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Motivation

Goal: use computers as “intelligent assistants”

in mathematics, verification, engineering, databases ...

Main problem: complexity

- complex description of problems to be solved

— complex encoding
— large formulae

- system dynamics

- complex systems (interaction, synchronization)



Examples of application domains

MATHEMATICS

Tasks

— construct proofs
— check proofs

Theories

— numbers
— polynomials

— functions over
numeric domains

— algebras

e Theories from mathematical analysis
Functions over R
- monotone, bounded
- continuous, differentiable

e Algebraic structures
Monoids, groups, rings
Lattices, Boolean algebras

e Logic
Classical logic
Non-classical logics
- many-valued logics, fuzzy logic

- modal, dynamic, temporal
- logics for MAS



Examples of application domains

MATHEMATICS VERIFICATION
Tasks Tasks
— construct proofs - protgrar/rtls o
correctness/termination
check proofs — reactive/hybrid
systems
safety/lifeness
Theories — cryptography
e correctness crypt. prot.
— polynomials Theories
_ — numbers
— functions over - data types

numeric domains

— algebras

— functions over
numeric domains

Embedded software




Examples of application domains

Controllers

MATHEMATICS VERIFICATION
Tasks Tasks
— construct proofs — programs
— check proofs correctness/termination Embedded software
— reactive/hybrid
systems
safety/lifeness r ~
Theories — cryptography | Program verification
correctness crypt. p
— numbers int [| BUBBLESORT(int[] a) {
— polynomials Theories nt i, J, &
— numbers for(i:==|a| —1,i>0; i:=i—1)A
— functions over — data types for =0 j <ij=j+1){

numeric domains

— algebras

— functions ove
numeric doma

it (alj] > alj + 1) {t = alj;
alj] := alj + 1J;
alj + 1] == t};
}} return a}

e Does BUBBLESORT return a sorted array?

e Is a state with a certain property
reachable in < k steps?




Examples of application domains

VERIFICATION

MATHEMATICS
Tasks Tasks
— construct proofs - protgrar/rtls o
correctness/termination
check proofs — reactive/hybrid
systems
safety/lifeness 4
Theories — cryptography
e correctness crypt. prot.
— polynomials Theories
_ — numbers
— functions over - data types

numeric domains

— algebras

— functions over
numeric domains

Controllers

Fill

React

Inv

Inv ,

ﬂowl

flow,

¥~

\

Inv 5

Inv,

flow3

flow 4

Dump

Filter

Check:

e No overflow

e Substances in the right proportion

e If substances in wrong proportion,
tank can be drained in < 200s.

Determine values for parameters

such that this is the case




Examples of application domains

MATHEMATICS VERIFICATION
Tasks Tasks
— construct proofs - protgrar/rtls o
correctness/termination
check proofs — reactive/hybrid
systems
safety/lifeness
Theories — cryptography
e correctness crypt. prot.
— polynomials Theories
_ — numbers
— functions over - data types

numeric domains

— algebras

— functions over
numeric domains

Train controllers

RBC

N
N
N
N
N
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braking + reaction
distance

o Task: check collision freeness




Examples of application domains

MATHEMATICS VERIFICATION
Tasks Tasks
— construct proofs - protgrar/rtls o
correctness/termination
check proofs — reactive/hybrid
systems
safety/lifeness
Theories — cryptography
e correctness crypt. prot.
— polynomials Theories
_ — numbers
— functions over - data types

numeric domains

— algebras

— functions over
numeric domains

Controllers

Two or more controllers
- non-disjoint sets of controlled trains
- synchronization for the control of

common trains

RBC __BBC
— @,‘e&‘g:}’:r ] m\ 2 é;/ ] c“‘,é’// c”‘e%\ 2 é
braking + reaction braking + reaction
distance distance
- complex track topology
~ S —— — l:l:l:/
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Examples of application domains

MATHEMATICS VERIFICATION
Tasks Tasks
— construct proofs —jpllgelns
— check proofs correctngssltermlngf )
—Srfggtrl%/se/hyb“ Verification tasks
, Seusbillinees can often be solved as follows:
Theories — cryptography
. mb r correctness crypt. P
UI € S_ | - encode problems as logical formulae
— polynomials Theories o ,
- — numbers - reduce verification tasks to testing
— functions over _ data tvpes _ o -
numeric domains o entailment/satisfiability /validity
— functions ovel_ )

— algebras

numeric domains J




Problems

First order logic is undecidable
In applications, theories do not occur alone
— need to consider combinations of theories

