happen when programs are run

I Topic of todays talk

Approach:

I Take a well-studied small language, with well understood
semantic theory: CCS

I extend with transactional constructs

I extend existing semantic theory

9/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS
Syntax: P,Q ::=

∑
µi .Pi guarded choice µi ∈ Actτ

| P | Q parallel
| νa.P hiding
| recX .P recursion

Minimal concurrent programming/specification language:

I Actτ : abstract actions supporting
communication/co-operation

I Concurrency: P | Q: independent concurrent processes

I Local resources: νa.P: action a is local to P

I Iteration/Recursion: recX .P

a ∈ Act ← needs co-operation of→ a ∈ Act

10/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS
Syntax: P,Q ::=

∑
µi .Pi guarded choice µi ∈ Actτ

| P | Q parallel
| νa.P hiding
| recX .P recursion

Minimal concurrent programming/specification language:

I Actτ : abstract actions supporting
communication/co-operation

I Concurrency: P | Q: independent concurrent processes

I Local resources: νa.P: action a is local to P

I Iteration/Recursion: recX .P

a ∈ Act ← needs co-operation of→ a ∈ Act

10/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS : Executing processes: P → Q Reduction semantics:

I Co-operation/Communication:

(r-comm)

∑
µi .Pi |

∑
νj .Qj → Pi | Qj if νj = µi

I Contextual rules:

(r-par)

P → P ′

P | Q → P ′ | Q

(r-new)

P → P ′

νa.P → νa.P ′

I Housekeeping rules:

(r-rec) recX .P → P { recX .P/X }

11/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm
Fossacs 2014

Syntax: P,Q ::= CCS syntax
| . . .
| JP .k QK running transaction named k
| co.P commit
| JP I QK uninitiated transaction

Transaction JP .k QK:

I execute P to completion (commit)

I subject to random aborts

I if aborted, roll back environmental impact of P and initiate Q

Simplification: in JP .k QK bodies P and Q do not contain active transactions

12/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm
Fossacs 2014

Syntax: P,Q ::= CCS syntax
| . . .
| JP .k QK running transaction named k
| co.P commit
| JP I QK uninitiated transaction

Transaction JP .k QK:

I execute P to completion (commit)

I subject to random aborts

I if aborted, roll back environmental impact of P and initiate Q

Simplification: in JP .k QK bodies P and Q do not contain active transactions

12/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Examples

Ja.b.co .k 0K νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

µX .Ja.(b.co + c .co) .k X K µX .Ja.b.co + a.c .co) .k X K

µX .Ja.b.co .k X K µX .Ja.b.co + a.c .0) .k X K

Ja.co .k1 0K | Jb.co .k2 0K νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

Ja.b.co + b.a.co .k 0K νp.Ja.p.co .k1 0K | Jb.p.co .k2 0K

13/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Executing Transactions: P → Q reduction semantics

I Co-operation/Communication

I Contextual rules

I Housekeeping rules

I aborts/commits eg. JP .k QK → Q random abort

I roll back management

14/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Executing Transactions: P → Q reduction semantics

I Co-operation/Communication

I Contextual rules

I Housekeeping rules

I aborts/commits eg. JP .k QK → Q random abort

I roll back management

14/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operation/Communication

Co-operation means shared destiny:

Jp1.a1.a2.co .l1 aK | Jp1.co.c + p2.co.c .l cK | Jp2.b1.b2.co .l2 bK
→
Ja1.a2.co .k aK | Jco.c .k cK | Jp2.b1.b2.co .l2 bK

l1, l both succeed together, or both fail

→
Jp1.a1.a2.co .l1 aK | Jco.c .k cK | Jb1.b2.co .k bK

l2, l both succeed together, or both fail

I shared destiny via fresh renaming of transactions

I shared destiny via distributed transactions

15/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operation/Communication

Co-operation means shared destiny:

Jp1.a1.a2.co .l1 aK | Jp1.co.c + p2.co.c .l cK | Jp2.b1.b2.co .l2 bK
→
Ja1.a2.co .k aK | Jco.c .k cK | Jp2.b1.b2.co .l2 bK

l1, l both succeed together, or both fail

→
Jp1.a1.a2.co .l1 aK | Jco.c .k cK | Jb1.b2.co .k bK

l2, l both succeed together, or both fail

I shared destiny via fresh renaming of transactions

I shared destiny via distributed transactions

15/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operation/Communication

Co-operation means shared destiny:

Jp1.a1.a2.co .l1 aK | Jp1.co.c + p2.co.c .l cK | Jp2.b1.b2.co .l2 bK
→
Ja1.a2.co .k aK | Jco.c .k cK | Jp2.b1.b2.co .l2 bK

l1, l both succeed together, or both fail

→
Jp1.a1.a2.co .l1 aK | Jco.c .k cK | Jb1.b2.co .k bK

l2, l both succeed together, or both fail

I shared destiny via fresh renaming of transactions

I shared destiny via distributed transactions

15/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operation/Communication

Co-operation means shared destiny:

Jp1.a1.a2.co .l1 aK | Jp1.co.c + p2.co.c .l cK | Jp2.b1.b2.co .l2 bK
→
Ja1.a2.co .k aK | Jco.c .k cK | Jp2.b1.b2.co .l2 bK

l1, l both succeed together, or both fail

→
Jp1.a1.a2.co .l1 aK | Jco.c .k cK | Jb1.b2.co .k bK

l2, l both succeed together, or both fail

I shared destiny via fresh renaming of transactions

I shared destiny via distributed transactions

15/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operation/Communication: reduction semantics

I Communication:

