
Logic and Types, 
Concurrency and  
Non Determinism

Luís Caires 

Universidade Nova de Lisboa 
NOVA Laboratory for Computer Science and Informatics 

IFIP WG 2.2 Meeting, Lucca 
September 2015



Types and Specifications

Typeful programming is a special case of program specification

Types ~ specifications

Type-checking ~ verification

Useful to enforce correctness by construction, at the PL (compiler) level

This view nicely fits with the Curry-Howard (CH) paradigm of 
propositions as types and of typed programs as proofs of their type



Linear Logic & Process Types
We developed (with Pfenning / Toninho) [CP/Concur10, CTP/MSCS14] 
a CH interpretation of linear logic propositions as session types.

Key highlights
One gets very natural session type system for π-calculus processes, 
ensuring deadlock freedom and session fidelity by purely logical means.

Proof conversions express basic laws of observational equivalence.

Proof reduction matches process (full, internal) reduction, and is 
confluent and terminating.

The normal form (up to some conversions) denotes the (essentially 
deterministic) behaviour of the given session-typed process / proof.

Can be used to give a deep foundation to existing session-based 
programming language [Wad/ICFP’14] (translation of GV into CP).



Types and Specifications

Typeful programming is a special case of program specification

Types ~ specifications

Type-checking ~ verification

Useful to enforce correctness by construction, at the PL level

This view nicely fits with the Curry-Howard (CH) “paradigm”

Within CH is often fruitful to investigate to what a concept on one side 
might correspond on the other side (in both directions), e.g., 

dependent types ~ interface contracts and certificates [TCP-PPDP11]

polymorphic types ~ generic behavioural types [CCPT/ESOP13]

contextual monadic types ~ mobile higher order code [TCP/ESOP13]



What about non-determinism?
Non-determinism seems to resist a reasonable logical analysis in terms 
of a Curry-Howard correspondence.

Proof reduction must be compatible with behavioural equivalence (an 
identity) so non-deterministic proof reductions would not make sense

Still, non-deterministic behaviour in the essence of many artificial and 
natural concurrent systems (e.g., physical / biological ones)

In this talk
I review a basic type system (based on classical linear logic + mix)

I sketch an approach to integrate non-determinism in the framework, 
extending the system in a principled way



Linear Types as Sessions

A,B ::= ? •
| 1 •
| !A
| ?A
| A⌦ B A!.B
| A O B A?.B
| A� B
| A N B

end

send
receive
choice select
choice offer

shared publish
shared invoke

end
? ⌘ 1



Duality

1 = ?
? = 1
!A =?A
?A = !A
A⌦ B = A O B
A O B = A⌦ B
A� B = A N B
A N B = A� B



Typing Judgments
Syntactical form of the Typing Judgment - based on [And92]

     process (this is a standard π-calculus program)

     linear context (declares types of “currently open” sessions)

     cartesian context (types of shared servers, implicitely ?’ed)

The judgment “morally” states:
Process P is lock free under reduction (compositionally).

All interactions in P conform to the prescribed protocols.

NB. Typing is closed under composition (using the cut rule).

�

⇥

P ` � ; ⇥

P



Parallel composition

P ` �, x:A;⇥ Q ` �0
, x:A;⇥

(⌫x)(P | Q) ` �,�0;⇥
(Tcut)

0 `;⇥ (T·) P ` �;⇥ Q ` �0;⇥

P | Q ` �,�0;⇥
(T | )



Send and Receive

(⌫x)(x(y).M | x(y).R) ! (⌫x)(⌫y)(M | R) (M ⌘ P | Q)

Principal cut reduction corresponds to communication reduction

P ` �, y:A;⇥ Q ` �0
, x:B;⇥

x(y).(P | Q) ` �,�0
, x:A⌦ B;⇥

(T⌦)

R ` �, y:C, x:D;⇥

x(y).R ` �, x:C O D;⇥
(TO)



Termination

Principal cut reduction corresponds to session termination

(⌫x)(x.close | x.close;P ) ! P

x.close ` x:1;⇥
(T1)

P ` �;⇥

x.close;P ` x:?,�;⇥
(T?)