Fragments of theories occurring in applications are often decidable

Often provers for the component theories can be combined efficiently



Problems

— First order logic is undecidable
— In applications, theories do not occur alone
— need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

The goals of my research:

e ldentify decidable theories which are important in applications
(extensions/combinations) possibly with low complexity

e Development & implementation of efficient decision procedures

e Applications, e.g. in verification, databases, mathematics




Goal of this talk

Present some of my work on identifying conditions
under which efficient methods for the verification
of complex systems exist

Focus: Modularity

e Modularity in automated reasoning (Application: Verification)

Deductive verification

Synthesis: Generate constraints on parameters which guarantee satisfiability

e Modularity in the verification of complex, interacting systems




Goal of this talk

Present some of my work on identifying conditions
under which efficient methods for the verification
of complex systems exist

Structure of the talk

e Efficient automated reasoning: hierarchical and modular reasoning
e Local theory extensions (idea: complete instantiation)

e Recognizing local theory extensions; examples

e Applications

Deductive verification (invariant checking, BMC)

Synthesis: Generate constraints on parameters which guarantee satisfiability

e Example: Modular verification - system of trains; complex track topology



Automated reasoning

Important for efficient reasoning
e Possibility of limiting search

e Modular reasoning in complex theories



Example: A theory of doubly-linked lists

[Necula, McPeak, 2005]

T
R RTY

Vp (p # null A p.next # null — p.next.prev = p)

] [

Vp (p # null A p.prev # null — p.prev.next = p)

A c#null A c.nextZnull A d#null A d.nextZnull A c.next=d.next Ac #d = L



Example: A theory of doubly-linked lists

[Necula, McPeak, 2005]

] [

(c#null A c.next#null —c.next.prev=c) (c.next=£null A c.next.next#null —c.next.next.prev=c.next)

(d#null A d.next#null—d.next.prev=d) (d.next#null A d.next.next#null—d.next.next.prev=d.next)

A c#Znull A c.nextZnull A d#null A d.nextZnull A c.next=d.next Ac#d = L



Example: A theory of doubly-linked lists

[Necula, McPeak, 2005]

(c#null
(dnull

] [

Consider extensions which also take the elements of the list into account
— Reasoning in complex theories

c.next)

d.next)




Complex Theories

Hierarchic Reasoning
Ti: X1-theory; 7To C T;

e To: Xo-theory.

ZoCzl

Example:
f:R — R mon.

R

Can we use a prover for 7o as a blackbox to prove theorems in 717

10




Complex Theories

Hierarchic Reasoning Example:
T1: X1-theory; To C 71 X0 C X1 f:R — R mon.

@ To: Xo-theory. R

Can we use a prover for Ty as a blackbox to prove theorems in 717

Modular Reasoning Example:

To: Xo-theory. lists(R) U arrays(R)
Ti: Lj-theory; To C7T; Yo CZL;.

Ti \ 7o T2

Can we use provers for 71, 7> as blackboxes to prove theorems in 71 U 737
Which information needs to be exchanged between the provers?

10




Example

RUMons A(a< bAf(a)=1f(b)+1) = L

G

Mon ¢ Vx,y(x <y = f(x) < f(y))

e A prover for R cannot handle the function f

e A prover for first-order logic cannot handle real numbers

Idea: Hierarchical reasoning
Step 1: Reasoning about the properties of f

Step 2: Reasoning about real numbers

11



ldea

RUMons A(a< bAf(a)=1f(b)+1) = L

G

G U Mon(f)

Limit search space
R U Mon¢[G]UG = L

— sound and complete

a<hb
f(a) = f(b) +1

Vx,y(x <y — f(x) < f(y))

12




ldea

RUMons A(a< bAf(a)=1f(b)+1) = L

G

G U Mon(f)[G]

Limit search space

=f < b
R U Mon¢[G]UG = L a1 =rla) | 2

by = f(b) | f(a) =f(b)+1
— sound and complete a<b— f(a) < f(b)
b<a— f(b) <f(a)

Hierarchical reasoning

The following are equivalent:
(1) RUMon¢[G]UG = L
(2) RU Mon¢[G]o U Gp U Def = L (Purification)



ldea

RUMon¢ /\Sa < bAf(a)=f(b)+ 12 = 1

Ve

Limit search space

R U Mon¢[G]UG = L

— sound and complete

Hierarchical reasoning

Go U Mon(f)[G]o U COH[G]O

G
-
Definitions
a; = f(a)
by = f(b)
"

a<hb

ais = by +1
a<b—a < b
b<a— b < a

a:b—>31:b1

The following are equivalent:

(1) R U Monr
(2) R U Mong
(3) R U Monr

G
G
G

UGE L
o U Gg U Def |: 1
o U Go U Con(Def) l: 1

(Purification)
(Hierarchical reduction)

12




ldea

RUMons A(a< bAf(a)=1f(b)+1) = L

G

Limit Search Space Deﬁnitions GO U Mon(f)[G]O U Con[G]O
a; = f(a) a<b
blzf(b) ag =b +1

R U Mon¢[G]UG = L

— sound and complete a<b—a <bh N
b < a— b1 < a
Hierarchical reasoning a=b— a; = by
-
The following are equivalent:

(1) RUMonf[G]UG = L

(2) R U Mon¢[G]o U Gg U Def = L (Purification)
(3) RU Mon¢[G]o U Gg U Con(Def) = L (Hierarchical reduction)

12



Local theory extensions

[GSW'04, VS'05] KC set of equational clauses; 7g theory; 71 =ToUK

Definition. 7o C 77 is local iff for all sets of ground clauses G,
ToUKUG =L iff hUK[G]UG =L

Extends the notion of local theory introduced in [Givan,McAllester'92,"94]

and further studied in [BasinGanzinger'96,'01, Ganzinger'01]

13



Local theory extensions

[GSW'04, VS'05] KC set of equational clauses; 7g theory; 71 =ToUK

Definition. 7g C 77 is local iff for all sets of ground clauses G,
ToUKUG =L iff hUK[G]UG =L

Hierarchical reasoning possible [VS'05]

1. Locality: ToUK[G]UG = L — O(n"*) clauses
2. Purification: ToUK[G]loUGyUDef = L — linear
3. Hierarchical reduction: ToUK[G]oUGyUCon(Def) = L — +O(n?) clauses

4. Satisfiability test in Ty (prover for 7o — blackbox) — g(n®)

Parametric complexity for 7;

13



Local theory extensions

Various notions of locality, depending of the instances to be considered
(closure operators [lhlemann,Jacobs,VS'08, Ihlemann,VS'10])

Implementation: H-PILoT [lhlemann,VS’'09]

How to recognize local theory extensions?

e Embeddability of partial into total models [Ganzinger,VS,Waldmann'04,VS'05]

e Saturation (under resolution) [Basin,Ganzinger'96'01, VS'07, Horbach,VS'13]

e Transfer of locality [VS'07, Ihlemann,VS'10]

14
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Saturation and Locality

K is order local w.r.t. < iff for every ground clause C:
KE=C ifandonlyif KE<C

K =< C means:  there is a proof of C from those ground instances of
clauses in IC in which each term is smaller
than (w.r.t. <) or equal to some term in C.

Theorem [Basin,Ganzinger'96,'01]

If /C is reductive and saturated w.r.t. <-ordered resolution,
then KC is order local w.r.t. <.

Reductive: for each ground instance C of a clause in /I, all terms ocurring in
C are smaller than or equal to some term in the maximal atom of C).

15




Saturation and Locality

K :=PreU{y =s(x) = f(x) < f(y)} (Pre={x<x,x<y Ay<z — x<z})

When saturating this set of clauses we obtain the infinite set

{y =s"(x) = f(x) < f(y)| n>0}UPre.

16



Saturation and Locality

K :=PreU{y =s(x) = f(x) < f(y)} (Pre={x<x,x<y Ay<z— x<z})

When saturating this set of clauses we obtain the infinite set

{y =s"(x) = f(x) < f(y) | n>0}UPre.

Our Idea [Horbach,VS 2013] Use constrained clauses: [y = s(x)]f(x) < f(y)
Develop a constrained ordered resolution calculus with melting constraints

Melting rule states: if it is possible to derive [c[x — s(x)]]Co from [c]Co,
then it is also possible to repeat this process to derive [c[x — s(s(x))]Co
and so on.

16



Saturation and Locality
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Saturation and Locality

K :=PreU{y =s(x) =» f(x) < f(y)} (Pre={x<x,x<y Ay<z— x<z})

When saturating this set of clauses we obtain the infinite set

{y =s"(x) = f(x) < f(y)| n>0}UPre.