(r-comm)
r
R1 |

∑
µiPi .l1 −

z
|

r
R2 |

∑
νjQj .l2 −

z

→
JR1 | Pi .k −K | JR2 | Qj .k −K if νj = µi k fresh

I Contextual rules:

I Housekeeping rules:

16/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Co-operation/Communication: reduction semantics

I Communication:

(r-comm)
r
R1 |

∑
µiPi .l1 −

z
|

r
R2 |

∑
νjQj .l2 −

z

→
JR1 | Pi .k −K | JR2 | Qj .k −K if νj = µi k fresh

I Contextual rules:

I Housekeeping rules:

16/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

Ja.b.co .k1 0K |
q
b.co .k2 0

y
| Ja.co.A .k3 BK

→ Jb.co .k 0K |
q
b.co .k2 0

y
| Jco.A .k BK

→ Jco .l 0K | Jco .l 0K | Jco.A .l BK

→ 0 | 0 | A via distributed commit l

→ 0 | 0 | B via distributed abort l

17/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

Ja.b.co .k1 0K |
q
b.co .k2 0

y
| Ja.co.A .k3 BK

→ Jb.co .k 0K |
q
b.co .k2 0

y
| Jco.A .k BK

→ Jco .l 0K | Jco .l 0K | Jco.A .l BK

→ 0 | 0 | A via distributed commit l

→ 0 | 0 | B via distributed abort l

17/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

Ja.b.co .k1 0K |
q
b.co .k2 0

y
| Ja.co.A .k3 BK

→ Jb.co .k 0K |
q
b.co .k2 0

y
| Jco.A .k BK

→ Jco .l 0K | Jco .l 0K | Jco.A .l BK

→ 0 | 0 | A via distributed commit l

→ 0 | 0 | B via distributed abort l

17/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

Ja.b.co .k1 0K |
q
b.co .k2 0

y
| Ja.co.A .k3 BK

→ Jb.co .k 0K |
q
b.co .k2 0

y
| Jco.A .k BK

→ Jco .l 0K | Jco .l 0K | Jco.A .l BK

→ 0 | 0 | A via distributed commit l

→ 0 | 0 | B via distributed abort l

17/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

Ja.b.co .k1 0K |
q
b.co .k2 0

y
| Ja.co.A .k3 BK

→ Jb.co .k 0K |
q
b.co .k2 0

y
| Jco.A .k BK

→ Jco .l 0K | Jco .l 0K | Jco.A .l BK

→ 0 | 0 | A via distributed commit l

→ 0 | 0 | B via distributed abort l

17/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Environment roll-back: reduction semantics

(r-rollback)∑
µiPi |

r
R2 |

∑
νjQj .l −

z

→

JPi | co .k
∑
µiPiK | JR2 | Qj .k −K if νj = µi k fresh

rollback as compensation

18/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Environment roll-back: reduction semantics

(r-rollback)∑
µiPi |

r
R2 |

∑
νjQj .l −

z

→

JPi | co .k
∑
µiPiK | JR2 | Qj .k −K if νj = µi k fresh

rollback as compensation

18/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

T1 = µX .Jp1.co.a1 .k1 X K T2 = µX .Jp2.co.a2 .k2 X K

(p1.b1 + p2.b2) | T1 | T2
→ Jb1 | co .k p1.b1 + p2.b2)K | Jco.a1 .k T1K | T2 using p1

→ (p1.b1 + p2.b2) | T1 | T2 abort k

→ Jb2 | co .k p1.b1 + p2.b2)K | T1 | Jco.a2 .k T2K using p2

→ b2 | a2 commit k

Environment roll-back:

I Original environment (p1.b1 + p2.b2) re-instated

I reduction semantics supports consistency informal claim

19/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example

T1 = µX .Jp1.co.a1 .k1 X K T2 = µX .Jp2.co.a2 .k2 X K

(p1.b1 + p2.b2) | T1 | T2
→ Jb1 | co .k p1.b1 + p2.b2)K | Jco.a1 .k T1K | T2 using p1

→ (p1.b1 + p2.b2) | T1 | T2 abort k

→ Jb2 | co .k p1.b1 + p2.b2)K | T1 | Jco.a2 .k T2K using p2

→ b2 | a2 commit k

Environment roll-back:

I Original environment (p1.b1 + p2.b2) re-instated

I reduction semantics supports consistency informal claim

19/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Behavioural equivalences

What transactions should be behavourally indistinguishable?

µX .JP | co .k X K
?
≈behav P

µX .Ja.b.co .k X K
?
≈behav µX .Ja.b.co + a.c.0) .k X K

Ja.co .k1 0K | Jb.co .k2 0K
?
≈behav νp.p |
Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

Example:

The well known equivalence: trace equivalence ≈tr

20/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Behavioural equivalences

What transactions should be behavourally indistinguishable?

µX .JP | co .k X K
?
≈behav P

µX .Ja.b.co .k X K
?
≈behav µX .Ja.b.co + a.c.0) .k X K

Ja.co .k1 0K | Jb.co .k2 0K
?
≈behav νp.p |
Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

Example:

The well known equivalence: trace equivalence ≈tr

20/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS : Action semantics

CCS doing actions:

P
a

=⇒ Q whenever P | a.;→ Q | ; ; fresh

CCS doing sequences:

P
s

=⇒ Q, s ∈ Act?, whenever P | s.;→ Q | ;

CCS Trace equivalence:

TR(P) = { s ∈ Act? | P s
=⇒}

P ≈tr Q whenever TR(P) = TR(Q)

21/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm: committed Action semantics

Transactions doing committed actions:

P
aZ=⇒ Q whenever P | a.;→ Q | ; ; fresh

Transaction doing committed sequences:

P
sZ=⇒ Q, s ∈ Act?, whenever P | s.;→ Q | ;

cTrace equivalence for transactions:

cTR(P) = { s ∈ Act? | P sZ=⇒}

P ≈ctr Q whenever cTR(P) = cTR(Q)

22/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Examples: trace equivalence

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

P 6≈ctr Q:

I cTR(P) = {ε, ab} not prefix-closed

I cTR(Q) = {ε, a, ab}

R = µX .Ja.(b.co + c .0) .k X K S = µX .Ja.b.co + a.c .0) .k X K

R ≈ctr S :

I cTR(R) = {ε, ab} not prefix-closed

I cTR(S) = {ε, ab } not prefix-closed

cTR supports atomicity

23/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Examples: trace equivalence

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

P 6≈ctr Q:

I cTR(P) = {ε, ab} not prefix-closed

I cTR(Q) = {ε, a, ab}

R = µX .Ja.(b.co + c .0) .k X K S = µX .Ja.b.co + a.c .0) .k X K

R ≈ctr S :

I cTR(R) = {ε, ab} not prefix-closed

I cTR(S) = {ε, ab } not prefix-closed

cTR supports atomicity

23/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Examples: trace equivalence

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

P 6≈ctr Q:

I cTR(P) = {ε, ab} not prefix-closed

I cTR(Q) = {ε, a, ab}

R = µX .Ja.(b.co + c .0) .k X K S = µX .Ja.b.co + a.c .0) .k X K

R ≈ctr S :

I cTR(R) = {ε, ab} not prefix-closed

I cTR(S) = {ε, ab } not prefix-closed

cTR supports atomicity

23/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Examples: trace equivalence

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

P 6≈ctr Q:

I cTR(P) = {ε, ab} not prefix-closed

I cTR(Q) = {ε, a, ab}

R = µX .Ja.(b.co + c .0) .k X K S = µX .Ja.b.co + a.c .0) .k X K

R ≈ctr S :

I cTR(R) = {ε, ab} not prefix-closed

I cTR(S) = {ε, ab } not prefix-closed

cTR supports atomicity

23/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Trace equivalence: Safety properties
Safety: “Nothing bad will happen” [Lamport’77]

I A safety property can be formulated as a safety test T; which
signals on fresh channel ; when it detects the bad behaviour

Definition (Passing tests)

P fails safety test T; whenever P | T; →∗ P ′ | ;

Example tests:

I µX .(a.X + err.;) can not perform err while performing any sequence of as

I T; = err.; | a.b can not perform err when a followed by b is offered.

Examples:

I µX .Ja.b.co | err .k X K fails safety test T;

I µX .Ja.b.co + err .k X Kpasses safety test T;

24/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Trace equivalence: Safety properties
Safety: “Nothing bad will happen” [Lamport’77]

I A safety property can be formulated as a safety test T; which
signals on fresh channel ; when it detects the bad behaviour

Definition (Passing tests)

P fails safety test T; whenever P | T; →∗ P ′ | ;

Example tests:

I µX .(a.X + err.;) can not perform err while performing any sequence of as

I T; = err.; | a.b can not perform err when a followed by b is offered.

Examples:

I µX .Ja.b.co | err .k X K fails safety test T;

I µX .Ja.b.co + err .k X Kpasses safety test T;

24/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Trace equivalence: Safety properties
Safety: “Nothing bad will happen” [Lamport’77]

I A safety property can be formulated as a safety test T; which
signals on fresh channel ; when it detects the bad behaviour

Definition (Passing tests)

P fails safety test T; whenever P | T; →∗ P ′ | ;

Example tests:

I µX .(a.X + err.;) can not perform err while performing any sequence of as

I T; = err.; | a.b can not perform err when a followed by b is offered.

Examples:

I µX .Ja.b.co | err .k X K fails safety test T;

I µX .Ja.b.co + err .k X Kpasses safety test T;

24/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Traces

In CCS : well-known

P ≈tr Q if and only for every T;,

P passes safety test T; ⇐⇒ Q passes safety test T;

In TCCSm: conjecture

P ≈tr Q if and only for every T;,

P passes safety test T; ⇐⇒ Q passes safety test T;

See: Concur 2010 for proof in different language of transactions.

25/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Traces

In CCS : well-known

P ≈tr Q if and only for every T;,

P passes safety test T; ⇐⇒ Q passes safety test T;

In TCCSm: conjecture

P ≈tr Q if and only for every T;,

P passes safety test T; ⇐⇒ Q passes safety test T;

See: Concur 2010 for proof in different language of transactions.

25/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The problem with traces very well-known

Trace equivalence insensitive to presence of deadlocks

In CCS : a.b.0 ≈tr a.b.0+ a.0

In TCCSm: What constitutes a deadlock?
In TCCSm: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive
to deadlocks

I Rob J. van Glabbeek: The Linear Time-Branching Time
Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

26/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The problem with traces very well-known

Trace equivalence insensitive to presence of deadlocks

In CCS : a.b.0 ≈tr a.b.0+ a.0

In TCCSm: What constitutes a deadlock?
In TCCSm: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive
to deadlocks

I Rob J. van Glabbeek: The Linear Time-Branching Time
Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

26/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The problem with traces very well-known

Trace equivalence insensitive to presence of deadlocks

In CCS : a.b.0 ≈tr a.b.0+ a.0

In TCCSm: What constitutes a deadlock?
In TCCSm: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive
to deadlocks

I Rob J. van Glabbeek: The Linear Time-Branching Time
Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

26/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS Bisimulations P ≈bisim Q

The largest relation over processes such that, if P ≈bisim Q then,
for every µ ∈ Actτ

