
Showing that Android’s, Java’s and Python’s
sorting algorithm is broken and fixing it formally

Stijn de Gouw
Jurriaan Rot, Frank de Boer, Richard Bubel, Reiner Hähnle

CWI Amsterdam / SDL Fredhopper

Formal Methods 2015
Oslo, June 22, 2015

http://www.envisage-project.eu

Stijn de Gouw Timsort Oslo, June 22, 2015 0 / 1

http://www.envisage-project.eu
http://cordis.europa.eu/fp7/home_en.html
http://www.envisage-project.eu

Programming languages: Libraries

Library

Collection of commonly used algorithms that are invoked through a
well-defined interface

Stijn de Gouw Timsort Oslo, June 22, 2015 1 / 1

http://www.envisage-project.eu

Programming languages: Libraries

Library

Collection of commonly used algorithms that are invoked through a
well-defined interface

Example: Java standard library functions

Programming to interfaces:

I Sorting a given array a

static void sort(Object[] a)

I Searching a value key in the array a

static int binarySearch(Object[] a, Object key)

Usability of programming language partially depends on good libraries

Stijn de Gouw Timsort Oslo, June 22, 2015 1 / 1

http://www.envisage-project.eu

Programming languages: Libraries

Library

Collection of commonly used algorithms that are invoked through a
well-defined interface

Example: Java standard library functions

Programming to interfaces:

I Sorting a given array a

static void sort(Object[] a)

I Searching a value key in the array a

static int binarySearch(Object[] a, Object key)

Usability of programming language partially depends on good libraries

Correctness of library functions is crucial:
used as building blocks in millions of programs

Stijn de Gouw Timsort Oslo, June 22, 2015 1 / 1

http://www.envisage-project.eu

Timsort (I)

Description

Timsort: a hybrid sorting algorithm (insertion sort + merge sort)
optimized for partially sorted arrays (often encountered in real-world data).

Stijn de Gouw Timsort Oslo, June 22, 2015 2 / 1

http://www.envisage-project.eu

Timsort (I)

Description

Timsort: a hybrid sorting algorithm (insertion sort + merge sort)
optimized for partially sorted arrays (often encountered in real-world data).

Timsort is used in

I Java (standard library), used by Oracle

I Python (standard library), used by Google

I Android (standard library), used by Google

I Hadoop (Big data), used by Apache, Facebook and Yahoo

I ... and many more languages / frameworks!

TimSort.rangeCheck appeared in court case between Oracle and Google

Stijn de Gouw Timsort Oslo, June 22, 2015 2 / 1

http://www.envisage-project.eu

Timsort (I)

Description

Timsort: a hybrid sorting algorithm (insertion sort + merge sort)
optimized for partially sorted arrays (often encountered in real-world data).

Timsort is used in

I Java (standard library), used by Oracle

I Python (standard library), used by Google

I Android (standard library), used by Google

I Hadoop (Big data), used by Apache, Facebook and Yahoo

I ... and many more languages / frameworks!

TimSort.rangeCheck appeared in court case between Oracle and Google

Why analyze Timsort?

I Complex algorithm, widely used

I Extensively tested + manual code reviews: bugs unlikely!?

Stijn de Gouw Timsort Oslo, June 22, 2015 2 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to length ≥ 16
with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 1 1 0 4

runLen

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to
length ≥ 16 with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 1 1 0 4

runLen 5

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to
length ≥ 16 with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 1 1 0 4

runLen 5 3

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to
length ≥ 16 with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 1 1 0 4

runLen 5 3 2

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to length ≥ 16
with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]
2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen [n-2] < runLen [n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 1 1 0 4

runLen 5 3 2

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to length ≥ 16
with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 0 1 1 4

runLen 5 5

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to length ≥ 16
with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 1 2 3 4 5 0 0 1 1 4

runLen 5 5

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to length ≥ 16
with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 0 0 1 1 1 2 3 4 4 5

runLen 10

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Timsort (II)

The algorithm

I Find next already sorted segment (“runs”) extending to length ≥ 16
with insertion sort.

