
Modularity in automated reasoning and

in the verification of complex systems

Viorica Sofronie-Stokkermans

University Koblenz-Landau and

Max-Planck-Institut für Informatik, Saarbrücken

IFIP WG 2.2 meeting, Lisbon, September 23-26, 2013

1

Motivation

Goal: use computers as “intelligent assistants”

in mathematics, verification, engineering, databases ...

Main problem: complexity

- complex description of problems to be solved

7→ complex encoding

7→ large formulae

- system dynamics

- complex systems (interaction, synchronization)

2

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

MATHEMATICS
• Theories from mathematical analysis

Functions over R

- monotone, bounded

- continuous, differentiable

• Algebraic structures

Monoids, groups, rings

Lattices, Boolean algebras

• Logic

Classical logic

Non-classical logics
- many-valued logics, fuzzy logic
- modal, dynamic, temporal
- logics for MAS

3

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

VERIFICATIONMATHEMATICS

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Controllers

Embedded software

4

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

VERIFICATIONMATHEMATICS

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Controllers

Embedded software

Program verification

int [] BubbleSort(int[] a) {

int i , j, t;

for (i :=| a | −1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

• Does BubbleSort return a sorted array?
• Is a state with a certain property

reachable in ≤ k steps?

4

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

VERIFICATIONMATHEMATICS

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Controllers

Inv

flow

Inv

flow

Inv

flow

Inv

flow

1

1

2

2

Fill React

 Dump Filter

3

3

4

4

Check:

• No overflow

• Substances in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.

Determine values for parameters

such that this is the case

4

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

VERIFICATIONMATHEMATICS

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Controllers

Train controllers

RBC

braking + reaction
distance

• Task: check collision freeness

4

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

VERIFICATIONMATHEMATICS

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Controllers

Two or more controllers

- non-disjoint sets of controlled trains

- synchronization for the control of

common trains

RBC

braking + reaction
distance

RBC

braking + reaction
distance

- complex track topology

4

Examples of application domains

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

VERIFICATIONMATHEMATICS

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Verification tasks

can often be solved as follows:

- encode problems as logical formulae

- reduce verification tasks to testing

entailment/satisfiability/validity

5

Problems

− First order logic is undecidable

− In applications, theories do not occur alone

7→ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

6

Problems

− First order logic is undecidable

− In applications, theories do not occur alone

7→ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable

+ Often provers for the component theories can be combined efficiently

The goals of my research:

• Identify decidable theories which are important in applications
(extensions/combinations) possibly with low complexity

• Development & implementation of efficient decision procedures

• Applications, e.g. in verification, databases, mathematics

6

Goal of this talk

Present some of my work on identifying conditions

under which efficient methods for the verification

of complex systems exist

Focus: Modularity

• Modularity in automated reasoning (Application: Verification)

Deductive verification

Synthesis: Generate constraints on parameters which guarantee satisfiability

• Modularity in the verification of complex, interacting systems

7

Goal of this talk

Present some of my work on identifying conditions

under which efficient methods for the verification

of complex systems exist

Structure of the talk

• Efficient automated reasoning: hierarchical and modular reasoning

• Local theory extensions (idea: complete instantiation)

• Recognizing local theory extensions; examples

• Applications

Deductive verification (invariant checking, BMC)

Synthesis: Generate constraints on parameters which guarantee satisfiability

• Example: Modular verification - system of trains; complex track topology

8

Automated reasoning

Important for efficient reasoning

• Possibility of limiting search

• Modular reasoning in complex theories

9

Example: A theory of doubly-linked lists

[Necula, McPeak, 2005]
A

p (p 6= null ∧ p.next 6= null → p.next.prev = p)

A

p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

10

Example: A theory of doubly-linked lists

[Necula, McPeak, 2005]

(c 6=null ∧ c.next 6=null→c.next.prev=c) (c.next 6=null ∧ c.next.next 6=null→c.next.next.prev=c.next)

(d 6=null ∧ d.next 6=null→d .next.prev=d) (d .next6=null ∧ d .next.next6=null→d .next.next.prev=d .next)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

9

Example: A theory of doubly-linked lists

[Necula, McPeak, 2005]

(c 6=null ∧ c.next 6=null→c.next.prev=c) (c.next 6=null ∧ c.next.next 6=null→c.next.next.prev=c.next)

(d 6=null ∧ d.next 6=null→d .next.prev=d) (d .next6=null ∧ d .next.next6=null→d .next.next.prev=d .next)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

Consider extensions which also take the elements of the list into account

7→ Reasoning in complex theories

9

Complex Theories

Hierarchic Reasoning Example:

T1 T1: Σ1-theory; T0 ⊆ T1 Σ0 ⊂ Σ1 f : R → R mon.

T0 T0: Σ0-theory. R

Can we use a prover for T0 as a blackbox to prove theorems in T1?

10

Complex Theories

Hierarchic Reasoning Example:

T1 T1: Σ1-theory; T0 ⊆ T1 Σ0 ⊂ Σ1 f : R → R mon.