I P
µ

=⇒ P ′ implies Q
µ

=⇒ Q ′ such that P ′ ≈bisim Q ′

I Q
µ

=⇒ Q ′ implies P
µ

=⇒ P ′ such that P ′ ≈bisim Q ′ symmetrically

Trace version:

The largest relation over processes such that, if P ≈bisim Q then,
for every s ∈ Act∗,

I P
s

=⇒ P ′ implies Q
s

=⇒ Q ′ such that P ′ ≈bisim Q ′

I Q
s

=⇒ Q ′ implies P
s

=⇒ P ′ such that P ′ ≈bisim Q ′ symmetrically

27/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS Bisimulations P ≈bisim Q

The largest relation over processes such that, if P ≈bisim Q then,
for every µ ∈ Actτ

I P
µ

=⇒ P ′ implies Q
µ

=⇒ Q ′ such that P ′ ≈bisim Q ′

I Q
µ

=⇒ Q ′ implies P
µ

=⇒ P ′ such that P ′ ≈bisim Q ′ symmetrically

Trace version:

The largest relation over processes such that, if P ≈bisim Q then,
for every s ∈ Act∗,

I P
s

=⇒ P ′ implies Q
s

=⇒ Q ′ such that P ′ ≈bisim Q ′

I Q
s

=⇒ Q ′ implies P
s

=⇒ P ′ such that P ′ ≈bisim Q ′ symmetrically

27/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm: Bisimulations a suggestion

The largest relation over transactions such that, if P ≈cbisim Q
then, for s ∈ Act∗,

I P
sZ=⇒ P ′ implies Q

sZ=⇒ Q ′ such that P ′ ≈cbisim Q ′

I Q
sZ=⇒ Q ′ implies P

sZ=⇒ P ′ such that P ′ ≈cbisim Q ′

Suspicions:

I In CCS : a.(b.0+ c .0) 6≈bisim a.b.0+ a.c .0

I In TCCSm:
Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

Question:

Should Ja.(b.co + c .co) .k 0K
?
≈behav Ja.b.co + a.c .co .k 0K

28/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm: Bisimulations a suggestion

The largest relation over transactions such that, if P ≈cbisim Q
then, for s ∈ Act∗,

I P
sZ=⇒ P ′ implies Q

sZ=⇒ Q ′ such that P ′ ≈cbisim Q ′

I Q
sZ=⇒ Q ′ implies P

sZ=⇒ P ′ such that P ′ ≈cbisim Q ′

Suspicions:

I In CCS : a.(b.0+ c .0) 6≈bisim a.b.0+ a.c .0

I In TCCSm:
Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

Question:

Should Ja.(b.co + c .co) .k 0K
?
≈behav Ja.b.co + a.c .co .k 0K

28/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm: Bisimulations a suggestion

The largest relation over transactions such that, if P ≈cbisim Q
then, for s ∈ Act∗,

I P
sZ=⇒ P ′ implies Q

sZ=⇒ Q ′ such that P ′ ≈cbisim Q ′

I Q
sZ=⇒ Q ′ implies P

sZ=⇒ P ′ such that P ′ ≈cbisim Q ′

Suspicions:

I In CCS : a.(b.0+ c .0) 6≈bisim a.b.0+ a.c .0

I In TCCSm:
Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

Question:

Should Ja.(b.co + c .co) .k 0K
?
≈behav Ja.b.co + a.c .co .k 0K

28/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Bisimulations

Robin Milner, Davide Sangiorgi: Barbed Bisimulation. ICALP 1992

We propose in this paper barbed bisimulation as a tool to
describe bisimulation-based equivalence uniformly for any
calculi possessing

(a) a reduction relation
(b) a convergency predicate which simply detects the

possibility of performing some observable action.

This opens interesting perspectives for the adoption of a
reduction semantics in process algebras. As a test-case
we prove that strong bisimulation of CCS coincides with
the congruence induced by barbed bisimulation.

29/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Bisimulations: Reduction closure

Requirement: A reduction relation P → Q between processes.

Definition:
A relation P ≈behav Q is reduction-closed if, whenever P ≈behav Q,

(i) P →∗ P ′ implies Q →∗ Q ′ such that P ′ ≈behav Q ′

(ii) Q →∗ Q ′ implies P →∗ P ′ such that P ′ ≈behav Q ′

Intuition:
P and Q must maintain the equivalent choice possibilities

30/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Bisimulations: Contextual equivalence : (variation on M & S)

Requirements:

(i) A collection of observation relations on processes: e.g. P ⇓ a
P can do the action a

(ii) a parallel operator on processes: e.g. P | Q

Definition: (Honda Yoshida)

P ≈cxt Q is the largest relation which is

I preserved by parallel composition

I reduction closed

I preserves observations.

Remark:
P ≈cxt Q is definable for many languages

31/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying Bisimulations: Contextual equivalence : (variation on M & S)

Requirements:

(i) A collection of observation relations on processes: e.g. P ⇓ a
P can do the action a

(ii) a parallel operator on processes: e.g. P | Q

Definition: (Honda Yoshida)

P ≈cxt Q is the largest relation which is

I preserved by parallel composition

I reduction closed

I preserves observations.