Our Idea [Horbach,VS 2013] Use constrained clauses: [y = s(x)]f(x) < f(y)
Develop a constrained ordered resolution calculus with melting constraints

Melting rule states: if it is possible to derive [c[x — s(x)]]Co from [c]Co,
then it is also possible to repeat this process to derive [c[x — s(s(x))]Co
and so on. — finite representation (regular expressions in constraints; def. <)

—  {x<y— f(x) <f(y)}UPre.

16



Local theory extensions

Various notions of locality, depending of the instances to be considered
(closure operators [lhlemann,Jacobs,VS'08, Ihlemann,VS'10])

Implementation: H-PILoT [lhlemann,VS'09]

How to recognize local theory extensions?

e Embeddability of partial into total models [Ganzinger,VS,Waldmann'04,VS'05]

e Saturation (under resolution) [Basin,Ganzinger'96'01, VS'07, Horbach,VS'13]

e Transfer of locality [VS'07, Ihlemann,VS'10]

Combinations of local extensions are often local — modularity

14



Combinations of Theories

Focus: Modularity
Combinations of theories with disjoint signature [Nelson, Oppen’'79]
Combinations of theories with non-disjoint signature

- [Tinelli et al."02—'07] Relax conditions in Nelson/Oppen proc.

- [Ghilardi et al."03—'05] Model-theoretic method

- [Armando, Bonacina, Ranise, ...| Resolution-based methods

- [Ganzinger,VS,Waldmann'04,'06] Superposition/pure inferences

- [Ihlemann,VS'10] Combinations of local theory extensions are often local

— Interpolation [VS'06,'08, Rybalchenko,VS'07,'10]

15



Examples

of local theory extensions

MATHEMATICS

Tasks

— construct proofs
— check proofs

Theories
— numbers
— polynomials

— functions over
numeric domains

— algebras

Extensions of a theory 7y with:

- free functions [VS'05]
- monotone functions [VS'05,'08], [lhlemann,VS'07,"10]

Theories from mathematical analysis [VS'08b]

boundedness conditions (linear combinations)
monotone functions + bounds (linear combinations)
bounds on derivatives (linear combinations)
convexity /concavity

+ continuity/differentiability

Theories from algebra

- semilattices and lattices

16



Examples of local theory extensions

Theories of data structures [VS'07,VS’08c,lhlemann,Jacobs,VS’'08]

VERIEICATION - fragments of the theory of “Arrays” und “Pointers”
- theories of recursive data structures + recursive functions
Tasks - “Update” axioms
;)regggggsrxjmmaﬂon Theories from mathematical analysis
— reactive/hybrid
systems (e Verification: )
safety/lifeness h Programs (data structures)
o el [VS'06,07] [Ihlemann, Jacobs,VS'08]
. Train systems
T_himii - [Faber, Jacobs,VS'06,07],
- data types [Faber,lhlemann,Jacobs,VS'10]
— functions over Hybrid automata (appl: chemical plant controller)
numeric domains | [Damm,lhlemann,VS'11, VS'13] )
e Security [VS06,709]
Cryptography — encode(decode(x)) = x
decode(encode(x)) = x

17



Verification

S specification — X2 signature of S; 75 theory of S

—  Tg transition constraint system (TCS) defined by S
- Init(x): formula describing the initial state
- Tr(x,x’): changes of variable values during transitions

Given: W formula (e.g. safety property)

e Invariant checking
(1) FE7s Init(x) — V(X) (W holds in the initial state)
(2) 715 V(X) A Tr(x,X")=W(X") (If W holds before it also holds after update)

e Bounded model checking:

Check whether, for a fixed k, states violating W are reachable by runs of
Ts of length at most k, i.e. for all 0 < j < k:

Init(xo) A Tri(xo, x1) A== A Trp(xi—1, %) A =V (x;) Fro L

18



Parametric verification (discrete systems)

-
Given: Safety property (formula ®)
1. Verification: Check if constraints on parameters guarantee safety
If not, construct model which does not satisfy ®.
2. Synthesis: Infer relationships between parameters,
resp. properties of the functions modeling the changes
which ensure that the safety property ® holds
-

Here: Invariance of safety property

Note: We used similar ideas for bounded reachability

19



Example 1

=L +in ﬁw

— T Lovertlow
Lalarm
L” :== L +in — out CD L’ .= L+ in
| | valve (0/1)

— L —|_ |n - Out outflow

=

Initial states: L, < L < L,

Safety condition: L < Loverflow
Verification: Satisfiability check

r . .
(for given constraints on parameters)