T0 T0: Σ0-theory. R

Can we use a prover for T0 as a blackbox to prove theorems in T1?

Modular Reasoning Example:

T1 T0 T2
T0: Σ0-theory. lists(R) ∪ arrays(R)

Ti : Σi -theory; T0 ⊆ Ti Σ0 ⊆ Σi .

Can we use provers for T1, T2 as blackboxes to prove theorems in T1 ∪ T2?

Which information needs to be exchanged between the provers?

10

Example

R∪Monf ∧ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|= ⊥

Monf

A

x , y(x ≤ y → f (x) ≤ f (y))

• A prover for R cannot handle the function f

• A prover for first-order logic cannot handle real numbers

Idea: Hierarchical reasoning

Step 1: Reasoning about the properties of f

Step 2: Reasoning about real numbers

11

Idea

R∪Monf ∧ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|= ⊥

Limit search space

R ∪Monf [G] ∪ G |= ⊥

7→ sound and complete

G ∪ Mon(f)

a < b

f (a) = f (b) + 1

A

x , y(x ≤ y → f (x) ≤ f (y))

12

Idea

R∪Monf ∧ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|= ⊥

Limit search space

R ∪Monf [G] ∪ G |= ⊥

7→ sound and complete

Hierarchical reasoning

G ∪ Mon(f)[G]

a1 = f (a) a < b

b1 = f (b) f (a) = f (b) + 1

a ≤ b → f (a) ≤ f (b)

b ≤ a → f (b) ≤ f (a)

The following are equivalent:

(1) R ∪Monf [G] ∪ G |= ⊥

(2) R ∪Monf [G]0 ∪ G0 ∪ Def |= ⊥ (Purification)

12

Idea

R∪Monf ∧ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|= ⊥

Limit search space

R ∪Monf [G] ∪ G |= ⊥

7→ sound and complete

Hierarchical reasoning

Definitions G0 ∪ Mon(f)[G]0 ∪ Con[G]0

a1 = f (a) a < b

b1 = f (b) a1 = b1 + 1

a ≤ b → a1 ≤ b1

b ≤ a → b1 ≤ a1

a = b → a1 = b1

The following are equivalent:

(1) R ∪Monf [G] ∪ G |= ⊥

(2) R ∪Monf [G]0 ∪ G0 ∪ Def |= ⊥ (Purification)

(3) R ∪Monf [G]0 ∪ G0 ∪ Con(Def) |= ⊥ (Hierarchical reduction)

12

Idea

R∪Monf ∧ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|= ⊥

Limit search space

R ∪Monf [G] ∪ G |= ⊥

7→ sound and complete

Hierarchical reasoning

Definitions G0 ∪ Mon(f)[G]0 ∪ Con[G]0

a1 = f (a) a < b

b1 = f (b) a1 = b1 + 1

a ≤ b → a1 ≤ b1

b ≤ a → b1 ≤ a1

a = b → a1 = b1

The following are equivalent:

(1) R ∪Monf [G] ∪ G |= ⊥

(2) R ∪Monf [G]0 ∪ G0 ∪ Def |= ⊥ (Purification)

(3) R ∪Monf [G]0 ∪ G0 ∪ Con(Def) |= ⊥ (Hierarchical reduction)

12

Local theory extensions

[GSW’04, VS’05] K set of equational clauses; T0 theory; T1 = T0 ∪ K

Definition. T0 ⊆ T1 is local iff for all sets of ground clauses G ,

T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥

Extends the notion of local theory introduced in [Givan,McAllester’92,’94]

and further studied in [BasinGanzinger’96,’01, Ganzinger’01]

13

Local theory extensions

[GSW’04, VS’05] K set of equational clauses; T0 theory; T1 = T0 ∪ K

Definition. T0 ⊆ T1 is local iff for all sets of ground clauses G ,

T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥

Hierarchical reasoning possible [VS’05]

1. Locality: T0∪K[G]∪G |= ⊥ 7→ O(nk) clauses

2. Purification: T0∪K[G]0∪G0∪Def |= ⊥ 7→ linear

3. Hierarchical reduction: T0∪K[G]0∪G0∪Con(Def) |= ⊥ 7→ +O(n2) clauses

4. Satisfiability test in T0 (prover for T0 – blackbox) 7→ g(nk)

Parametric complexity for T1

13

Local theory extensions

Various notions of locality, depending of the instances to be considered

(closure operators [Ihlemann,Jacobs,VS’08, Ihlemann,VS’10])

Implementation: H-PILoT [Ihlemann,VS’09]

How to recognize local theory extensions?

• Embeddability of partial into total models [Ganzinger,VS,Waldmann’04,VS’05]

• Saturation (under resolution) [Basin,Ganzinger’96’01, VS’07, Horbach,VS’13]

• Transfer of locality [VS’07, Ihlemann,VS’10]

14

Local theory extensions

Various notions of locality, depending of the instances to be considered

(closure operators [Ihlemann,Jacobs,VS’08, Ihlemann,VS’10])

Implementation: H-PILoT [Ihlemann,VS’09]

How to recognize local theory extensions?

