
Languages and Calculi for Collective Adaptive
Systems

Rocco De Nicola

Joint work with
Y. A. Alrahman, M. Loreti, R. Pugliese and F. Tiezzi

IFIP W.G. 2.2 Meeting
Lucca – September 2015

Contents

1 Introduction

2 Programming Abstractions for CAS

3 SCEL: A Language for CAS

4 Collectives Formation in SCEL

5 AbC: A Process Calculus for CAS

6 A Behavioral Theory for AbC

7 Ongoing and Future work

R. De Nicola 1/49

Collective Adaptive Systems - CAS

CAS are software-intensive systems featuring

I massive numbers of components

I complex interactions among components, and other systems

I operating in open and non-deterministic environments

I dynamically adapting to new requirements, technologies and
environmental conditions

Challenges for software development for CAS

I the dimension of the systems

I the need to adapt to changing environments and requirements

I the emergent behaviour resulting from complex interactions

I the uncertainty during design-time and run-time

Introduction R. De Nicola 2/49

Examples of CAS

Introduction R. De Nicola 3/49

Importance of languages

Languages play a key role in the engineering of CAS.

I Systems must be specified as naturally as possible

I distinctive aspects of the domain need to be first-class citizens to
guarantee intuitive/concise specifications and avoid encodings

I high-level abstract models guarantee feasible analysis

I the analysis of results is based on system features, not on their
low-level representation to better exploit feedbacks

The big challenge for language designers is to devise appropriate
abstractions and linguistic primitives to deal with the specificities of the
systems under consideration

Introduction R. De Nicola 4/49

Key Concepts of CAS

We need to enable programmers to model and describe the behavior of
service components ensembles, their interactions, and their sensitivity and
adaptivity to the environment.

Notions to model

1. The behaviors of components and their interactions

2. The topology of the network needed for interaction, taking into
account resources, locations, visibility, reachability issues

3. The environment where components operate and resource-negotiation
takes place, taking into account open ended-ness and adaptation

4. The global knowledge of the systems and of its components

5. The tasks to be accomplished, the properties to guarantee and the
constraints to respect.

Introduction R. De Nicola 5/49

Programming abstractions for CAS

The Service-Component Ensemble Language (SCEL) currently provides
primitives and constructs for dealing with 4 programming abstractions.

1. Knowledge: to describe how data, information and (local and global)
knowledge is managed

2. Behaviours: to describe how systems of components progress

3. Aggregations: to describe how different entities are brought together
to form components, systems and, possibly, ensembles

4. Policies: to model and enforce the wanted evolutions of computations.

Programming Abstractions for CAS R. De Nicola 6/49

Components and Systems

Aggregations describe how different entities are brought togheter and
controlled:

I Components:

Knowledge
K

Processes

P

I Interface

Π
Policies

I Systems:

Knowledge
K

Processes

P

I Interface

Π
Policies

Knowledge
K

Processes

P

I Interface

Π
Policies

. . .
Knowledge
K

Processes

P

I Interface

Π
Policies

SCEL: A Language for CAS R. De Nicola 7/49

A reasoning SCEL component

Knowledge

K
Processes

P

I Interface

Π
Policies

Normal flow

Reasoner
Integrator

RI
Reasoner
R

Reasoning request

Providing Reasoning Capabilities

SCEL programs to take decisions may resort to external reasoners that can
have a fuller view of the environment in which single components are
operating.
SCEL: A Language for CAS R. De Nicola 8/49

SCEL: Syntax (in one slide)

Systems: S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

Components:C ::= I[K,Π,P]

Knowledge: K ::= . . . currently, just tuple spaces

Policies: Π ::= . . . currently, interaction and FACPL policies

Processes: P ::= nil
∣∣ a.P ∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X ∣∣ A(p̄) (A(f̄) , P)

Actions: a ::= get(T)@c
∣∣qry(T)@c

∣∣put(t)@c
∣∣fresh(n)

∣∣new(I,K,Π,P)

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

Items: t ::= . . . currently, tuples

Templates: T ::= . . . currently, tuples with variables

SCEL: A Language for CAS R. De Nicola 9/49

An ensemble

Collectives Formation in SCEL R. De Nicola 10/49

Collective Adaptive Systems as Ensembles

Systems are structured as sets of components dynamically forming
interacting ensembles

I Components have an interface exposing component attributes

I Ensembles are not rigid networks but highly flexible structures where
components linkages are dynamically established

I Interaction between components is based on attributes and predicates
over attributes that permit dynamically specifying targets of
communication actions

Collectives Formation in SCEL R. De Nicola 11/49

Where are ensembles in SCEL?