The following are equivalent

(1) L < Loverflow is an invariant

(2) The disjunction of the following conjunctions is false
(a) 3AL(L, < L < Lp AL > Loverfiow)
(b)(i) AL(Latarm < L < Loverfiow A L+ in — out > Loverfiow)
(ii) AL(L < Lajarm A L+ in > Loverfiow)




Example 1

L’

I—L )
— L _|_ |n inflow
— _‘I|_-overﬂow
alarm
= L+ in — out CD L’ := L +in L
| | valve (0/1)
— L —|_ |n - Out outflow
J

Initial states: L, < L < L,

Safety condition: L < Loverflow

Verification: Satisfiability check

(

Synthesis: Quantifier elimination

The following are equivalent

(1) L < Loverflow is an invariant

(2) The disjunction of the following conjunctions is false

(a) 3L(La S L S Lb AL > Loverﬂow) iff Loverflow < Lb
(b)(l) 3L(Lalarm < L < Loverflow A L+ in — out > Loverflow) iff in > out
(”) HL(L < Lalarm A\ L + in > Loverﬂow) Iﬂ: in>Loverf|ow_La|arm

(3) Lb S Loverflow N inSOUt A inSLoverﬂow_LaIarm

21




Example 2

Initial states: L; < L < L,
Safety condition: L < Lgyerfiow

Verification: Satisfi
Synthesis: Quantifi

L :=L+in(t), t" ==t +1
—— T Loverflow
L’ := L+ in(t) — ou % @ L= Lokl 1
t/=t+1 t(: Dt’ = el || vave o
L, — L + in(t) L Out, t/ — t _I_ 1 outflow
| J
lability check

ler elimination

(

The following are equivalent

(1) L < Loverflow is an invariant
(2) The disjunction of the following conjunctions is false

(a) 3L(La S L S Lb AL > Loverﬂow)
(b)(l) L, t(LaIarm S L S Loverflow AL+ in(t) — out > Loverflow)

(II) 4L, t(L < Lalarm N L+ in(t) > Loverflow)

(3) Lp < Loverfiow /A Constr(in)
Constr(in) : Constraints which guarantee unsatisfiability of (i), (ii)

iff Loverflow < Lb

22
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Example 2

inflow

L" := L+ in(t) — ou @ @ L" := L+ in(t)
C Dt’ =t 4+ 1 || ve o)

— " Loverflow

L" :=L+in(t),t" :=t+1
Lalarm

t/ =t+1
L’ .= L+in(t) —out, t’ :=t+1
. J
Initial states: L; < L < L,
>afety condition: L < Loverflow Verification: Satisfiability check
4 Synthesis: Quantifier elimination

The following are equivalent

(1) L < Loverflow is an invariant
(2) The disjunction of the following conjunctions is false
(a) 3L(La S L S Lb AL > Loverflow) iff Loverflow < Lb
(b)(i) AL, t(Lajarm < L < Loverflow N L+ in(t) — out > Loverfiow)  iff It(in(t) > out)
(”) HL, t(L < Lalarm AL + in(t) > Loverflow) iff EIt(in(t)>Loverﬂow_LaIarm)
(3) Lb S Loverflow A Vt(in(t) S OUt) A Vt(in(t) S Loverflow - Lalarm)

22
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Parametric verification for hybrid systems

Discrete control (jumps); Continuous evolution in given modes (flows).

larm

alarm

Here special case: Linear hybrid automata

- Jump guards; updates: linear constraints between non-primed and primed variables
- Mode invariants: bounds on (linear combinations of the values of) control variables
n
Invg > ;L aixi < a
- Flow conditions: boundedness conditions on (linear combinations of) slopes
. .
flow, > 1 ,cxi<c

Alternative formulation:

Flowm((xi)i=1,n, 0, t) 1 Vt/, t""(0<t’<t""<t — > 7, ci(xi(t"")—xi(t"))<c(t""—t"))

23



Parametric verification for hybrid systems

Discrete control (jumps); Continuous evolution in given modes (flows).

7

Given: Safety property (formula @)
Task: 1. Check if constraints on parameters guarantee safety
2. Infer relationships between parameters,
resp. properties of the functions modeling the changes
which ensure that the safety property ® is an invariant

Task: Study under which conditions the following are false:
(Jump) 3%, X" (Invy(X) A D(X) A Jump,, .7 (X, X7) A v,/ (X7) A =O(X7)).