• Embeddability of partial into total models [Ganzinger,VS,Waldmann’04,VS’05]

T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥

• Saturation (under resolution) [Basin,Ganzinger’96’01, VS’07, Horbach,VS’13]

• Transfer of locality [VS’07, Ihlemann,VS’10]

14

Local theory extensions

Various notions of locality, depending of the instances to be considered

(closure operators [Ihlemann,Jacobs,VS’08, Ihlemann,VS’10])

Implementation: H-PILoT [Ihlemann,VS’09]

How to recognize local theory extensions?

• Embeddability of partial into total models [Ganzinger,VS,Waldmann’04,VS’05]

• Saturation (under resolution) [Basin,Ganzinger’96’01, VS’07, Horbach,VS’13]

• Transfer of locality [VS’07, Ihlemann,VS’10]

14

Saturation and Locality

K is order local w.r.t. ≺ iff for every ground clause C :

K |= C if and only if K |=� C

K |=� C means: there is a proof of C from those ground instances of

clauses in K in which each term is smaller

than (w.r.t. ≺) or equal to some term in C .

Theorem [Basin,Ganzinger’96,’01]

If K is reductive and saturated w.r.t. ≺-ordered resolution,

then K is order local w.r.t. ≺.

Reductive: for each ground instance C of a clause in K, all terms ocurring in

C are smaller than or equal to some term in the maximal atom of C).

15

Saturation and Locality

K := Pre ∪ {y = s(x) → f (x) ≤ f (y)} (Pre = {x≤x , x≤y ∧ y≤z → x≤z})

When saturating this set of clauses we obtain the infinite set

{y = sn(x) → f (x) ≤ f (y) | n ≥ 0} ∪ Pre.

16

Saturation and Locality

K := Pre ∪ {y = s(x) → f (x) ≤ f (y)} (Pre = {x≤x , x≤y ∧ y≤z → x≤z})

When saturating this set of clauses we obtain the infinite set

{y = sn(x) → f (x) ≤ f (y) | n ≥ 0} ∪ Pre.

Our Idea [Horbach,VS 2013] Use constrained clauses: [y = s(x)]f (x) ≤ f (y)

Develop a constrained ordered resolution calculus with melting constraints

Melting rule states: if it is possible to derive [c[x 7→ s(x)]]Cσ from [c]Cσ,

then it is also possible to repeat this process to derive [c[x 7→ s(s(x))]Cσ

and so on.

16

Saturation and Locality

K := Pre ∪ {y = s(x) → f (x) ≤ f (y)} (Pre = {x≤x , x≤y ∧ y≤z → x≤z})

When saturating this set of clauses we obtain the infinite set

{y = sn(x) → f (x) ≤ f (y) | n ≥ 0} ∪ Pre.

Our Idea [Horbach,VS 2013] Use constrained clauses: [y = s(x)]f (x) ≤ f (y)

Develop a constrained ordered resolution calculus with melting constraints

Melting rule states: if it is possible to derive [c[x 7→ s(x)]]Cσ from [c]Cσ,

then it is also possible to repeat this process to derive [c[x 7→ s(s(x))]Cσ

and so on. 7→ finite representation (use regular expressions in constraints)

7→ {[y = s∗(x)]f (x) ≤ f (y)} ∪ Pre.

16

Saturation and Locality

K := Pre ∪ {y = s(x) → f (x) ≤ f (y)} (Pre = {x≤x , x≤y ∧ y≤z → x≤z})

When saturating this set of clauses we obtain the infinite set

{y = sn(x) → f (x) ≤ f (y) | n ≥ 0} ∪ Pre.

Our Idea [Horbach,VS 2013] Use constrained clauses: [y = s(x)]f (x) ≤ f (y)

Develop a constrained ordered resolution calculus with melting constraints

Melting rule states: if it is possible to derive [c[x 7→ s(x)]]Cσ from [c]Cσ,

then it is also possible to repeat this process to derive [c[x 7→ s(s(x))]Cσ

and so on. 7→ finite representation (use regular expressions in constraints)

7→ {y = s∗(x) → f (x) ≤ f (y)} ∪ Pre.

16

Saturation and Locality

K := Pre ∪ {y = s(x) → f (x) ≤ f (y)} (Pre = {x≤x , x≤y ∧ y≤z → x≤z})

When saturating this set of clauses we obtain the infinite set

{y = sn(x) → f (x) ≤ f (y) | n ≥ 0} ∪ Pre.

Our Idea [Horbach,VS 2013] Use constrained clauses: [y = s(x)]f (x) ≤ f (y)

Develop a constrained ordered resolution calculus with melting constraints

Melting rule states: if it is possible to derive [c[x 7→ s(x)]]Cσ from [c]Cσ,

then it is also possible to repeat this process to derive [c[x 7→ s(s(x))]Cσ

and so on. 7→ finite representation (regular expressions in constraints; def. ≤)

7→ {x ≤ y → f (x) ≤ f (y)} ∪ Pre.