Remark:
P ≈cxt Q is definable for many languages

31/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS : Justifying Bisimulations

Theorem: In CCS P ≈cxt Q ⇐⇒ P ≈bisim Q

Significance:

I Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS

I Variations on bisimulations are also sound and complete for
many languages

Inconvenience:
In TCCSm: P ≈cbisim Q does NOT imply P ≈cxt Q cbisimulations are unsound

Counter-example:
I Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

I Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

32/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS : Justifying Bisimulations

Theorem: In CCS P ≈cxt Q ⇐⇒ P ≈bisim Q

Significance:

I Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS

I Variations on bisimulations are also sound and complete for
many languages

Inconvenience:
In TCCSm: P ≈cbisim Q does NOT imply P ≈cxt Q cbisimulations are unsound

Counter-example:
I Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

I Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

32/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS : Justifying Bisimulations

Theorem: In CCS P ≈cxt Q ⇐⇒ P ≈bisim Q

Significance:

I Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS

I Variations on bisimulations are also sound and complete for
many languages

Inconvenience:
In TCCSm: P ≈cbisim Q does NOT imply P ≈cxt Q cbisimulations are unsound

Counter-example:
I Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

I Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

32/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

CCS : Justifying Bisimulations

Theorem: In CCS P ≈cxt Q ⇐⇒ P ≈bisim Q

Significance:

I Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS

I Variations on bisimulations are also sound and complete for
many languages

Inconvenience:
In TCCSm: P ≈cbisim Q does NOT imply P ≈cxt Q cbisimulations are unsound

Counter-example:
I Ja.(b.co + c.co) .k 0K ≈cbisim Ja.b.co + a.c .co) .k 0K

I Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

32/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The inconvenience

P = Ja.(b.co + c .co) .k 0K Q = Ja.b.co + a.c .co .k 0K

I P 6≈cxt Q

I because P | Ja.co .k 0K 6≈cxt Q | Ja.co .k 0K
I because

I P | Ja.co .k 0K → Jb.co + c .co .k1 0K | Jco .k1 0K

I Q | Ja.co .k 0K →∗ ?

Moral:

Internal tentative decision states matter

remember CCS : a.(b.0 + c.0) 6≈cxt a.b.0 + a.c.0

33/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The inconvenience

P = Ja.(b.co + c .co) .k 0K Q = Ja.b.co + a.c .co .k 0K

I P 6≈cxt Q

I because P | Ja.co .k 0K 6≈cxt Q | Ja.co .k 0K
I because

I P | Ja.co .k 0K → Jb.co + c .co .k1 0K | Jco .k1 0K

I Q | Ja.co .k 0K →∗ ?

Moral:

Internal tentative decision states matter

remember CCS : a.(b.0 + c.0) 6≈cxt a.b.0 + a.c.0

33/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The inconvenience

P = Ja.(b.co + c .co) .k 0K Q = Ja.b.co + a.c .co .k 0K

I P 6≈cxt Q

I because P | Ja.co .k 0K 6≈cxt Q | Ja.co .k 0K
I because

I P | Ja.co .k 0K → Jb.co + c .co .k1 0K | Jco .k1 0K

I Q | Ja.co .k 0K →∗ ?

Moral:

Internal tentative decision states matter

remember CCS : a.(b.0 + c.0) 6≈cxt a.b.0 + a.c.0

33/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The inconvenience

P = Ja.(b.co + c .co) .k 0K Q = Ja.b.co + a.c .co .k 0K

I P 6≈cxt Q

I because P | Ja.co .k 0K 6≈cxt Q | Ja.co .k 0K
I because

I P | Ja.co .k 0K → Jb.co + c .co .k1 0K | Jco .k1 0K

I Q | Ja.co .k 0K →∗ ?

Moral:

Internal tentative decision states matter

remember CCS : a.(b.0 + c.0) 6≈cxt a.b.0 + a.c.0

33/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm Challenge

Find a notion of bisimulation which characterises contextual
equivalence ≈cxt

Obstacles:

I some tentative states are relevant:
Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

I some tentative states are not relevant:
Ja.(b.co + c.0) .k 0K ≈cxt Ja.b.co + a.c.0) .k 0K

History is important:

I record tentative actions

I later decide which actions were really relevant

34/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm Challenge

Find a notion of bisimulation which characterises contextual
equivalence ≈cxt

Obstacles:

I some tentative states are relevant:
Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

I some tentative states are not relevant:
Ja.(b.co + c.0) .k 0K ≈cxt Ja.b.co + a.c.0) .k 0K

History is important:

I record tentative actions

I later decide which actions were really relevant

34/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

TCCSm Challenge

Find a notion of bisimulation which characterises contextual
equivalence ≈cxt

Obstacles:

I some tentative states are relevant:
Ja.(b.co + c.co) .k 0K 6≈cxt Ja.b.co + a.c .co .k 0K

I some tentative states are not relevant:
Ja.(b.co + c.0) .k 0K ≈cxt Ja.b.co + a.c.0) .k 0K

History is important:

I record tentative actions

I later decide which actions were really relevant

34/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions

I Tentative external action: R � P
k(a)−−→ R′, k(a) � P ′ k fresh

I Internal action: R � P
τ−→ R′ � P ′

I housekeeping
I communication
I transaction commit/abort

R:

I records tentative external actions taken
I records retrospectively if tentative actions become

I permanent
I or aborted

35/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions

I Tentative external action: R � P
k(a)−−→ R′, k(a) � P ′ k fresh

I Internal action: R � P
τ−→ R′ � P ′

I housekeeping
I communication
I transaction commit/abort

R:

I records tentative external actions taken
I records retrospectively if tentative actions become

I permanent
I or aborted

35/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions

I Tentative external action: R � P
k(a)−−→ R′, k(a) � P ′ k fresh

I Internal action: R � P
τ−→ R′ � P ′

I housekeeping
I communication
I transaction commit/abort

R:

I records tentative external actions taken
I records retrospectively if tentative actions become

I permanent
I or aborted

35/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Example ε� Ja.p.co .l1 0K | Jb.q.co .l2 0K | Jc .q.p.co .l3 0K
k1(a)−−−→ fresh k1

k1(a) � Jp.co .k1 0K | Jb.q.co .l2 0K | Jc.q.p.co .l3 0K
k2(b)−−−→ fresh k2

k1(a) k2(b) � Jp.co .k1 0K | Jq.co .k2 0K | Jc .q.p.co .l3 0K
k3(c)−−−→ fresh k3

k1(a) k2(b) k3(c) � Jp.co .k1 0K | Jq.co .k2 0K | Jq.p.co .k3 0K
τ−→ communication

k1(a) k4(b) k4(c) � Jp.co .k1 0K | Jco .k4 0K | Jpco .k4 0K
τ−→ communication

k5(a) k5(b) k5(c) � Jco .k5 0K | Jco .k5 0K | Jco .k5 0K
τ−→ distributed commit

k5(co) k5(co) k5(co) � 0 | 0 | 0

36/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

What is recorded in R ?