I Add length of new run to runLen array
I Merge until last 3 runs satisfy two conditions (“the invariant”)

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

Merging: if (1) is false and runLen[n-2] < runLen[n],
merge runs at n-2 and n-1, otherwise at n-1 and n

I At the end: merge all runs, resulting in a sorted array

Example, ignoring length ≥ 16 requirement

Input 0 0 1 1 1 2 3 4 4 5

runLen 10

Fibonacci ?!

Stijn de Gouw Timsort Oslo, June 22, 2015 3 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Stijn de Gouw Timsort Oslo, June 22, 2015 4 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52+34+17+16)

I Runs do not overlap: few runs required to cover input array

int stackLen = (len < 120 ? 4 :
len < 1542 ? 9 :
len < 119151 ? 18 : 39);

runBase = new int[stackLen];
runLen = new int[stackLen];

Stijn de Gouw Timsort Oslo, June 22, 2015 5 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Stijn de Gouw Timsort Oslo, June 22, 2015 6 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Breaking the invariant - checking last 3 runs is insufficient

If (1) is false and runLen [n-2] < runLen [n]: merge at idx n-2 and n-1,
otherwise merge runs at indices n-1 and n

runLen 120 80 25 20

Stijn de Gouw Timsort Oslo, June 22, 2015 6 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Breaking the invariant - checking last 3 runs is insufficient

If (1) is false and runLen [n-2] < runLen [n]: merge at idx n-2 and n-1,
otherwise merge runs at indices n-1 and n

runLen 120 80 25 20 30

Stijn de Gouw Timsort Oslo, June 22, 2015 6 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Breaking the invariant - checking last 3 runs is insufficient

If (1) is false and runLen [n-2] < runLen [n]: merge at idx n-2 and n-1,
otherwise merge runs at indices n-1 and n

runLen 120 80 25 20 30

Stijn de Gouw Timsort Oslo, June 22, 2015 6 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Breaking the invariant - checking last 3 runs is insufficient

If (1) is false and runLen [n-2] < runLen [n]: merge at idx n-2 and n-1,
otherwise merge runs at indices n-1 and n

runLen 120 80 45 30

Stijn de Gouw Timsort Oslo, June 22, 2015 6 / 1

http://www.envisage-project.eu

Breaking the invariant

Size of runLen

1 runLen[n-2] > runLen[n-1] + runLen[n]

2 runLen[n-1] > runLen[n]

If the above invariant is true for all n and runLen[n] >= 16, then

I (reversed) runlengths grow exponentially fast (... 87 52 34 17 16)

I Runs do not overlap: few runs required to cover input array

Breaking the invariant - checking last 3 runs is insufficient

If (1) is false and runLen [n-2] < runLen [n]: merge at idx n-2 and n-1,
otherwise merge runs at indices n-1 and n

runLen 120 80 45 30

Stijn de Gouw Timsort Oslo, June 22, 2015 6 / 1

http://www.envisage-project.eu

Our work (I)

Wrote program that generates testcase

I that exploits breaking the invariant, by generating too many “short”
runs

I Triggers exception: insufficient size for runLen to store run lengths

Language Smallest array that triggers error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

Most powerful supercomputer (Tianhe-2) has ≈ 250 bytes of mem.

Stijn de Gouw Timsort Oslo, June 22, 2015 7 / 1

http://www.envisage-project.eu

Our work (I)

Wrote program that generates testcase

I that exploits breaking the invariant, by generating too many “short”
runs

I Triggers exception: insufficient size for runLen to store run lengths

Language Smallest array that triggers error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

Most powerful supercomputer (Tianhe-2) has ≈ 250 bytes of mem.