(Flow) 3Jt(Inv,(X(0))AD(X(0))AVE (0<t’ <t—Flown,(X, 0, t") A Inv,(X(t")))
N —d(x(t)))

24



Parametric data: Example (Water tank)

Safety condition: L < Loyerflow

(The following are equivalent )
(1) The safety condition is an invariant under jumps and flows
(2) The disjunction of the following formulae is false
(a) 3L(L S Lalarm N L S Loverflow N L > Loverflow) false
(b) EIL(L > Lalarm N L S Loverflow N L > Loverflow) false

(c) AL, t(L(0)< Layjarm AV (0<t’ < t—L(t")=L(0)+int’ AL(t") < Lajarm )AL(t) > Loverfiow)  false
(d) AL, t(L(0)> Lyjarm AVE (0<t’ <t—L(t")=L(0)+(in—out)t’ AL(t")>Lajarm ) )AL(t) > Loverfiow)
ifFin—out>OJ

[Damm, Ihlemann,VS'11] PTIME algorithm for invariant checking (uses locality)
classes of LHA for which safety properties can be checked in PTIME
and bounded-time reachability is in NP

Synthesis: parametric bounds on slope +— constraints guaranteeing safety

25



General method

Verification — hierarchical reasoning in local theory extensions

Synthesis +— hierarchical QE in local theory extensions

(Examples: A
e Program verification:
— Insertion of elements in sorted arrays [VS'10]
e Verification of controllers:
— Train systems [Jacobs,VS'06]
[Faber,Jacobs,VS'07],[Faber,Ihlemann,Jacobs,VS'10]
— Linear hybrid automata [Damm,lhlemann,VS'11, VS'13]
— A chemical plant [Damm,lhlemann,VS'11]
— Families of similar linear hybrid automata [VS'13]
L [Damm,Horbach,VS, in progress| )
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Example: ETCS Case Study (AVACS project)

[Faber,lhlemann,Jacobs,VS'10]
Verification of train systems with complex track topology

Idea: Reduce complexity by exploiting modularity at various levels
specification / verification / structurally

27



Main goal: exploit modularity at various levels

[Faber,lhlemann,Jacobs,VS'10]
Verification of train systems with complex track topology

1. Specification
e Use the modular language COD [Hoenicke,Olderog'02], which allows
us to separately specify
— processes (as Communicating Sequential Processes, CSP),
— data (using Object-Z, OZ), and
— time, durations (using the Duration Calculus, DC).
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Example: Controller for line track (RBC)

Interface

(Leave) (Leave) RBC

(Enter) (Enter) method enter : [s1? : Segment; t0? : Train; t1? : Train; t27 : Train]

method leave : [Is? : Segment; It? : Train]

(Speed) local_chan alloc, req, updPos, updSpd

=i c c
main = ((enter — main) State2 = ((alloc — State3)
O (leave — main) o (enter — State2)
O (updSpd — Statel)) m] (leave — State2))
(Position) (Request) Statel & ((enter — Statel) State3 s ((enter — State3)
m] (leave — Statel) u} (leave — State3)
O (req — State2)) m] (updPos — main))
— SegmentData — TrainData
train : Segment — Train [Train on segment] segm : Train — Segment [Train segment]
req : Segment — 7 [Requested by train] next : Train — Train [Next train]
alloc : Segment — 7 [Allocated by train] spd : Train — R [Speed]
(Allocation) pos : Train — R [Current position]
prev : Train — Train [Prev. train]
(Enter) (Enter)
(Leave) (Leave) _ Tnit
sd : SegmentData Vt : Trainltrain(segm(t)) = t
td : TrainData Vt : Trainl next(prev(t)) = t
— Vt : TrainT prev(next(t)) =t
Vt : Trainltid(t) > 0 Vt : TrainT0 < pos(t) < length(segm(t))
Vtl, t2 : Train | t1 # t2ltid(t1) +# tid(t2) Vt : TrainT0 < spd(t) < Imax(segm(t))
Vs : SegmentTl prevs(nexts(s)) = s Vt : Trainl alloc(segm(t)) = tid(t)
Vs : Segmentl nexts(prevs(s)) = s Vt : Trainl alloc(nexts(segm(t))) = tid(t)
Vs : Segmentlsid(s) > 0 V' length(segm(t)) — bd(spd(t)) > pos(t)
Vs : SegmentTlsid(nexts(s)) > sid(s) Vs : Segmentl segm(train(s)) = s

Vsl, s2 : Segment | s1 & s2[sid(s1)  sid(s2)

Vs : Segment | s  snill length(s) > d + gmax - At

Vs : Segment | s & snill0 < Imax(s) A Imax(s) < gmax
Vs : Segmentlimax(s) > Imax(prevs(s)) — decmax - At
Vsl, s2 : SegmentTl tid(incoming(s1)) # tid(train(s2))