R : I −→finite { k(a), k(co), k(ab) | k a transaction, a an action }
I I : an index set

Intuition: R � P

R(i) = k(a): k is the current name (in P) of transaction
used in ith external interaction

Note: Historical names are forgotten

37/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

What is recorded in R ?

R : I −→finite { k(a), k(co), k(ab) | k a transaction, a an action }
I I : an index set

Intuition: R � P

R(i) = k(a): k is the current name (in P) of transaction
used in ith external interaction

Note: Historical names are forgotten

37/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions: inference rules some

I External actions

I Commiting/aborting rules broadcasts

I Communication

I Contextual rules

I Housekeeping rules

38/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions: inference rules

Tentative external actions: k fresh

P
a−→ P ′ in CCS

R � JP .l QK
k(a)−−→ R{k/l}, k(a) � JP ′ .k QK

R � Σµi .Pi
k(a)−−→ R, k(a) � JPj | co .k Σµi .PiK µj = a

Intuition:
k is a fresh transaction in the environment requesting a
communication on a

39/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions: inference rules

Communication

R � P
k(a)−−→ Rσ, k(a) � P ′

K � Q
k(a)−−→ Kπ, k(a) � Q ′

R,K � P | Q τ−→ Rσπ,Kπσ � P ′ | Q ′

Intuition:

I standard CCS communication rule

I histories need updating

40/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions: Committing/Aborting
(r-co)

P
co→ P ′ in CCS

R � JP .k QK τ−→cok R \co k � P

Intuition:

I R \co k records that all tentative actions k(a) are now
permanent transforms every k(a) in R to k(co)

Example:

k3(a) k2(b) k3(c) � Jco.P .k3 0K | Jb.co.R .k2 0K | Jco.Q .k3 0K
τ−→cok

k3(co) k2(b) k3(co) � P | Jb.co.R .k2 0K | Q

41/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions: Committing/Aborting
(r-co)

P
co→ P ′ in CCS

R � JP .k QK τ−→cok R \co k � P

Intuition:

I R \co k records that all tentative actions k(a) are now
permanent transforms every k(a) in R to k(co)

Example:

k3(a) k2(b) k3(c) � Jco.P .k3 0K | Jb.co.R .k2 0K | Jco.Q .k3 0K
τ−→cok

k3(co) k2(b) k3(co) � P | Jb.co.R .k2 0K | Q

41/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History actions: Committing/Aborting

(r-co)

. . .
. . .

(r-Bcast)

R � P
τ−→cok R′ � P ′

K � Q
τ−→cok K′ � Q ′

R,K � P | Q τ−→cok R′,K′ � P | Q
(r-Ignore)

R � P
τ−→cok R′ � P ′

R,K � P | Q τ−→cok R′,K � P | Q
k fresh to K � Q

Intuition:

I All components of the distributed transaction k must commit
co→ simultaneously

42/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History bisimulations R � P ≈bisim K � Q

The largest relation over configurations such that, if
R � P ≈bisim K � Q then, for every µ

I R � P
µ

=⇒ R′ � P ′ implies K � Q
µ

=⇒ K′ � Q ′ such that
R′ � Q ′ ≈bisim K′ � Q ′

I symmetrically K � Q
µ

=⇒ K′ � Q ′ implies

I Records R, K are consistent: they agree on committed
actions.

Intuition:
Permanent actions must match

Consistent: for every index i ∈ I , R(i) = k(co) iff K(i) = k ′(co)

43/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History bisimulations R � P ≈bisim K � Q

The largest relation over configurations such that, if
R � P ≈bisim K � Q then, for every µ

I R � P
µ

=⇒ R′ � P ′ implies K � Q
µ

=⇒ K′ � Q ′ such that
R′ � Q ′ ≈bisim K′ � Q ′

I symmetrically K � Q
µ

=⇒ K′ � Q ′ implies

I Records R, K are consistent: they agree on committed
actions.

Intuition:
Permanent actions must match

Consistent: for every index i ∈ I , R(i) = k(co) iff K(i) = k ′(co)

43/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

A problem

Ja.b.co .k 0K ≈cxt Ja.b.co + a.c .0 .k 0K difficult to prove

But P = Ja.b.co .k 0K 6≈bisim Ja.b.co + a.c .0 .k 0K = Q

I ε � Q
k1(a)−−−→ k1(a) � Jc.0 .k1 0K

k2(c)−−−→ k2(a)k2(c) � J0 .k2
0K

I ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K

k2(c)
===⇒ ??