16

Local theory extensions

Various notions of locality, depending of the instances to be considered

(closure operators [Ihlemann,Jacobs,VS’08, Ihlemann,VS’10])

Implementation: H-PILoT [Ihlemann,VS’09]

How to recognize local theory extensions?

• Embeddability of partial into total models [Ganzinger,VS,Waldmann’04,VS’05]

• Saturation (under resolution) [Basin,Ganzinger’96’01, VS’07, Horbach,VS’13]

• Transfer of locality [VS’07, Ihlemann,VS’10]

Combinations of local extensions are often local 7→ modularity

14

Combinations of Theories

Focus: Modularity

Combinations of theories with disjoint signature [Nelson, Oppen’79]

Combinations of theories with non-disjoint signature

- [Tinelli et al.’02–’07] Relax conditions in Nelson/Oppen proc.

- [Ghilardi et al.’03–’05] Model-theoretic method

- [Armando, Bonacina, Ranise, ...] Resolution-based methods

- [Ganzinger,VS,Waldmann’04,’06] Superposition/pure inferences

- [Ihlemann,VS’10] Combinations of local theory extensions are often local

7→ Interpolation [VS’06,’08, Rybalchenko,VS’07,’10]

15

Examples of local theory extensions

Theories

− numbers

− polynomials

− functions over
 numeric domains

− algebras

Tasks
− construct proofs
− check proofs

MATHEMATICS
Extensions of a theory T0 with:

- free functions [VS’05]

- monotone functions [VS’05,’08], [Ihlemann,VS’07,’10]

Theories from mathematical analysis [VS’08b]

- boundedness conditions (linear combinations)

- monotone functions + bounds (linear combinations)

- bounds on derivatives (linear combinations)

- convexity/concavity

+ continuity/differentiability

Theories from algebra

- semilattices and lattices

16

Examples of local theory extensions

VERIFICATION

Tasks

 numeric domains
− functions over
− data types

Theories
− numbers

− programs

− reactive/hybrid
systems

− cryptography
 safety/lifeness

correctness crypt. prot.

correctness/termination

Theories of data structures [VS’07,VS’08c,Ihlemann,Jacobs,VS’08]

- fragments of the theory of “Arrays” und “Pointers”

- theories of recursive data structures + recursive functions

- “Update” axioms

Theories from mathematical analysis

• Verification:

Programs (data structures)

[VS’06,’07] [Ihlemann,Jacobs,VS’08]

Train systems

[Faber,Jacobs,VS’06,07],

[Faber,Ihlemann,Jacobs,VS’10]

Hybrid automata (appl: chemical plant controller)

[Damm,Ihlemann,VS’11, VS’13]

• Security [VS’06,’09]

Cryptography 7→ encode(decode(x)) = x

decode(encode(x)) = x

17

Verification

S specification 7→ ΣS signature of S; TS theory of S
7→ TS transition constraint system (TCS) defined by S

- Init(x): formula describing the initial state
- Tr(x , x′): changes of variable values during transitions

Given: Ψ formula (e.g. safety property)

• Invariant checking

(1) |=TS
Init(x) → Ψ(x) (Ψ holds in the initial state)

(2) |=TS
Ψ(x) ∧ Tr(x , x′)→Ψ(x′) (If Ψ holds before it also holds after update)

• Bounded model checking:

Check whether, for a fixed k, states violating Ψ are reachable by runs of

TS of length at most k, i.e. for all 0 ≤ j ≤ k:

Init(x0) ∧ Tr1(x0, x1) ∧ · · · ∧ Trn(xj−1, xj) ∧ ¬Ψ(xj) |=TS
⊥

18

Parametric verification (discrete systems)

Given: Safety property (formula Φ)

1. Verification: Check if constraints on parameters guarantee safety

If not, construct model which does not satisfy Φ.

2. Synthesis: Infer relationships between parameters,

resp. properties of the functions modeling the changes

which ensure that the safety property Φ holds

Here: Invariance of safety property

Note: We used similar ideas for bounded reachability

19

Example 1

L′ := L + in

L′ := L + in − out L′ := L + in

L′ := L + in − out

L > L
alarm

L < L
alarm

Initial states: La ≤ L ≤ Lb

Safety condition: L ≤ Loverflow

The following are equivalent

(1) L ≤ Loverflow is an invariant

(2) The disjunction of the following conjunctions is false

(a)

E

L(La ≤ L ≤ Lb ∧ L > Loverflow)

(b)(i)

E

L(Lalarm ≤ L ≤ Loverflow ∧ L + in − out > Loverflow)

(ii)

E

L(L < Lalarm ∧ L + in > Loverflow)

Verification: Satisfiability check

(for given constraints on parameters)

21

Example 1

L′ := L + in

L′ := L + in − out L′ := L + in

L′ := L + in − out

L > L
alarm

L < L
alarm

Initial states: La ≤ L ≤ Lb

Safety condition: L ≤ Loverflow

The following are equivalent

(1) L ≤ Loverflow is an invariant

(2) The disjunction of the following conjunctions is false

(a)