Provided worst-case analysis of broken version

I Shows the actual minimally required runLen.length

Stijn de Gouw Timsort Oslo, June 22, 2015 7 / 1

http://www.envisage-project.eu

Our work (II)

Fixed the algorithm

I Check that last 4 runs satisfy invariant

I Executed existing benchmarks (result: same performance)
and unit tests (all passed)

1 /** ...
2 * merges adjacent runs until the stack invariants are reestablished:
3 * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
4 * 2. runLen[i - 2] > runLen[i - 1]
5 */
6 private void mergeCollapse() {
7 while (stackSize > 1) {
8 int n = stackSize - 2;
9 if ((n >= 1 && runLen[n-1] <= runLen[n] + runLen[n+1])

10 || (n >= 2 && runLen[n-2] <= runLen[n-1] + runLen[n])){

11 if (runLen[n - 1] < runLen[n + 1])
12 n--;
13 } else if (runLen[n] > runLen[n + 1]) {
14 break; // Invariant is established
15 }
16 mergeAt(n);
17 }
18 }

Stijn de Gouw Timsort Oslo, June 22, 2015 8 / 1

http://www.envisage-project.eu

Our Work (III)

Analyzing “Real” Software

“because truly understanding it essentially requires doing a
formal correctness proof, it’s difficult to maintain”

“Yet another large mass of difficult code can make for a real
maintenance burden after I’m dead”

- Tim Peters on Timsort, python-dev mailing list, 2002

Implementation uses features for performance that complicate analysis:
break statements, low-level bitwise ops., arithmetic overflows

Stijn de Gouw Timsort Oslo, June 22, 2015 9 / 1

http://www.envisage-project.eu

Our Work (III)

Analyzing “Real” Software

“because truly understanding it essentially requires doing a
formal correctness proof, it’s difficult to maintain”

“Yet another large mass of difficult code can make for a real
maintenance burden after I’m dead”

- Tim Peters on Timsort, python-dev mailing list, 2002

Implementation uses features for performance that complicate analysis:
break statements, low-level bitwise ops., arithmetic overflows

Mechanically proved fixed version with KeY (Java theorem prover)

I absence of the bug, and all other run-time exceptions

I termination

I this requires: formal specifications for all functions

Stijn de Gouw Timsort Oslo, June 22, 2015 9 / 1

http://www.envisage-project.eu

Specifying Java Code with JML

Method contracts

I precondition (requires): condition on the input

I postcondition (ensures): condition on the output / result

1 /*@ requires
2 @ stackSize > 0;
3 @ ensures
4 @ (\forall int i; 0<=i && i<stackSize-2;
5 @ elemInv(runLen, i, 16))
6 @ && elemBiggerThanNext(runLen, stackSize-2)
7 @*/
8 private void mergeCollapse()

Stijn de Gouw Timsort Oslo, June 22, 2015 10 / 1

http://www.envisage-project.eu

Specifying Java Code with JML

Method contracts

I precondition (requires): condition on the input

I postcondition (ensures): condition on the output / result

1 /*@ requires
2 @ stackSize > 0;
3 @ ensures
4 @ (\forall int i; 0<=i && i<stackSize-2;
5 @ elemInv(runLen, i, 16))
6 @ && elemBiggerThanNext(runLen, stackSize-2)
7 @*/
8 private void mergeCollapse()

Class Invariant

Property that all instances of a class must satisfy before and after every
method (call)

I Can be assumed in method precondition

I Must be established at all call sites and method postcondition

Stijn de Gouw Timsort Oslo, June 22, 2015 10 / 1

http://www.envisage-project.eu

Class Invariant (simplified)

1 /*@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length >= 1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (0 <= stackSize && stackSize <= runLen.length)
8 @ && (\forall int i; 0<=i && i<stackSize-4;
9 @ elemInv(runLen, i, 16))

10 @ && (elemLargerThanBound(runBase, 0, 0))
11 @ && (\forall int i; 0<=i && i<stackSize-1;
12 @ runBase[i] + runLen[i] == runBase[i+1]);
13 @*/

Name Definition
elemBiggerThanNext2(arr , idx) (0 ≤ idx ∧ idx + 2 < arr .length)→

arr [idx] > arr [idx + 1] + arr [idx + 2]
elemBiggerThanNext(arr , idx) 0 ≤ idx ∧ idx + 1 < arr .length →

arr [idx] > arr [idx + 1]
elemLargerThanBound(arr , idx, v)

0 ≤ idx < arr .length →
arr [idx] ≥ v

elemInv(arr , idx, v) elemBiggerThanNext2(arr , idx)∧
elemBiggerThanNext(arr , idx)∧
elemLargerThanBound(arr , idx, v)