A solution:
Allow free degenerate tentative actions: R � S

k(x)−−→ R, k(ab) � S

Because:
I ε � P

k1(a)−−−→ k2(c)−−−→ k1(a)k2(ab) � Jb.co .k1 0K
τ−→ab k1(a)k2(ab) � 0

I and k2(a)k2(b) � J0 .k2 0K ≈bisim k1(a)k2(ab) � 0

44/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

A problem

Ja.b.co .k 0K ≈cxt Ja.b.co + a.c .0 .k 0K difficult to prove

But P = Ja.b.co .k 0K 6≈bisim Ja.b.co + a.c .0 .k 0K = Q

I ε � Q
k1(a)−−−→ k1(a) � Jc.0 .k1 0K

k2(c)−−−→ k2(a)k2(c) � J0 .k2
0K

I ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K

k2(c)
===⇒ ??

A solution:
Allow free degenerate tentative actions: R � S

k(x)−−→ R, k(ab) � S

Because:
I ε � P

k1(a)−−−→ k2(c)−−−→ k1(a)k2(ab) � Jb.co .k1 0K
τ−→ab k1(a)k2(ab) � 0

I and k2(a)k2(b) � J0 .k2 0K ≈bisim k1(a)k2(ab) � 0

44/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

A problem

Ja.b.co .k 0K ≈cxt Ja.b.co + a.c .0 .k 0K difficult to prove

But P = Ja.b.co .k 0K 6≈bisim Ja.b.co + a.c .0 .k 0K = Q

I ε � Q
k1(a)−−−→ k1(a) � Jc.0 .k1 0K

k2(c)−−−→ k2(a)k2(c) � J0 .k2
0K

I ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K

k2(c)
===⇒ ??

A solution:
Allow free degenerate tentative actions: R � S

k(x)−−→ R, k(ab) � S

Because:
I ε � P

k1(a)−−−→ k2(c)−−−→ k1(a)k2(ab) � Jb.co .k1 0K
τ−→ab k1(a)k2(ab) � 0

I and k2(a)k2(b) � J0 .k2 0K ≈bisim k1(a)k2(ab) � 0

44/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

A problem

Ja.b.co .k 0K ≈cxt Ja.b.co + a.c .0 .k 0K difficult to prove

But P = Ja.b.co .k 0K 6≈bisim Ja.b.co + a.c .0 .k 0K = Q

I ε � Q
k1(a)−−−→ k1(a) � Jc.0 .k1 0K

k2(c)−−−→ k2(a)k2(c) � J0 .k2
0K

I ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K

k2(c)
===⇒ ??

A solution:
Allow free degenerate tentative actions: R � S

k(x)−−→ R, k(ab) � S

Because:
I ε � P

k1(a)−−−→ k2(c)−−−→ k1(a)k2(ab) � Jb.co .k1 0K
τ−→ab k1(a)k2(ab) � 0

I and k2(a)k2(b) � J0 .k2 0K ≈bisim k1(a)k2(ab) � 0

44/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Justifying bisimulations

In TCCSm

P ≈bisim Q iff P ≈cxt Q

History bisimulations give a sound and complete proof
method for contextual equivalence of transactions
Fossacs 2014

45/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Inequivalent systems

In CCS :

I P = a.c .(d .0+ e.0) + a.c .e.0 6≈cxt a.(c .d .0+ c .e.0) = Q

I because P 6≈bisim Q

I because P and Q satisfy different behavioural properties

P |= 〈a〉 [c](〈d〉 tr ∧ 〈e〉 tr) while Q 6|= 〈a〉 [c](〈d〉 tr ∧ 〈e〉 tr)

In TCCSm:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

I P 6≈cxt Q

I because P 6≈bisim Q

I because ???

46/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Inequivalent systems

In CCS :

I P = a.c .(d .0+ e.0) + a.c .e.0 6≈cxt a.(c .d .0+ c .e.0) = Q

I because P 6≈bisim Q

I because P and Q satisfy different behavioural properties

P |= 〈a〉 [c](〈d〉 tr ∧ 〈e〉 tr) while Q 6|= 〈a〉 [c](〈d〉 tr ∧ 〈e〉 tr)

In TCCSm:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

I P 6≈cxt Q

I because P 6≈bisim Q

I because ???

46/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Inequivalent systems

In CCS :

I P = a.c .(d .0+ e.0) + a.c .e.0 6≈cxt a.(c .d .0+ c .e.0) = Q

I because P 6≈bisim Q

I because P and Q satisfy different behavioural properties

P |= 〈a〉 [c](〈d〉 tr ∧ 〈e〉 tr) while Q 6|= 〈a〉 [c](〈d〉 tr ∧ 〈e〉 tr)

In TCCSm:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

I P 6≈cxt Q

I because P 6≈bisim Q

I because ???

46/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In CCS : property logic HML

Properties: φ ::= 〈µ〉φ | ¬φ | ∧{i∈I} φi

Satisfaction:

I P |= 〈µ〉φ if P
µ

=⇒ Q, where Q |= φ

I P |= ∧{i∈I}φi if

Well-known result:
P 6≈bisim Q iff P |= φ, Q 6|= φ for some property φ ∈ HML

Intuition:
φ is a reason for the different behaviour between P and Q

47/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: Why are P , Q different ?

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

Intuition:

I P can perform tentative actions a, b in same transaction,
which can subsequently become permanent

I Q can only tentatively perform a, b in independent
transactions

Intuition unsupported by current action semantics:

ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K
k2(b)−−−→ k2(a)k2(b) � Jb.co .k2 0K

48/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: Why are P , Q different ?

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

Intuition:

I P can perform tentative actions a, b in same transaction,
which can subsequently become permanent

I Q can only tentatively perform a, b in independent
transactions

Intuition unsupported by current action semantics:

ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K
k2(b)−−−→ k2(a)k2(b) � Jb.co .k2 0K

48/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: Why are P , Q different ?