E

L(La ≤ L ≤ Lb ∧ L > Loverflow) iff Loverflow < Lb

(b)(i)

E

L(Lalarm ≤ L ≤ Loverflow ∧ L + in − out > Loverflow) iff in > out

(ii)

E

L(L < Lalarm ∧ L + in > Loverflow) iff in>Loverflow−Lalarm

(3) Lb ≤ Loverflow ∧ in≤out ∧ in≤Loverflow−Lalarm

Verification: Satisfiability check

Synthesis: Quantifier elimination

21

Example 2

L′ := L + in(t), t′ := t + 1

L′ := L + in(t) − out L′ := L + in(t)
t′ := t + 1 t′ := t + 1

L′ := L + in(t) − out, t′ := t + 1

L > L
alarm

L < L
alarm

Initial states: La ≤ L ≤ Lb

Safety condition: L ≤ Loverflow

The following are equivalent

(1) L ≤ Loverflow is an invariant

(2) The disjunction of the following conjunctions is false

(a)

E

L(La ≤ L ≤ Lb ∧ L > Loverflow) iff Loverflow < Lb

(b)(i)

E

L, t(Lalarm ≤ L ≤ Loverflow ∧ L + in(t) − out > Loverflow)

(ii)

E

L, t(L < Lalarm ∧ L + in(t) > Loverflow)

(3) Lb ≤ Loverflow ∧ Constr(in)

Constr(in) : Constraints which guarantee unsatisfiability of (i),(ii)

Verification: Satisfiability check

Synthesis: Quantifier elimination

22

Example 2

L′ := L + in(t), t′ := t + 1

L′ := L + in(t) − out L′ := L + in(t)
t′ := t + 1 t′ := t + 1

L′ := L + in(t) − out, t′ := t + 1

L > L
alarm

L < L
alarm

Initial states: La ≤ L ≤ Lb

Safety condition: L ≤ Loverflow

The following are equivalent

(1) L ≤ Loverflow is an invariant

(2) The disjunction of the following conjunctions is false

(a)

E

L(La ≤ L ≤ Lb ∧ L > Loverflow) iff Loverflow < Lb

(b)(i)

E

L, t(Lalarm ≤ L ≤ Loverflow ∧ L+ in(t)− out > Loverflow) iff

E

t(in(t) > out)

(ii)

E

L, t(L < Lalarm ∧ L + in(t) > Loverflow) iff

E

t(in(t)>Loverflow−Lalarm)

(3) Lb ≤ Loverflow ∧

A

t(in(t) ≤ out) ∧

A

t(in(t) ≤ Loverflow − Lalarm)

Verification: Satisfiability check

Synthesis: Quantifier elimination

22

Parametric verification for hybrid systems

Discrete control (jumps); Continuous evolution in given modes (flows).

L > L
alarm L < L

alarm

L < L
alarm

L > L
alarm

. .
L = in−out L = in

Here special case: Linear hybrid automata

- Jump guards; updates: linear constraints between non-primed and primed variables

- Mode invariants: bounds on (linear combinations of the values of) control variables

Invq
∑n

i=1 aixi ≤ a

- Flow conditions: boundedness conditions on (linear combinations of) slopes

flowq

∑n
i=1 ci

·
x i≤ c

Alternative formulation:

Flowm((xi)i=1,n, 0, t) :

A

t′, t′′(0≤t′≤t′′≤t →
∑n

i=1 ci (xi (t
′′)−xi (t

′))≤c(t′′−t′))

23

Parametric verification for hybrid systems

Discrete control (jumps); Continuous evolution in given modes (flows).

Given: Safety property (formula Φ)

Task: 1. Check if constraints on parameters guarantee safety

2. Infer relationships between parameters,

resp. properties of the functions modeling the changes

which ensure that the safety property Φ is an invariant

Task: Study under which conditions the following are false:

(Jump)

E

x , x′(Invm(x) ∧ Φ(x) ∧ Jumpm,m′ (x , x′) ∧ Invm′ (x′) ∧ ¬Φ(x′)).

(Flow)

E

t(Invm(x(0))∧Φ(x(0))∧

A

t′(0≤t′≤t→Flowm(x, 0, t
′) ∧ Invm(x(t

′)))

∧ ¬Φ(x(t)))

24

Parametric data: Example (Water tank)

L > L
alarm L < L

alarm

L < L
alarm

L > L
alarm

. .
L = in−out L = inSafety condition: L ≤ Loverflow

The following are equivalent

(1) The safety condition is an invariant under jumps and flows

(2) The disjunction of the following formulae is false

(a)

E

L(L ≤ Lalarm ∧ L ≤ Loverflow ∧ L > Loverflow) false

(b)

E

L(L > Lalarm ∧ L ≤ Loverflow ∧ L > Loverflow) false

(c)

E

L, t(L(0)<Lalarm∧

A

t′(0≤t′≤ t→L(t′)=L(0)+int′∧L(t′)<Lalarm)∧L(t)>Loverflow) false

(d)