Offer and Choice

(⌫x)(x.case(P,Q) | x.inl;R) ! (⌫x)(P | R)
(⌫x)(x.case(P,Q) | x.inr;R) ! (⌫x)(Q | R)

R ` �, x:A;⇥

x.inl;R ` �, x:A� B;⇥
(T�1)

R ` �, x:B;⇥

x.inr;R ` �, x:A� B;⇥
(T�2)

P ` �, x:A;⇥ Q ` �, x:B;⇥

x.case(P,Q) ` �, x:A N B;⇥
(TN)

Principal cut reductions corresponds to case selection reductions



Example: Movie Server

SBT , (T ( C ( M ⌦ 1) N (T ( M ⌦ 1)
SBody(s) ` s : SBT
Alice(s) ` s : SBT
System ` ·

System

Types Assigned

SBody(s) , s.case(s(title).s(card).s(movie).close,
s(title).s(trailer).close)

Alice(s) , s.inr; s(“solaris”).s(preview).close;0

System , (⌫s)(SBody(s) | Alice(s))



Sharing and Replication

Principal cut reduction corresponds to shared server invocation

NB. Rule (T?) is silent on the process term (just bookkeeping)

P ` �; x:A,⇥

P ` �, x:?A;⇥
(T?)

Q ` y:A;⇥

!x(y).Q ` x:!A;⇥
(T!)

P ` �, y:A; x:A,⇥

x?(y).P ` �; x:A,⇥
(Tcopy)

(⌫x)(!x(y).Q | x?(y).P ) ! (⌫x)(!x(y).Q | (⌫y)(P | Q))



Ex: Shared Movie Server
System

Types Assigned

MOVIES (srv) , !srv(s).SBody(s)

SAlice(srv) , srv?(s).Alice(s)

SBob(srv) , srv?(s).s.inl; s(“inception”).
s(bobscard).s(mpeg).s.close;0

System , (⌫srv)(MOVIES (srv) | Alice(srv) | Bob(srv))

MOVIES (srv) ` srv : !SBT ;

Alice(srv) ` ·; srv : SBT

Bob(srv) ` ·; srv : SBT

Alice(srv) | Bob(srv) ` srv : ?SBT ;

System ` ·; ·



Non Determinism



We rely on two ingredients

We introduce a “sum” process construct
                represents “superposed” (alternative) states 

Alternative states do not “collapse” during cut elim / reduction, but 
either proliferate or simplify (e.g.,                                )

At the level of types, we consider two new modalities
            the type of sessions that may produce some session of type A

            the type of sessions that may consume any session of type A

We have

Non Determinism

P �Q

NA

�A

NA = �A

P � none ⌘ P



NonDet Operators (rules)

  additive monad,         co-monad (cf. ?,!)NA �A

P ` �, x:A;⇥

x.some;P ` �, x:NA;⇥
(TNd)

P ` �;⇥

x.none;P ` �, x:NA;⇥
(TNw)

P ` N�;⇥ Q `N�;⇥

P �Q ` N�;⇥
(TNc)

P `w:N�, x:A;⇥

x; somew.P ` w:N�, x:�A;⇥
(T�)



NonDet Operators (reduction)

N.B. Cf. promotion - ?d reduction in CLL, but ≠ interpretation

P ` w:N�, x:A;⇥

x.some;P ` w:N�, x:�A;⇥

Q ` �0
, x:A;⇥

x.some;Q ` �0
, x:NA;⇥

(⌫x)(x.somew;P | x.some;Q) ` N�,�0;⇥
!

P ` N�, x:A;⇥ Q ` �0
, x:A;⇥

(⌫x)(P | Q) ` N�,�0;⇥



NonDet Operators (reduction)

N.B. Cf. !-promotion - ?w reduction in CLL, but ≠ interpretation

P ` w:N�, x:A;⇥

x.some;P ` w:N�, x:�A;⇥

Q ` �0;⇥

x.none;Q ` �0
, x:NA;⇥

(⌫x)(x.somew;P | x.none;Q) ` w:N�,�0;⇥
!