I SCEL syntax does not have specific syntactic constructs for building
ensembles.

I Components Interfaces specify (possibly dynamic) attributes (features)
and functionalities (services provided).

I Predicate-based communication tests attributes to select the
communication targets among those enjoying specific properties.

Communication targets are predicates!!

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

By sending to, or retrieving and getting from predicate P one components
interacts with all the components that satisfy the same predicate.

Collectives Formation in SCEL R. De Nicola 12/49

Predicate-based ensembles

I Ensembles are determined by the predicates validated by each
component.

I There is no coordinator, hence no bottleneck or critical point of failure

I A component might be part of more than one ensemble

Collectives Formation in SCEL R. De Nicola 13/49

Example Predicates

I id ∈ {n,m, p}
I active = yes ∧ battery level > 30%

I rangemax >
√

(this.x − x)2 + (this.y − y)2

I true

I trust level > medium

I . . .

I trousers = red

I shirt = green

Collectives Formation in SCEL R. De Nicola 14/49

Alternative rendering of ensembles

Alternative characterization of ensembles

Apart for using predicates as targets of interaction actions (send, retrieve
and get) to identify components of an ensemble and guarantee general
communication between members of the same ensemble we have
experimented with two additional alternatives:

I Adding a specific syntactic category for ensembles that would define
static ensembles

I Enriching interfaces of components with special attributes, ensemble
and membership, to single out groups of components forming an
ensemble; each ensemble has an initiator but can change dynamically.

Collectives Formation in SCEL R. De Nicola 15/49

Static ensembles

Drawback
I The structure of the aggregated components is static, defined once

and for all.

I a component can be part of just one ensemble.
Collectives Formation in SCEL R. De Nicola 16/49

Dynamic ensemble

Drawback

An ensemble dissolves if its coordinator disappears: single point of failure.

Collectives Formation in SCEL R. De Nicola 17/49

Dynamic ensemble

Drawback

An ensemble dissolves if its coordinator disappears: single point of failure.

Collectives Formation in SCEL R. De Nicola 17/49

Running SCEL with jRESP

A Java-based run-time Environment for SCEL

jRESP - http://jresp.sourceforge.net/ - the runtime environment for the
SCEL paradigm

1. an API permitting using SCEL constructs in Java programs

2. heavy use of recurrent patterns to simplify the development of specific

I knowledge (a single interface that contains basic methods to
interact with knowledge)

I policies (based on the pattern composite with policies structured
as a stack)

I . . .

3. a simulation module permitting to simulate SCEL programs and collect
relevant data for analysis

4. based on open technologies to support the integration with other
tools/frameworks or with alternative implementations of SCEL

Collectives Formation in SCEL R. De Nicola 18/49

Robotics scenario in SCEL

Robot Swarms

Robots of a swarm have to reach different target zones according to their
assigned tasks (help other robots, reach a safe area, clear a minefield, etc.)

Robots:
I have limited battery lifetime

I can discover target locations

I can inform other robots about
their location

The behaviour of each robot is implemented as AM[ME] where the
autonomic manager AM controls the execution of the managed element
ME . A general scenario can be expressed in SCEL as a system:

I[Ki ,Πi ,Pi] ‖ J [Kj ,Πj ,Pj] . . .L[Kl ,Πl ,Pl]

Collectives Formation in SCEL R. De Nicola 19/49

Victim rescuing robotics scenario

WORKERS

LANDMARKS

VICTIM

robot
perception range

I Two kind of robots (landmarks and
workers) and one victim to be
rescued

I No obstacles (except room walls)

I Landmarks randomly walk until
victim is found; they choose a new
random direction when a wall is hit

I Workers initially motionless; they
move only when signalled by
landmarks

Collectives Formation in SCEL R. De Nicola 20/49

Victim rescuing robotics scenario

2

01

1

2

3

3

1. A landmark that perceives the
victim stops and locally publishes
the information that it is at ‘hop’
0 from the victim

2. All the other landmarks in its
range of communication stop
and locally publish the
information that they are at
‘hop’ 1 from victim