E

L, t(L(0)≥Lalarm∧

A

t′(0≤t′≤t→L(t′)=L(0)+(in−out)t′∧L(t′)≥Lalarm))∧L(t)>Loverflow)

iff in − out > 0

[Damm, Ihlemann,VS’11] PTIME algorithm for invariant checking (uses locality)

classes of LHA for which safety properties can be checked in PTIME

and bounded-time reachability is in NP

Synthesis: parametric bounds on slope 7→ constraints guaranteeing safety

25

General method

Verification 7→ hierarchical reasoning in local theory extensions

Synthesis 7→ hierarchical QE in local theory extensions

Examples:

• Program verification:

− Insertion of elements in sorted arrays [VS’10]

• Verification of controllers:

− Train systems [Jacobs,VS’06]

[Faber,Jacobs,VS’07],[Faber,Ihlemann,Jacobs,VS’10]

− Linear hybrid automata [Damm,Ihlemann,VS’11, VS’13]

– A chemical plant [Damm,Ihlemann,VS’11]

– Families of similar linear hybrid automata [VS’13]

[Damm,Horbach,VS, in progress]

26

Example: ETCS Case Study (AVACS project)

[Faber,Ihlemann,Jacobs,VS’10]

Verification of train systems with complex track topology

Idea: Reduce complexity by exploiting modularity at various levels

specification / verification / structurally

27

Main goal: exploit modularity at various levels

[Faber,Ihlemann,Jacobs,VS’10]

Verification of train systems with complex track topology

1. Specification

• Use the modular language COD [Hoenicke,Olderog’02], which allows

us to separately specify

– processes (as Communicating Sequential Processes, CSP),

– data (using Object-Z, OZ), and

– time, durations (using the Duration Calculus, DC).

28

Example: Controller for line track (RBC)

︸
︷
︷

︸

In
te
rf
a
ce

︸
︷
︷

︸

C
S
P

p
ar
t

︸
︷
︷

︸

D
a
ta

cl
a
ss
es

︸
︷
︷

︸

S
ta
te

a
n
d
In
it
sc
h
em

a

︷
︷

︸

U
p
d
a
te

ru
le
s

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

2 (leave → main)

2 (updSpd → State1))

State1
c
= ((enter → State1)

2 (leave → State1)

2 (req → State2))

State2
c
= ((alloc → State3)

2 (enter → State2)

2 (leave → State2))

State3
c
= ((enter → State3)

2 (leave → State3)

2 (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

A

t : TrainΓtid(t) > 0

A

t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)

A

s : SegmentΓprevs(nexts(s)) = s

A

s : SegmentΓnexts(prevs(s)) = s

A

s : SegmentΓsid(s) > 0

A

s : SegmentΓsid(nexts(s)) > sid(s)

A

s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)

A

s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

A

s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

A

s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

A

s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

A

t : TrainΓtrain(segm(t)) = t

A

t : TrainΓnext(prev(t)) = t

A

t : TrainΓprev(next(t)) = t

A

t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))

A

t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))

A

t : TrainΓalloc(segm(t)) = tid(t)

A

t : TrainΓalloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

A

s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

29

Main goal: exploit modularity at various levels

[Faber,Ihlemann,Jacobs,VS’10]

Verification of train systems with complex track topology

2. Verification

• Verification tasks: linear track; incoming, outgoing trains

Data structures Pointers; 2 Sorts: Trains

Segments

7→ Safety checking: reasoning in complex data structures

7→ Solution: hierarchical and modular reasoning

30

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system
specification Init(x); Update(x , x ′)

31

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system
specification Init(x); Update(x , x ′)

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

Proof task:

Safe(pos, next, prev, spd) ∧ SpeedUpdate(pos, next, prev, spd, spd′) → Safe(pos′, next, prev, spd′)

31

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system
specification Init(x); Update(x , x ′)

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt(t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt(t)

31

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system
specification Init(x); Update(x , x ′)

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt(t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt(t)

31

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

(Safe)

A

t1, t2 segm(t1) = segm(t2) → t1 = t2

Our solution

Find an invariant (Invi) for every control location i of the TCS, and prove:

(1) (Invi) |= (Safe) for all locations i and

(2) the invariants are preserved under all transitions of the system,

(Invi) ∧ (Update) |= (Inv′j)

whenever (Update) is a transition from location i to j .

Here: Invi generated by hand (use poss. of generating counterexamples with H-PILoT)

32

Modularity in automated reasoning

Problem: Axioms, Invariants, Updates: are universally quantified

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

33

Modularity in automated reasoning

Problem: Axioms, Invariants, Updates: are universally quantified

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)

A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

• Update rules

A

t : φ1(t) → s1 ≤ spd′(t) ≤ t1

. . .