Stijn de Gouw Timsort Oslo, June 22, 2015 11 / 1

http://www.envisage-project.eu

Class Invariant (simplified)

1 /*@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)

4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)

5 @ && (a.length >= 1542 && a.length<119151 ==> runLen.length==18)

6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (0 <= stackSize && stackSize <= runLen.length)
8 @ && (\forall int i; 0<=i && i<stackSize-4;
9 @ elemInv(runLen, i, 16))

10 @ && (elemLargerThanBound(runBase, 0, 0))
11 @ && (\forall int i; 0<=i && i<stackSize-1;
12 @ runBase[i] + runLen[i] == runBase[i+1]);
13 @*/

Length of runlen in terms of input length

Stijn de Gouw Timsort Oslo, June 22, 2015 12 / 1

http://www.envisage-project.eu

Class Invariant (simplified)

1 /*@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length >= 1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)

7 @ && (0 <= stackSize && stackSize <= runLen.length)
8 @ && (\forall int i; 0<=i && i<stackSize-4;
9 @ elemInv(runLen, i, 16))

10 @ && (elemLargerThanBound(runBase, 0, 0))
11 @ && (\forall int i; 0<=i && i<stackSize-1;
12 @ runBase[i] + runLen[i] == runBase[i+1]);
13 @*/

Bounds on stackSize (in-use part of runLen)

Stijn de Gouw Timsort Oslo, June 22, 2015 13 / 1

http://www.envisage-project.eu

Class Invariant (simplified)

1 /*@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length >= 1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (0 <= stackSize && stackSize <= runLen.length)

8 @ && (\forall int i; 0<=i && i<stackSize-4;

9 @ elemInv(runLen, i, 16))
10 @ && (elemLargerThanBound(runBase, 0, 0))
11 @ && (\forall int i; 0<=i && i<stackSize-1;
12 @ runBase[i] + runLen[i] == runBase[i+1]);
13 @*/

All but the last 4 runs satisfy the invariant while merging

Stijn de Gouw Timsort Oslo, June 22, 2015 14 / 1

http://www.envisage-project.eu

Class Invariant (simplified)

1 /*@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length >= 1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (0 <= stackSize && stackSize <= runLen.length)
8 @ && (\forall int i; 0<=i && i<stackSize-4;
9 @ elemInv(runLen, i, 16))

10 @ && (elemLargerThanBound(runBase, 0, 0))
11 @ && (\forall int i; 0<=i && i<stackSize-1;
12 @ runBase[i] + runLen[i] == runBase[i+1]);
13 @*/

First run starts at non-negative array index

Stijn de Gouw Timsort Oslo, June 22, 2015 15 / 1

http://www.envisage-project.eu

Class Invariant (simplified)

1 /*@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length >= 1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (0 <= stackSize && stackSize <= runLen.length)
8 @ && (\forall int i; 0<=i && i<stackSize-4;
9 @ elemInv(runLen, i, 16))

10 @ && (elemLargerThanBound(runBase, 0, 0))

11 @ && (\forall int i; 0<=i && i<stackSize-1;

12 @ runBase[i] + runLen[i] == runBase[i+1]);
13 @*/

There are no gaps between consecutive runs

Stijn de Gouw Timsort Oslo, June 22, 2015 16 / 1

http://www.envisage-project.eu

mergeCollapse proof

Loop Invariant (simplified)

1 /*@ loop_invariant
2 @ \forall int i; 0<=i && i<stackSize-4;
3 @ elemInv(runLen, i, 16);
4 @*/

The main verif. condition (simplified)

(loop-inv && n==stackSize-2 && n >= 0

&& n>=1 ==> runLen[n-1] > runLen[n] + runLen[n+1]

&& n>=2 ==> runLen[n-2] > runLen[n-1] + runLen[n]

&& runLen[n] > runLen[n+1]

) ==> ensures(mergeCollapse)

Recall that ensures(mergeCollapse) is (substituting stackSize-2==n):
(\forall int i; 0<=i && i<n; elemInv(runLen, i, 16))

&& elemBiggerThanNext(runLen, n)

Stijn de Gouw Timsort Oslo, June 22, 2015 17 / 1

http://www.envisage-project.eu

pushRun contract (simplified)