3. And so on . . .

Collectives Formation in SCEL R. De Nicola 21/49

Victim rescuing robotics scenario

I We obtain a sort of computational
fields leading to the victim that can
be exploited by workers

I When workers reach a landmark at
hop d they look for a landmark at
hop d − 1 until they find the victim

Collectives Formation in SCEL R. De Nicola 22/49

Victim rescuing robotics scenario

LANDMARKS BEHAVIOUR: VictimSeeker [DataForwarder [RandomWalk]]

VictimSeeker =
qry(“victimPerceived”, true)@self .
put(“stop”)@self .
put(“victim”, self , 0)@self

DataForwarder =
qry(“victim”, ?id , ?d)@(role = “landmark”).
put(“stop”)@self .
put(“victim”, self , d + 1)@self

RandomWalk =
put(“direction”, 2πrand())@self .
qry(“collision”, true)@self .
RandomWalk

WORKERS BEHAVIOUR: GoToVictim

GoToVictim =
qry(“victim”, ?id , ?d)@(role = “landmark”).
put(”start”)@self .
put(“direction”, towards(id))@self .
while(d > 0){ d := d − 1.

qry(“victim”, ?id , d)@(role = “landmark”).
put(“direction”, towards(id))@self }

qry(“victimPerceived”, true)@self .
put(“stop”)@self

Collectives Formation in SCEL R. De Nicola 23/49

Victim rescuing robotics scenario

LANDMARKS BEHAVIOUR: VictimSeeker [DataForwarder [RandomWalk]]

VictimSeeker =
qry(“victimPerceived”, true)@self .
put(“stop”)@self .
put(“victim”, self , 0)@self

DataForwarder =
qry(“victim”, ?id , ?d)@(role = “landmark”).
put(“stop”)@self .
put(“victim”, self , d + 1)@self

RandomWalk =
put(“direction”, 2πrand())@self .
qry(“collision”, true)@self .
RandomWalk

WORKERS BEHAVIOUR: GoToVictim

GoToVictim =
qry(“victim”, ?id , ?d)@(role = “landmark”).
put(”start”)@self .
put(“direction”, towards(id))@self .
while(d > 0){ d := d − 1.

qry(“victim”, ?id , d)@(role = “landmark”).
put(“direction”, towards(id))@self }

qry(“victimPerceived”, true)@self .
put(“stop”)@self

Collectives Formation in SCEL R. De Nicola 23/49

Victim rescuing robotics scenario

VictimSeeker =
qry(“victimPerceived”, true)@self .
put(“stop”)@self .
put(“victim”, self , 0)@self

public class VictimSeeker extends Agent {
private int robotId;

protected void doRun() throws IOException, InterruptedException{
query(new Template(new ActualTemplateField(”VICTIM PERCEIVED”),

new ActualTemplateField(true)) ,
Self.SELF);

put(new Tuple(”stop”) , Self.SELF);
put(new Tuple(”victim” , robotId , 0) , Self.SELF);
}

}
}

Collectives Formation in SCEL R. De Nicola 24/49

Victim rescuing robotics scenario

DEMO: video. . .

Collectives Formation in SCEL R. De Nicola 25/49

Victim rescuing robotics scenario

Probability of rescuing the victim within a given time

0 1000 2000 3000 4000 5000
Time steps (t)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
(p

)

10 Landmarks
20 Landmarks
50 Landmarks
100 Landmarks

Collectives Formation in SCEL R. De Nicola 26/49

Intermezzo

Collectives Formation in SCEL R. De Nicola 27/49

Distilling a calculus from SCEL

Towards a Theory of CAS

We aim at developing a theoretical foundation of CAS, starting from their
distinctive features, summarized as follows:

I CAS consist of large numbers of interacting components which exhibit
complex behaviors depending on their attributes, objectives and
actions.

I CAS components may enter or leave the collective at anytime and
might have different (possibly conflicting) objectives and need to
dynamically adapt to new requirements and contextual conditions.

AbC: A calculus with Attribute based Communication

We have defined AbC, a calculus inspired by SCEL and focusing on a
minimal set of primitives that rely on attribute-based communication for
systems interaction.

AbC: A Process Calculus for CAS R. De Nicola 28/49

AbC at a glance

I Systems are represented as sets of parallel components, each of them
equipped with a set of attributes whose values can be modified by
internal actions.

I Communication actions (send and receive) are decorated with
predicates over attributes that partners have to satisfy to make the
interaction possible.