A

t : φn(t) → sn ≤ spd′(t) ≤ tn

33

Modularity in automated reasoning

Problem: Axioms, Invariants, Updates: are universally quantified

Examples of theories we need to handle

• Invariants

(Inv1)

A

t : Train. pc 6= InitState ∧ alloc(nexts(segm(t))) 6= tid(t)

→ length(segm(t))− bd(spd(t)) > pos(t) + spd(t) ·∆t

(Inv2)
A

t : Train. pc 6= InitState ∧ pos(t) ≥ length(segm(t))− d

→ spd(t) ≤ lmax(nexts (segm(t)))

• Update rules

A

t : φ1(t) → s1 ≤ spd′(t) ≤ t1

. . .

A

t : φn(t) → sn ≤ spd′(t) ≤ tn

• Underlying theory: theory of many-sorted pointers, real numbers, ...

33

The good news

The following sets of formulae define local theory extensions:

• Updates (according to a partition of the state space)

• The invariants we consider

• The axioms for many-sorted pointer structures we consider

To show:

T2 T2 = T1 ∪ Update(next, ...next′, ...) T2 ∪ ¬Inv(next′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Inv(next, ...)

T0 T0 = (Pointers,R)

UIF∪R

34

The good news

The following sets of formulae define local theory extensions:

• Updates (according to a partition of the state space)

• The invariants we consider

• The axioms for many-sorted pointer structures we consider
To show:

T2 T2 = T1 ∪ Update(next, ...next′, ...) T2 ∪ ¬Inv(next′)
︸ ︷︷ ︸

G

|=⊥

⇓
T1 T1 = T0 ∪ Inv(next, ...) T1 ∪ Update[G] ∧ G

︸ ︷︷ ︸

G ′

|=⊥

⇓
T0 T0 = (Pointers,R) T0 ∪ Inv[G ′] ∧ G ′

︸ ︷︷ ︸

G ′′

|=⊥

⇓
UIF∪R UIF ∪ R ∪ (PointerAx[G ′′] ∪ G ′′)0 |=⊥

H-PILoT: verification/ QE 7→ constr. on param.

model building/counterexample generation

34

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system
specification Init(x); Update(x , x ′)

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

Proof task:

Inv(pos, next, prev, spd) ∧ SpeedUpdate(pos, next, prev, spd, spd′) → Inv(pos′, next, prev, spd′)

35

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system
specification Init(x); Update(x , x ′)

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt(t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt(t)

31

Main goal: exploit modularity at various levels

[Faber,Ihlemann,Jacobs,VS’10]

Verification of train systems with complex track topology

3. Structurally

7→ Complex track topology (Assumption: No cycles; degree at most 2)

- decomposition into family of linear tracks (may overlap)

- prove that safety of whole system follows from

(1) safety for the controller of a linear track and

(2) compatibility of controllers on jointly controlled trains.

• Synthesis: - Constraints on parameters which guarantee safety

35

Experimental results

Verification of RBC (Syspect + PEA) (H-PILoT + Yices) (Yices alone)

(Inv) unsat

Part 1 11s 72s 52s
Part 2 11s 124s 131s
speed update 11s 8s 45s

(Safe) sat 9s 8s (+ model) time out

Consistency 13s 3s (Unknown) 2s

(obtained on: AMD64, dual-core 2 GHz, 4 GB RAM)

Main advantage: Capability of H-PILoT of detecting satisfiability and

constructing counterexamples 7→ correct specifications.

36

Timed train controller (Train)

Note: The correctness proof for the whole system proceeds as follows:

(1) We proved safety of the RBC under the assumption that

the trains have certain properties.

(2) We prove that the trains indeed satisfy such properties

(or determine conditions on parameters under which such properties hold).

CSP-OZ-DC specification for Train.

(1) Verification

(2) Synthesis of constraints for which Train satisfies the safety requirements.

37

Conclusion

• Local theory extensions

Limit search / modularity: hierarchic reasoning

Recognize locality: embeddability; saturation

Combine various extensions:

7→ Modular reasoning; information exchange

• Applications

Here: Verification

38

Summary

Theory Applications

Efficient reasoning Verification (AVACS)

• Theories • Deductive verification case studies

• Theory extensions with Damm, Faber, Ihlemann, Jacobs

• Chains of theory extensions • Synthesis first steps

• Theory combinations • Abstraction refinement

Hierarchic, modular reasoning with A. Rybalchenko

Parameterized complexity • Model generation 7→ planning?

Model generation Cryptography first steps

Implementation H-PILoT Knowledge representation

Interpolation with F. Gasse

Complex systems Verification: Modularity; case studies

39

References

• A. Armando, M.P. Bonacina, S. Ranise, and St. Schulz.

On a rewriting approach to satisfiability procedures: extension, combination of theories and an experimental

appraisal.

Proceedings of FroCos’05, LNCS 3717, pages 65-80. Springer Verlag, 2005.

• A. Armando, S. Ranise, and M. Rusinowitch.

A rewriting approach to satisfiability procedures.

Information and Computation, 183(2):140-164, 2003.

• D. Basin and H. Ganzinger.

Automated complexity analysis based on ordered resolution.