Q ` �0;⇥

(⌫x)(w.none | Q) ` w:N�,�0;⇥



   Cf. familiar behavioural equivalence equation in PA

NonDet Operators (reduction)

(⌫x)(P | (Q�R)) ⌘ (⌫x)(P | Q)� (⌫x)(P | R)

P ` N�, x:�A;⇥

Q ` N�0
, x:NA;⇥ R ` N�0

, x:NA;⇥

Q�R ` N�0
, x:NA;⇥

(⌫x)(P | (Q�R)) ` N�,N�0;⇥
!

P ` N�, x:�A;⇥ Q ` N�0
, x:NA;⇥

(⌫x)(P | Q) ` N�,N�0;⇥

P ` N�, x:�A;⇥ R ` N�0
, x:NA;⇥

(⌫x)(P | R) ` N�,N�0;⇥

(⌫x)(P | Q)� (⌫x)(P | R) ` N�,N�0;⇥

cut commutation rule captures distribution of | over internal choice



Some basic laws

` x:��A, y:NA ;� (cf. NNA ( NA)

` x:A, y:NA ;� (cf. A ( NA)

` y:NA, x:A ;� (cf. �A ( A)

` x:�•, y:• ;� (cf. N• ( •)



Simple Example
System

Types Assigned

SBT , (T ( C ( M ⌦ 1) N (T ( M ⌦ 1)

some;; SBody(s) ` s : �SBT

Schizo(s) ` s : NSBT

NSystem ` ·

Alice(s) , s.inr; s(“solaris”).s(preview).close;0
Bob(s) , s.inl; s(“inception”).s(bobscard).s(movfile).close;0

Schizo(s) , s.some;Alice(s)� s.some;Bob(s)

NSystem , (⌫s)(s.some;; SBody(s) | Schizo(s))



“Interruptible” Sessions

If info is not G then SBuyer “kills” session and tries something else.

No further use of session s is possible after s.none

But Proceed(s) can continue with some s behaviour

Inside the server instance, no “garbage” pending (hereditarily)

SBuyer(srv) , srv?(s).s(item).
s(info).
if G(info) then Proceed(s)

else s.none;Retry



Encoding “Exceptions”

Types of y:                                x:N(!V.!!V.end)

y used as continuation, gets the value and exception handler loc

x is the context exception handler location

!V

Jraise vK
y,x

= y.none; x(v)
JtryK

y,x

= (⌫pq)(JMK
p,q

|
p.some; p(v).p(c).c(v) |
q(v).y.some.y(v).y(x))



Encoding “Exceptions”

Types of y:                                x, d:      N(!V.!!V.end)

N.B.: Isolated “killed” computations inside deterministic one

One may also represent more usual try - catch constructs (with 
explicit exception handlers)

!V

Jraise vK
y,x

= y.none; x(v)
JtryK

d

= (⌫pq)(JMK
p,q

|
p.some; p(v).p(c).c(v) |
q(v).d(v))



Main Results

P �Q ⌘ Q� P ahyi.bhzi.P ⌘ bhyi.ahzi.P



Main Results
1. Cut elimination holds

2. Well-typed processes are (compositionally):

deadlock free

confluent

terminating

Technique: linear logical relations [PCPT/ESOP’12,I&C’14]

3. Reduction / conversion preserves observational equivalence

       cut normal form is up to “structural” conversions, e.g., 

P �Q ⌘ Q� P ahyi.bhzi.P ⌘ bhyi.ahzi.P



4. Let         be the extension of      with “non-det collapse rules”
    
   

Then:

Main Results
!c !

P �Q !c P P �Q !c Q



Summary
A CH model of non-determinism for session typed processes

Based on CLL+mix

Non-determinism encapsulated by a dual pair of (co)/monads

These operators obey the basic rules of LL !?-exponentials” with       
contraction replaced by sum, and a different operational interpretation

(Typed) processes satisfy session fidelity, progress and confluence

Conversions express known laws of behavioural equivalence, but full 
behavioural theory still needs to be developed

Compatible with standard non-deterministic “collapse” rules, which 
reflect the local view of the contextual observer, and maybe used to 
guide implementation of the model in concrete programming languages

NA �A



Logic and Types, 
Concurrency and  
Non Determinism

Luis Caires 

Universidade Nova de Lisboa 
NOVA Laboratory for Computer Science and Informatics 

IFIP WG 2.2 Meeting, Lucca 
September 2015