I Communication takes place in an implicit multicast fashion, and
communication partners are selected by relying on predicates over the
attributes exposed in their interfaces.

I Components are unaware of the existence of each other and they
receive messages only if they satisfy senders requirements.

I Components can offer different views of themselves and can
communicate with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are
blocking in that they can only take place through synchronization with
an available sent message.

AbC: A Process Calculus for CAS R. De Nicola 29/49

AbC at a glance

I Systems are represented as sets of parallel components, each of them
equipped with a set of attributes whose values can be modified by
internal actions.

I Communication actions (send and receive) are decorated with
predicates over attributes that partners have to satisfy to make the
interaction possible.

I Communication takes place in an implicit multicast fashion, and
communication partners are selected by relying on predicates over the
attributes exposed in their interfaces.

I Components are unaware of the existence of each other and they
receive messages only if they satisfy senders requirements.

I Components can offer different views of themselves and can
communicate with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are
blocking in that they can only take place through synchronization with
an available sent message.

AbC: A Process Calculus for CAS R. De Nicola 29/49

AbC at a glance

I Systems are represented as sets of parallel components, each of them
equipped with a set of attributes whose values can be modified by
internal actions.

I Communication actions (send and receive) are decorated with
predicates over attributes that partners have to satisfy to make the
interaction possible.

I Communication takes place in an implicit multicast fashion, and
communication partners are selected by relying on predicates over the
attributes exposed in their interfaces.

I Components are unaware of the existence of each other and they
receive messages only if they satisfy senders requirements.

I Components can offer different views of themselves and can
communicate with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are
blocking in that they can only take place through synchronization with
an available sent message.

AbC: A Process Calculus for CAS R. De Nicola 29/49

AbC at a glance

I Systems are represented as sets of parallel components, each of them
equipped with a set of attributes whose values can be modified by
internal actions.

I Communication actions (send and receive) are decorated with
predicates over attributes that partners have to satisfy to make the
interaction possible.

I Communication takes place in an implicit multicast fashion, and
communication partners are selected by relying on predicates over the
attributes exposed in their interfaces.

I Components are unaware of the existence of each other and they
receive messages only if they satisfy senders requirements.

I Components can offer different views of themselves and can
communicate with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are
blocking in that they can only take place through synchronization with
an available sent message.

AbC: A Process Calculus for CAS R. De Nicola 29/49

AbC at a glance

I Systems are represented as sets of parallel components, each of them
equipped with a set of attributes whose values can be modified by
internal actions.

I Communication actions (send and receive) are decorated with
predicates over attributes that partners have to satisfy to make the
interaction possible.

I Communication takes place in an implicit multicast fashion, and
communication partners are selected by relying on predicates over the
attributes exposed in their interfaces.

I Components are unaware of the existence of each other and they
receive messages only if they satisfy senders requirements.

I Components can offer different views of themselves and can
communicate with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are
blocking in that they can only take place through synchronization with
an available sent message.

AbC: A Process Calculus for CAS R. De Nicola 29/49

AbC at a glance

I Systems are represented as sets of parallel components, each of them
equipped with a set of attributes whose values can be modified by
internal actions.

I Communication actions (send and receive) are decorated with
predicates over attributes that partners have to satisfy to make the
interaction possible.

I Communication takes place in an implicit multicast fashion, and
communication partners are selected by relying on predicates over the
attributes exposed in their interfaces.

I Components are unaware of the existence of each other and they
receive messages only if they satisfy senders requirements.

I Components can offer different views of themselves and can
communicate with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are
blocking in that they can only take place through synchronization with
an available sent message.

AbC: A Process Calculus for CAS R. De Nicola 29/49

AbC through a running example

I A swarm of robots is spread throughout a disaster
area with the goal of locating victims to rescue.

I Robots have rôles modeled via functional behaviors
that can be changed via approriate adaptation
mechanisms.

I Initially all robots are explorers; a robot that finds a
victim becomes a rescuer and sends info about the
victim to nearby explorers; to form ensembles.

I An explorer that receives information about a victim
changes its rôle into helper and joins the rescuers
ensemble.

I The rescuing procedure starts when the ensemble is
complete.