— effect_updSpd
A(spd)

Vt : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0

Imax{0, spd(t) — decmax - At} < spd’(t) < Imax(segm(t))
Vt : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)

Imax{0, spd(t) — decmax - At} < spd”(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
Vt : Train | pos(t) > length(segm(t)) — d A — alloc(nexts(segm(t))) = tid(t)

Fspd’ (t) = max{0, spd(t) — decmax - At}

CSP part

Data classes

State and Init schema

ydate rules



Main goal: exploit modularity at various levels

[Faber,lhlemann,Jacobs,VS'10]
Verification of train systems with complex track topology

2. Verification

e Verification tasks: linear track; incoming, outgoing trains

Data structures Pointers: 2 Sorts: Trains ' J/\/\H

[J /I\" L] ! I"/-I\“' T 1 1 ]
Segments —— T T
— Safety checking: reasoning in complex data structures
— Solution: hierarchical and modular reasoning
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Modular Verification

COD — 2 g sighature of S; 75 theory of S; Ts transition constraint system
specification Init(Xx); Update(x, x”)
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Modular Verification

COD — 2 g signature of S; Tg theory of S; Tg transition constraint system
specification Init(Xx); Update(x, x”)

TITL

B A A A AT A A

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

Proof task:
Safe(pos, next, prev, spd) A SpeedUpdate(pos, next, prev, spd, spd’) — Safe(pos’, next, prev, spd’)
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Modular Verification

COD — 2 g signature of S; Tg theory of S; Tg transition constraint system
specification Init(Xx); Update(x, x”)

AL JLA

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)
Assume: s; # nullg, t; # nullg, train(s) # t1, alloc(s1) = idt(t1)

t=#£t;, ids(segm(t))<ids(s1), next,(t)=null;, alloc(s;)=tid(t;) — next’(t)=t1 A next’(t1)=null;
t#t1, ids(segm(t))<ids(si), alloc(sy)=tid(t1), next;(t)#null;, ids(segm(next:(t)))<ids(si)
— next’(t)=next.(t)

.t.;létl, ids(segm(t))>ids(s;) — next’(t)=next;(t)
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Modular Verification

COD — 2 g signature of S; Tg theory of S; Tg transition constraint system
specification Init(Xx); Update(x, x”)

ﬁ&\;/\ ‘

L LL
va

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # nullg, t; # null, train(s) # t1, alloc(sy) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s;)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(s;)=tid(t1), next;(t)#nulls, ids(segm(next:(t)))<ids(s1)
— next’ (t)=next:(t)

.t-;.étl, ids(segm(t))>ids(s1) — next’(t)=next;(t)
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Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

(Safe) Vi1, tr segm(ty) = segm(t2) — t; = to

\ S

Our solution
Find an invariant (Inv;) for every control location i of the TCS, and prove:

(1) (Inv;) = (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Inv;) A (Update) = (Inv?)
whenever (Update) is a transition from location i to j .

Here: Inv; generated by hand (use poss. of generating counterexamples with H-PILoT)
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Modularity in automated reasoning

Problem: Axioms, Invariants, Updates: are universally quantified

Examples of theories we need to handle

e Invariants
(Invy) Vit : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)
— length(segm(t)) — bd(spd(t)) > pos(t) + spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d
— spd(t) < Imax(nexts(segm(t)))
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Modularity in automated reasoning

Problem: Axioms, Invariants, Updates: are universally quantified

Examples of theories we need to handle

e Invariants

(Invy) Vit : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)

— length(segm(t)) — bd(spd(t)) > pos(t) + spd(t) - At
(Invo) Vit : Train. pc # InitState A pos(t) > length(segm(t)) — d

— spd(t) < Imax(nexts(segm(t)))

e Update rules

Vt:pi(t) — s <spd(t) <t
Vt: pn(t) — sp <spd(t) <t,
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Modularity in automated reasoning

Problem: Axioms, Invariants, Updates: are universally quantified

Examples of theories we need to handle

e Invariants
(Invy) Vit : Train. pc # InitState A alloc(nexts(segm(t))) # tid(t)
— length(segm(t)) — bd(spd(t)) > pos(t) + spd(t) - At
(Invy) Vt : Train. pc # InitState A pos(t) > length(segm(t)) — d
— spd(t) < Imax(nexts(segm(t)))
e Update rules

Vt:pi1(t) — s <spd(t) <ty

Vt: pn(t) — sp <spd(t) <t,

e Underlying theory: theory of many-sorted pointers, real numbers, ...
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The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e T he invariants we consider
e The axioms for many-sorted pointer structures we consider
To show:
T> = T1 U Update(next, ...next’, ...) T2 U =lnv(next’) =L

Ve

G

T1 = To U Inv(next, ...)