1 /*@ normal_behavior
2 @ requires
3 @ (runLen > 0 && runBase >= 0)
4 @ && (stackSize > 0 ==> runBase ==
5 @ this.runBase[stackSize-1]+this.runLen[stackSize-1])
6 @ && (runLen + runBase <= a.length)
7 @ && (\forall int i; 0<=i && i<stackSize-2;
8 @ elemInv(this.runLen,i,16))
9 @ && elemBiggerThanNext(this.runLen, stackSize-2)

10 @ && elemLargerThanBound(this.runLen, stackSize-1, 16)
11 @ ensures
12 @ this.runBase[\old(stackSize)] == runBase
13 @ && this.runLen[\old(stackSize)] == runLen
14 @ && stackSize == \old(stackSize)+1;
15 @*/
16 private void pushRun(int runBase, int runLen) {
17 this.runBase[stackSize] = runBase;
18 this.runLen[stackSize] = runLen;
19 stackSize++;
20 }

Stijn de Gouw Timsort Oslo, June 22, 2015 18 / 1

http://www.envisage-project.eu

pushRun contract (simplified)

1 /*@ normal_behavior
2 @ requires
3 @ (runLen > 0 && runBase >= 0)

4 @ && (stackSize > 0 ==> runBase ==

5 @ this.runBase[stackSize-1]+this.runLen[stackSize-1])
6 @ && (runLen + runBase <= a.length)
7 @ && (\forall int i; 0<=i && i<stackSize-2;
8 @ elemInv(this.runLen,i,16))
9 @ && elemBiggerThanNext(this.runLen, stackSize-2)

10 @ && elemLargerThanBound(this.runLen, stackSize-1, 16)
11 @ ensures
12 @ this.runBase[\old(stackSize)] == runBase
13 @ && this.runLen[\old(stackSize)] == runLen
14 @ && stackSize == \old(stackSize)+1;
15 @*/
16 private void pushRun(int runBase, int runLen) {
17 this.runBase[stackSize] = runBase;
18 this.runLen[stackSize] = runLen;
19 stackSize++;
20 }

The new run has positive length and starts directly after the last run

Stijn de Gouw Timsort Oslo, June 22, 2015 19 / 1

http://www.envisage-project.eu

pushRun contract (simplified)

1 /*@ normal_behavior
2 @ requires
3 @ (runLen > 0 && runBase >= 0)
4 @ && (stackSize > 0 ==> runBase ==
5 @ this.runBase[stackSize-1]+this.runLen[stackSize-1])
6 @ && (runLen + runBase <= a.length)
7 @ && (\forall int i; 0<=i && i<stackSize-2;
8 @ elemInv(this.runLen,i,16))
9 @ && elemBiggerThanNext(this.runLen, stackSize-2)

10 @ && elemLargerThanBound(this.runLen, stackSize-1, 16)
11 @ ensures
12 @ this.runBase[\old(stackSize)] == runBase
13 @ && this.runLen[\old(stackSize)] == runLen
14 @ && stackSize == \old(stackSize)+1;
15 @*/
16 private void pushRun(int runBase, int runLen) {
17 this.runBase[stackSize] = runBase;
18 this.runLen[stackSize] = runLen;
19 stackSize++;
20 }

The new run cannot extend beyond length of the input array

Stijn de Gouw Timsort Oslo, June 22, 2015 20 / 1

http://www.envisage-project.eu

pushRun contract (simplified)

1 /*@ normal_behavior
2 @ requires
3 @ (runLen > 0 && runBase >= 0)
4 @ && (stackSize > 0 ==> runBase ==
5 @ this.runBase[stackSize-1]+this.runLen[stackSize-1])
6 @ && (runLen + runBase <= a.length)

7 @ && (\forall int i; 0<=i && i<stackSize-2;

8 @ elemInv(this.runLen,i,16))

9 @ && elemBiggerThanNext(this.runLen, stackSize-2)