Some of the attributes (e.g. battery level) are the projection of the robot
internal state controlled via sensors and actuators.
AbC: A Process Calculus for CAS R. De Nicola 30/49

AbC Components

(Components) C ::= Γ :P | C1‖C2 | νxC

I Single component Γ :P – Γ denotes sets of attributes and P processes

I Parallel composition ‖ – of components

I Name restriction νx (to delimit the scope of name x) – in C1‖(νx)C2,
name x is invisible from within C1

Running example (step 1/5)

I Each robot is modeled as an AbC component (Roboti) of the following
form (Γi :PR).

I Robots execute in parallel and collaborate.

Robot1‖ . . . ‖Robotn

AbC: A Process Calculus for CAS R. De Nicola 31/49

AbC Processes

P ::= 0 | Act.P | new(x)P | 〈Π〉P | P1 + P2 | P1|P2 | K

I new(x)P – Process name restriction

I 〈Π〉P – blocks P until the evaluation of Π under the local environment
becomes true (awareness operator).

I Act – communication and attribute update actions

Running example (step 2/5)

PR running on a robot has the following form:

PR , (〈Π〉a1.P1 + a2.P2)|P3

I When Π evaluates to true (e.g., victim detection), the process
performs action a1 and continues as P1;

I Otherwise PR performs a2 to continue as P2 (help rescuing a victim).

AbC: A Process Calculus for CAS R. De Nicola 32/49

Example Cont.

AbC Actions

Act ::= Π(x̃) | (Ẽ)@Π `s | [a := E]

I Π(x̃) – receive from those components satisfying Π;

I (Ẽ)@Π `s – send to components satisfying Π where s is the set of
exposed attributes;

I [a := E] – the value of attribute a is updated with the result of the
evaluation of E .

Running example (step 3/5)

I By specifying Π, a1, and a2, PR becomes:

PR ,

(〈this.victimPerceived = tt〉[this.state := stop].P1

+

(this.id , qry)@(role = rescuer ∨ role = helper)`{role} .P2) | P3

AbC: A Process Calculus for CAS R. De Nicola 33/49

AbC Calculus

(Components) C ::= Γ :P | C1‖C2 | νxC

(Processes) P ::=

(Inaction) 0

(Input) | Π(x̃).P

(Output) | (Ẽ)@Π `s .P
(Update) | [a := E].P

(New) | new(x)P

(Match) | 〈Π〉P
(Choice) | P1 + P2

(Par) | P1|P2

(Call) | K

(Predicates) Π ::= tt | a = u | Π1 ∧ Π2 | ¬Π

(Data) u ::= v | x

AbC: A Process Calculus for CAS R. De Nicola 34/49

Operational Semantics

Transitions Labels
I we use the λ-label to range over broadcast, input, update and internal

labels respectively

λ ∈ {νx̃Γ:(ṽ)@Π, Γ:(ṽ)@Π, [a := v], τ}

I we use the α-label to range over all λ-labels plus the input-discarding
label as follows:

α ∈ λ ∪ { ˜Γ:(ṽ)@Π}

AbC: A Process Calculus for CAS R. De Nicola 35/49

Operational Semantics

Processes and Systems Semantics

AbC is equipped with a two levels labelled semantics.

1. the behaviour of processes is modelled by the transition relation
7−→ ⊆ Proc × PLAB × Proc

2. the behaviour of component is modelled by the transition relation:
−→ ⊆ Comp × CLAB × Comp

where

I Proc stands for Processes and Comp stands for a Components,

I PLAB stands stands for
{νx̃Γ:(ṽ)@Π, Γ:(ṽ)@Π, [a := v], τ , ˜Γ:(ṽ)@Π}

I CLAB stands for {νx̃Γ:(ṽ)@Π, Γ:(ṽ)@Π, τ}

AbC: A Process Calculus for CAS R. De Nicola 36/49

Semantics of Processes (excerpt)

(Brd)
JẼKΓ = ṽ JΠ1KΓ = Π

(Ẽ)@Π1 `s .P
Γ|s :(ṽ)@Π7−−−−−−→Γ P

Γ|s =

{
Γ(a) if a ∈ s

⊥ otherwise

(Rcv)
JΠ1[ṽ/x̃]KΓ = Π′1 (Γ′ |= Π′1)

Π1(x̃).P
Γ′:(ṽ)@Π27−−−−−−→Γ P[ṽ/x̃]

Running example (step 4/5)

I PR resides within a robot with Γ(id) = 1

I Some possible evolutions where Γ′ = Γ1|{role} are:

PR
[this.state:=stop]7−−−−−−−−−−−→Γ1 P1|P3

PR
Γ′:(1, qry)@(role=rescuer ∨ role=helper)7−−−−−−−−−−−−−−−−−−−−−−−−−→Γ1 P2|P3

AbC: A Process Calculus for CAS R. De Nicola 37/49

From Processes to Components (excerpt)

(C-Brd)
P

Γ′:(ṽ)@Π7−−−−−→Γ P ′

Γ :P
Γ′:(ṽ)@Π−−−−−→ Γ :P ′

(C-Rcv)
P

Γ′:(ṽ)@Π7−−−−−→Γ P ′

Γ :P
Γ′:(ṽ)@Π−−−−−→ Γ :P ′

(Γ |= Π)

(Com)
C1

νx̃Γ:(ṽ)@Π−−−−−−→ C ′1 C2
Γ:(ṽ)@Π−−−−−→ C ′2 Π 6= ff

C1 ‖ C2
νx̃Γ:(ṽ)@Π−−−−−−→ C ′1 ‖ C ′2

x̃ ∩ fn(C2) = ∅

Running example (step 5/5): Further specifying P2 in PR

Query , (this.id , qry)@(role = rescuer ∨ role = helper) `{role} .
(((role = rescuer ∨ role = helper) ∧ x = ack)

(victimpos , x).P ′2
+

Query)
AbC: A Process Calculus for CAS R. De Nicola 38/49

From Processes to Components (excerpt)

Running example (step 5/5): Cont.

I Assume Robot2 is “rescuer”, Robot3 is “helper”, and all others are
explorers.

I Robot3 received victim information from Robot2 and now is in charge.

I Robot1 sent a msg containing its identity “this.id” and “qry” request
and Robot3 caught it. Now by using rule (C-Brd), Robot3 sends the
victim position “< 3, 4 >” and “ack” back to Robot1 as follows:

Γ3 :PR3

Γ:(<3,4>, ack)@(id=1)−−−−−−−−−−−−−−→ Γ3 :P ′R3
where Γ = Γ3|{role}.

I Robot1 applies rule (C-Rcv) to receive victim information and
generates this transition.

Γ1 :PR1

Γ:(<3,4>, ack)@(id=1)−−−−−−−−−−−−−−→
Γ1 :P ′2[< 3, 4 >/victimpos , ack/x]

AbC: A Process Calculus for CAS R. De Nicola 39/49

From Processes to Components (excerpt)

Running example (step 5/5): Cont.

I Robots can perform the above transitions since

Γ1 |= (id = 1) and Γ |= ((role = rescuer ∨ role = helper) ∧ x = ack).

Other robots discard the broadcast.

I Now the overall system evolves by applying rule (Com) as follows:

S
Γ:(<3,4>, ack)@(id=1)−−−−−−−−−−−−−−→ Γ1 :P ′2[< 3, 4 >/victimpos , ack/x] ‖

Γ2 :PR2‖ Γ3 :P ′R3
‖ . . . ‖ Γn :PRn

AbC: A Process Calculus for CAS R. De Nicola 40/49

Behavioral Theory for AbC

Some Notations

I =⇒ denotes
τ−→∗

I
γ

=⇒ denotes =⇒ γ−→=⇒ if (γ 6= τ)

I
γ̂

=⇒ denotes =⇒ if (γ = τ) and
γ

=⇒ otherwise.

I _ denotes { γ−→ | γ is an output or γ = τ}
I _∗ denotes(_)∗

A context C[•] is a component term with a hole, denoted by [•] and AbC
contexts are generated by the following grammar:

C[•] ::= [•] | [•]‖C | C‖[•] | νx [•]

A Behavioral Theory for AbC R. De Nicola 41/49

Bisimulation for AbC Components

Weak Labelled Bisimulation

A symmetric binary relation R over the set of AbC-components is a weak
bisimulation if for every action γ, whenever (C1,C2) ∈ R and

• γ is of the form τ, Γ:(ṽ)@Π, or (νx̃Γ:(ṽ)@Π with JΠK 6= ff), it holds

that C1
γ−→ C ′1 implies C2

γ̂
=⇒ C ′2 and (C ′1,C

′
2) ∈ R

Bisimilarity

Two components C1 and C2 are weak bisimilar, written C1 ≈ C2 if there
exists a weak bisimulation R relating them. Strong bisimilarity, “∼”, is
defined in a similar way by replacing =⇒ with −→.