To = (Pointers, R)

UIFUR
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The good news

The following sets of formulae define local theory extensions:

e Updates (according to a partition of the state space)
e The invariants we consider

e The axioms for many-sorted pointer structures we consider
To show:

T> = 71 U Update(next, ...next’, ...) T2 U =lnv(next’) &=L

G

J
T1 = To U Inv(next, ...) 71 U Update[G] A G =L

X

To = (Pointers, R) ToUInv[G']AG" =1L
UIFUR UIF UR U (PointerAx[G”'] U G")o =L

H-PILoT:  verification/ QE > constr. on param.

model building/counterexample generation
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Modular Verification

COD — 2 g sighature of S; 75 theory of S; Ts transition constraint system
specification Init(Xx); Update(x, x”)

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

Proof task:
Inv(pos, next, prev, spd) A SpeedUpdate(pos, next, prev, spd, spd’) — Inv(pos’, next, prev, spd”)
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Modular Verification

COD — 2 g sighature of S; 75 theory of S; Ts transition constraint system
specification Init(Xx); Update(x, x”)
= o= N
et |
TR
4 )

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)
Assume: s; # nullg, t1 # null, train(s) # t1, alloc(sy) = idt(t1)
t=£t, ids(segm(t))<ids(s1), next;(t)=null;, alloc(s;)=tid(t;) — next’(t)=t1 A next’(t1)=null;

t#t1, ids(segm(t))<ids(si), alloc(sy)=tid(t1), next;(t)#null;, ids(segm(next;(t))) <ids(si)
— next’ (t)=next;(t)

.t.;létl, ids(segm(t))>ids(s1) — next’(t)=next;(t)
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Main goal: exploit modularity at various levels

[Faber,lhlemann,Jacobs,VS'10]
Verification of train systems with complex track topology

3. Structurally
— Complex track topology (Assumption: No cycles; degree at most 2)
- decomposition into family of linear tracks (may overlap)

- prove that safety of whole system follows from
(1) safety for the controller of a linear track and
(2) compatibility of controllers on jointly controlled trains.

e Synthesis: - Constraints on parameters which guarantee safety
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Experimental results

. UL — ' CSP-0Z- DC - PEA (PEA tooIkitJT—CS{H—PILoT)

—————————————

Verification of RBC

(Syspect + PEA)  (H-PILoT + Yices) (Yices alone)

(Inv) unsat

Part 1 11s 72s 52s

Part 2 11s 124s 131s
speed update 11s 8s 45s
(Safe) sat Os 8s (4+ model) time out
Consistency 13s 3s (Unknown) 2s

(obtained on: AMDG64, dual-core 2 GHz, 4 GB RAM)

Main advantage: Capability of H-PILoT of detecting satisfiability and
constructing counterexamples — correct specifications.
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Timed train controller (Train)

Note: The correctness proof for the whole system proceeds as follows:

(1) We proved safety of the RBC under the assumption that
the trains have certain properties.

(2) We prove that the trains indeed satisfy such properties

(or determine conditions on parameters under which such properties hold).
J

\

Train RBC |o-
grant SegmentData
1 | updPos reject 1 [ updPos
1 | updSpd 1 | updSpd

Environment

CSP-0OZ-DC specification for Train.
(1) Verification

(2) Synthesis of constraints for which Train satisfies the safety requirements.
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Conclusion

e Local theory extensions
Limit search / modularity: hierarchic reasoning
Recognize locality: embeddability; saturation

Combine various extensions:

— Modular reasoning; information exchange

e Applications

Here: Verification
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Summary

Efficient reasoning
e Theories
e Theory extensions

e Chains of theory extensions
e Theory combinations

Hierarchic, modular reasoning
Parameterized complexity
Model generation
Implementation H-PlLoT

Interpolation

Verification (AVACS)
e Deductive verification case studies
with Damm, Faber, Ihlemann, Jacobs

e Synthesis first steps

[

with A. Rybalchenko
e Model generation —
Cryptography first steps
Knowledge representation

with F. Gasse

\-

Complex systems

Verification: Modularity; case studies
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