10 @ && elemLargerThanBound(this.runLen, stackSize-1, 16)
11 @ ensures
12 @ this.runBase[\old(stackSize)] == runBase
13 @ && this.runLen[\old(stackSize)] == runLen
14 @ && stackSize == \old(stackSize)+1;
15 @*/
16 private void pushRun(int runBase, int runLen) {
17 this.runBase[stackSize] = runBase;
18 this.runLen[stackSize] = runLen;
19 stackSize++;
20 }

The invariant is satisfied by all runs

Stijn de Gouw Timsort Oslo, June 22, 2015 21 / 1

http://www.envisage-project.eu

pushRun contract (simplified)

1 /*@ normal_behavior
2 @ requires
3 @ (runLen > 0 && runBase >= 0)
4 @ && (stackSize > 0 ==> runBase ==
5 @ this.runBase[stackSize-1]+this.runLen[stackSize-1])
6 @ && (runLen + runBase <= a.length)
7 @ && (\forall int i; 0<=i && i<stackSize-2;
8 @ elemInv(this.runLen,i,16))
9 @ && elemBiggerThanNext(this.runLen, stackSize-2)

10 @ && elemLargerThanBound(this.runLen, stackSize-1, 16)
11 @ ensures

12 @ this.runBase[\old(stackSize)] == runBase

13 @ && this.runLen[\old(stackSize)] == runLen

14 @ && stackSize == \old(stackSize)+1;
15 @*/
16 private void pushRun(int runBase, int runLen) {
17 this.runBase[stackSize] = runBase;
18 this.runLen[stackSize] = runLen;
19 stackSize++;
20 }

The new run is stored at index stackSize-1

Stijn de Gouw Timsort Oslo, June 22, 2015 22 / 1

http://www.envisage-project.eu

pushRun main verification condition

No ArrayIndexOutOfBoundsException if

requires(pushRun) && cl. invariant ==> stackSize < len.length

Stijn de Gouw Timsort Oslo, June 22, 2015 23 / 1

http://www.envisage-project.eu

pushRun main verification condition

No ArrayIndexOutOfBoundsException if

requires(pushRun) && cl. invariant ==> stackSize < len.length

Proof.

Note first: cl. invariant → stackSize ≤ len.length.
Assume by contradiction that stackSize= len.length and do a case
distinction on a.length. We treat a.length <= 119:

1 len.length = 4 (from cl. invariant, ln 3).

2 Abbreviate len[0]+...+len[3] = SUM, then (pushRun ln 7–10)
len[3] >= 16, len[2] >= 17, len[1] >= 34 and len[0] >= 52.
Therefore: SUM >= 16+17+34+52=119

3 base[3] + len[3] = base[0] + SUM (from cl. invariant, ln 11–12)

4 Previous line, with pushRun ln 4–5 implies:
runBase + runLen = base[0] + SUM + runLen

5 But base[0] >= 0 (cl invariant ln 10) and runLen>0 (pushrun ln 3),
contradicting runBase + runLen <= 119 (pushRun ln 6)

Stijn de Gouw Timsort Oslo, June 22, 2015 23 / 1

http://www.envisage-project.eu

One proof step in KeY

Stijn de Gouw Timsort Oslo, June 22, 2015 24 / 1

http://www.envisage-project.eu

Evaluation

Proof Stats - summary

Rule Apps # Interactive LoSpec LoC

total 2.211.263 5.029 334 333

pushRun 26.248 94 17 5

mergeCollapse 415.133 1.529 47 13

Stijn de Gouw Timsort Oslo, June 22, 2015 25 / 1

http://www.envisage-project.eu

Evaluation

Proof Stats - summary

Rule Apps # Interactive LoSpec LoC

total 2.211.263 5.029 334 333

pushRun 26.248 94 17 5

mergeCollapse 415.133 1.529 47 13

Evaluation of the problem

I Bug unlikely to be encountered by accident

I Possible security hazard: bug may be exploitable in DoS attack

I Extensive testing unable to expose bug:
input size too large, structure too complex

I Manual code reviews (Google) unable to expose bug

I Core libraries in widely used languages can contain subtle bugs
undetected for years

Stijn de Gouw Timsort Oslo, June 22, 2015 25 / 1

http://www.envisage-project.eu

Responses: general public

I Scientific paper (CAV 2015), articles (ERCIM, Bits & Chips)