A Behavioral Theory for AbC R. De Nicola 42/49

Barbed Congruence

Observable Barbs

Let C↓Π mean that component C can broadcast a message with a predicate

Π (i.e., C
νx̃Γ:(ṽ)@Π−−−−−−→ where JΠK 6= ff). We write C ⇓Π if C _∗ C ′ ↓Π.

Weak Reduction Barbed Congruence

A symmetric relation R over the set of AbC-components which is
barb-preserving, reduction-closed, and context-closed.

Barbed Bisimilarity

Two components are weak reduction barbed congruent, written C1
∼= C2, if

(C1,C2) ∈ R for some reduction barbed congruent relation R. The strong
reduction congruence “'” is obtained in a similar way by replacing ⇓ with ↓
and _∗ with _ .

C1
∼= C2 if and only if C1 ≈ C2.

A Behavioral Theory for AbC R. De Nicola 43/49

Encoding the bπ-calculus

A bπ-calculus process P is rendered as an AbC component Γp :P where
Γp = {(portx , x)| for all x ∈ Ch}

Possible problem

Impossibility of specifying the channel along which the exchange has to
happen.

Way out

Every broadcast contains only a single exposed attribute; the intended
channel.

L āx̃ .P M , (x̃)@Π `{Porta} .L P M with Π = (Porta = a)

L a(x̃).P M , Π(x̃).L P M with Π = (Porta = a)

A Behavioral Theory for AbC R. De Nicola 44/49

Encoding Interaction Patterns

Group-based interaction

I A group name is encoded as an attribute in AbC.

I The constructs for joining or leaving a given group can be encoded as
attribute updates.

I . . .

Γ1 : (msg)@(group = b) `{group}
‖
Γ2 : (group = a)(x)| [this.group := c]
‖

...
‖
Γ7 : (group = a)(x)| [this.group := b]

Let Γ1(group) = a, Γ2(group) = b, Γ7(group) = c
A Behavioral Theory for AbC R. De Nicola 45/49

Encoding Interaction Cont.

Publish/subscribe interaction

I A special case of attribute-based communication.

I Publishers send tagged messages for all.

I Subscribers check the compatibility of messages according to their
subscriptions.

Γ1 : (msg)@(tt) `{topic} ‖
Γ2 : (topic = this.subscription)(x) ‖

...

Γn : (topic = this.subscription)(x) ‖

Observation

The dynamic settings of the attributes in AbC and the possibility of
controlling their visibility during interactions are the main reasons of why
AbC flexibility and expressive power.
A Behavioral Theory for AbC R. De Nicola 46/49

Ongoing & Future Work

We have concentrated on modelling behaviors of components and their
interactions. We are currently tackling other research items.

I working on interaction policies for SCEL to study the possibility of
modelling different forms of synchronization and communication

I considering different knowledge repositories and ways of expressing
goals by analyzing different knowledge representation languages

I developping quantitative variants of SCEL and AbC to support
components in taking decisions (e.g. via probabilistic model checking).

I Considering alternative semantics and behavioural equivalences for AbC

I Studying the impact of bisimulation (algebraic laws, axioms, proof
techniques, . . .)

Ongoing and Future work R. De Nicola 47/49

Many thanks for your time.

Questions?

Ongoing and Future work R. De Nicola 48/49

Breaking News

EATCS FELLOWS – CALL FOR NOMINATIONS FOR 2016
I Fellows are expected to be model citizens of the TCS community,

helping to develop the standing of TCS beyond the frontiers of the
community.

I INSTRUCTIONS:

I All nominees and nominators must be EATCS Members
I Submit by December 31 of the current year for Fellow

consideration by email to the EATCS Secretary
(secretary@eatcs.org).

I The EATCS Fellows-Selection Committee

I Rocco De Nicola (IMT Lucca, Italy, chair)
I Paul Goldberg (Oxford, United Kingdom)
I Anca Muscholl (Bordeaux, France)
I Dorothea Wagner (Karlsruhe, Germany)
I Roger Wattenhofer (ETH Zurich, Switzerland)

Ongoing and Future work R. De Nicola 49/49

	Introduction
	Programming Abstractions for CAS
	SCEL: A Language for CAS
	Collectives Formation in SCEL
	 AbC: A Process Calculus for CAS
	A Behavioral Theory for AbC
	Ongoing and Future work