P = Ja.b.co .k 0K Q = νp.Ja.co.p .k1 0K | Jp.b.co .k2 0K

Intuition:

I P can perform tentative actions a, b in same transaction,
which can subsequently become permanent

I Q can only tentatively perform a, b in independent
transactions

Intuition unsupported by current action semantics:

ε � P
k1(a)−−−→ k1(a) � Jb.co .k1 0K
k2(b)−−−→ k2(a)k2(b) � Jb.co .k2 0K

48/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History is important

Recall R � P

I R : I −→ { k(a), k(co), k(ab) | k a transaction name }
I R(i) = k(a): k is the current name in P of ith interaction

New Configurations: remember historic actions

H;R � P where
I H equivalence relation over names

I H |= k1 ∼ k2 means k1, k2 are the same transactions

I R(i) is the historic name used in ith interaction

Example:

ε � P
k1(a)−−−→ {k1} : k1(a) � Jb.co .k1 0K
k2(b)−−−→ {k1, k2}; k1(a)k2(b) � Jco .k2 0K

49/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History is important

Recall R � P

I R : I −→ { k(a), k(co), k(ab) | k a transaction name }
I R(i) = k(a): k is the current name in P of ith interaction

New Configurations: remember historic actions

H;R � P where
I H equivalence relation over names

I H |= k1 ∼ k2 means k1, k2 are the same transactions

I R(i) is the historic name used in ith interaction

Example:

ε � P
k1(a)−−−→ {k1} : k1(a) � Jb.co .k1 0K
k2(b)−−−→ {k1, k2}; k1(a)k2(b) � Jco .k2 0K

49/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

History is important

Recall R � P

I R : I −→ { k(a), k(co), k(ab) | k a transaction name }
I R(i) = k(a): k is the current name in P of ith interaction

New Configurations: remember historic actions

H;R � P where
I H equivalence relation over names

I H |= k1 ∼ k2 means k1, k2 are the same transactions

I R(i) is the historic name used in ith interaction

Example:

ε � P
k1(a)−−−→ {k1} : k1(a) � Jb.co .k1 0K
k2(b)−−−→ {k1, k2}; k1(a)k2(b) � Jco .k2 0K

49/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: property logic trHML

Properties: φ ::= 〈k(a)〉φ | 〈τ〉φ | Isco(k) | ¬φ | ∧{i∈I} φi

Satisfaction:

I H;R � P |= 〈k(a)〉φ if H;R � P
k ′(a)
==⇒ H ′;R′ � Q, where

I H ′;R′ � Q |= φ
I E |= k ∼ k ′

I H;R � P |= Isco(k) if ∃i , R(i) = k ′(co), H |= k ∼ k ′

Example:

P = Ja.b.co .k1 0K Q = νp.Ja.p.co .k1 0K | Jb.p.co .k2 0K

ε � P |= 〈k(a)〉 〈k(b)〉 Isco(k)

ε � Q 6|= . . .

50/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: property logic trHML

Properties: φ ::= 〈k(a)〉φ | 〈τ〉φ | Isco(k) | ¬φ | ∧{i∈I} φi

Satisfaction:

I H;R � P |= 〈k(a)〉φ if H;R � P
k ′(a)
==⇒ H ′;R′ � Q, where

I H ′;R′ � Q |= φ
I E |= k ∼ k ′

I H;R � P |= Isco(k) if ∃i , R(i) = k ′(co), H |= k ∼ k ′

Example:

P = Ja.b.co .k1 0K Q = νp.Ja.p.co .k1 0K | Jb.p.co .k2 0K

ε � P |= 〈k(a)〉 〈k(b)〉 Isco(k)

ε � Q 6|= . . .

50/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: property logic trHML

Conjecture:

P 6≈bisim Q iff P |= φ, Q 6|= φ for some property φ ∈ trHML

Example:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

P |= ?????

Q 6|= ????

P |= 〈k(a)〉 〈k(b)〉 Isco(k)

Q 6|= 〈k(a)〉 〈k(b)〉 Isco(k)

51/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: property logic trHML

Conjecture:

P 6≈bisim Q iff P |= φ, Q 6|= φ for some property φ ∈ trHML

Example:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

P |= ?????

Q 6|= ????

P |= 〈k(a)〉 〈k(b)〉 Isco(k)

Q 6|= 〈k(a)〉 〈k(b)〉 Isco(k)

51/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: property logic trHML

Conjecture:

P 6≈bisim Q iff P |= φ, Q 6|= φ for some property φ ∈ trHML

Example:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

P |= ?????

Q 6|= ????

P |= 〈k(a)〉 〈k(b)〉 Isco(k)

Q 6|= 〈k(a)〉 〈k(b)〉 Isco(k)

51/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

In TCCSm: property logic trHML

Conjecture:

P 6≈bisim Q iff P |= φ, Q 6|= φ for some property φ ∈ trHML

Example:

P = Ja.co .k1 0K | Jb.co .k2 0K
Q = νp.p | Ja.p.co.p .k1 0K | Jb.p.co.p .k2 0K

P |= ?????

Q 6|= ????

P |= 〈k(a)〉 〈k(b)〉 Isco(k)

Q 6|= 〈k(a)〉 〈k(b)〉 Isco(k)

51/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

Some work done. More to do.

I Language design and implementation

I Behavioural semantics
I Decision procedures for equivalence

upcoming PhD thesis: Carlo Spaccasassi
I More expressive transaction constructs.

eg. nested transactions

I Variations
I Reversible programming languages
I Web services: long running transactions with compensations

I

52/53

Co-operating Transactions TransCCS Behaviour History bisimulations Property logics

The end

THANKS

Joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de
Vries

53/53

	Co-operating Transactions what are they?
	TransCCS
	Behaviour
	History bisimulations
	Property logics