I Published blog post

Stijn de Gouw Timsort Oslo, June 22, 2015 26 / 1

http://www.envisage-project.eu

Responses: general public

I Scientific paper (CAV 2015), articles (ERCIM, Bits & Chips)
I Published blog post

Stijn de Gouw Timsort Oslo, June 22, 2015 26 / 1

http://www.envisage-project.eu

Responses: developer communities

Java

I Submitted bug report to Java issue tracker

Stijn de Gouw Timsort Oslo, June 22, 2015 27 / 1

http://www.envisage-project.eu

Responses: developer communities

Java

I Submitted bug report to Java issue tracker

I Bug was previously found and “fixed” by increasing runLen.length

int stackLen = (len < 120 ? 5 :
len < 1542 ? 10 :
len < 119151 ? 19 24

: 40);
runBase = new int[stackLen];
runLen = new int[stackLen];

Stijn de Gouw Timsort Oslo, June 22, 2015 28 / 1

http://www.envisage-project.eu

Responses: developer communities

Java

I Submitted bug report to Java issue tracker

I Bug was previously found and “fixed” by increasing runLen.length

I Bug now fixed by further increasing runLen.length

based on worst-case analysis

Discussion on OpenJDK mailing list

Stack length increased previously by JDK-8011944 was
insufficient for some cases. Please review and push - Lev Priima,
11 Feb 2015

int stackLen = (len < 120 ? 5 :
len < 1542 ? 10 :
len < 119151 ? 24 :

40 49);
runBase = new int[stackLen];
runLen = new int[stackLen];

Stijn de Gouw Timsort Oslo, June 22, 2015 29 / 1

http://www.envisage-project.eu

Responses: developer communities

Java

I Submitted bug report to Java issue tracker

I Bug was previously found and “fixed” by increasing runLen.length

I Bug now fixed by further increasing runLen.length

based on worst-case analysis

Discussion on OpenJDK mailing list

Stack length increased previously by JDK-8011944 was
insufficient for some cases. Please review and push
- Lev Priima, 11 Feb 2015

Hi Lev, The fix looks fine. Did you consider the improvements
suggested in the paper to reestablish the invariant?
- Roger Riggs, Feb 11, 2015

Just briefly looked at it, w/o evaluating formal proof ...
- Lev Priima, Feb 11, 2015

Stijn de Gouw Timsort Oslo, June 22, 2015 30 / 1

http://www.envisage-project.eu

Responses: developer communities

Java

I Submitted bug report to Java issue tracker

I Bug was previously found and “fixed” by increasing runLen.length

I Bug now fixed by further increasing runLen.length

based on worst-case analysis

I Purported class invariant still broken

I Not amenable to mechanic verification

Python

I Bug report filed by Tim Peters

I Bug fixed by checking last 4 runs (verified version)

Android

I No bug report or fix so far

Stijn de Gouw Timsort Oslo, June 22, 2015 31 / 1

http://www.envisage-project.eu

Conclusion

Formal methods work!

Stijn de Gouw Timsort Oslo, June 22, 2015 32 / 1

http://www.envisage-project.eu

Useful links

Blog post

http://tinyurl.com/timsort-bug

Website with full paper, test programs and proofs

http://www.envisage-project.eu/
timsort-specification-and-verification

KeY (Java theorem prover)

http://www.key-project.org

Timsort description

http://bugs.python.org/file4451/timsort.txt

OpenJDK dev discussion

http://mail.openjdk.java.net/pipermail/
core-libs-dev/2015-February/thread.html#31405

Stijn de Gouw Timsort Oslo, June 22, 2015 33 / 1

http://tinyurl.com/timsort-bug
http://www.envisage-project.eu/timsort-specification-and-verification
http://www.envisage-project.eu/timsort-specification-and-verification
http://www.key-project.org
http://bugs.python.org/file4451/timsort.txt
http://mail.openjdk.java.net/pipermail/core-libs-dev/2015-February/thread.html#31405
http://mail.openjdk.java.net/pipermail/core-libs-dev/2015-February/thread.html#31405
http://www.envisage-project.eu