Journal of the ACM, 48(1):70-109, 2001.

• D.A. Basin and H. Ganzinger.

Complexity analysis based on ordered resolution.

Proceedings of LICS’96, pages 456-465.

IEEE Computer Society Press, 1996.

• W. Damm, C. Ihlemann, V. Sofronie-Stokkermans.

Decidability and complexity for the verification of safety properties of reasonable linear hybrid automata.

Proceedings of HSCC 2011, pages 73-82, ACM.

• W. Damm, C. Ihlemann, V. Sofronie-Stokkermans.

PTIME Parametric Verification of Safety Properties for Reasonable Linear Hybrid Automata.

Mathematics in Computer Science 5(4): 469-497 (2011)

40

References (ctd.)

• J. Faber, C. Ihlemann, S. Jacobs, V. Sofronie-Stokkermans.

Automatic Verification of Parametric Specifications with Complex Topologies.

Proceedings of IFM 2010, LNCS 6396, pages 152-167, Springer.

• J. Faber, S. Jacobs, and V. Sofronie-Stokkermans.

Verifying CSP-OZ-DC specifications with complex data types and timing parameters.

Proceedings of IFM 2007, LNCS 4591, pages 233-252. Springer, 2007.

• H. Ganzinger.

Relating semantic and proof-theoretic concepts for polynomial time decidability of uniform word problems.

Proceedings of 16th IEEE Symposium on Logic in Computer Science (LICS’01), pages 81-92. IEEE Computer

Society Press, 2001.

• H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann.

Modular proof systems for partial functions with Evans equality.

Information and Computation, 204(10):1453-1492, 2006.

(extended version of a paper which appeared in the proceedings of IJCAR’04)

• S. Ghilardi.

Model theoretic methods in combined constraint satisfiability.

Journal of Automated Reasoning, 33(3-4):221-249, 2004.

• R. Givan and D. McAllester.

New results on local inference relations.

In Principles of Knowledge Representation and reasoning: Proceedings of KR’92, pages 403-412. Morgan

Kaufmann Press, 1992.

41

References (ctd.)

• R. Givan and D.A. McAllester.

Polynomial-time computation via local inference relations.

ACM Transactions on Computational Logic, 3(4):521-541, 2002.

• J. Hoenicke and E.-R. Olderog.

CSP-OZ-DC: A combination of specification techniques for processes, data and time.

Nordic Journal of Computing, 9(4):301-334, 2002. Appeared March 2003.

• M. Horbach, V. Sofronie-Stokkermans.

Obtaining Finite Local Theory Axiomatizations via Saturation.

Proceedings of FroCos 2013, LNCS 8152, pages 198-213, Springer.

• C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans.

On local reasoning in verification.

Proceedings of TACAS 2008, LNCS 4963, pages 265-281, Springer 2008.

• C. Ihlemann, V. Sofronie-Stokkermans.

System Description: H-PILoT. Proceedings of CADE 2009, LNCS 5663, pages 131-139, Springer.

• C. Ihlemann, V. Sofronie-Stokkermans.

On Hierarchical Reasoning in Combinations of Theories. Proceedings of IJCAR 2010, LNCS 6173, pages 30-45.

• S. Jacobs and V. Sofronie-Stokkermans.

Applications of hierarchical reasoning in the verification of complex systems.

Electronic Notes in Theoretical Computer Science, 174(8):39-54, 2007.

42

References (ctd.)

• S. McPeak and G.C. Necula.

Data structure specifications via local equality axioms.

Proceedings of CAV 2005, LNCS 3576, pages 476-490, 2005.

• G. Nelson and D.C. Oppen.

Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1979.

• A. Rybalchenko and V. Sofronie-Stokkermans.

Constraint solving for interpolation.

Proceedings of VMCAI 2007, LNCS 4349, pages 346-362. Springer, 2007.

An extended version appeared in J. Symb. Comput. 45(11): 1212-1233 (2010).

• V. Sofronie-Stokkermans.

Hierarchic reasoning in local theory extensions.

Proceedings of CADE-20, LNAI 3632, pages 219-234, 2005. Springer.

• V. Sofronie-Stokkermans.

Interpolation in local theory extensions.

Proceedings of IJCAR 2006, LNAI 4130, pages 235-250. Springer, 2006.

An extended version appeared in Logical Methods in Computer Science 4(4) (2008)

• V. Sofronie-Stokkermans.

Hierarchical and Modular Reasoning in Complex Theories: The Case of Local Theory Extensions.

Proceedings of FroCoS 2007, LNCS 4720, pages 47-71, Springer.

43

References (ctd.)

• V. Sofronie-Stokkermans.

Efficient Hierarchical Reasoning about Functions over Numerical Domains.

Proceedings of KI 2008. LNAI 5243, pages 135-143, Springer 2008.

• V. Sofronie-Stokkermans.

Locality Results for Certain Extensions of Theories with Bridging Functions.

Proceedings of CADE 2009, LNCS 5663, pages 67-83, Springer.

• V. Sofronie-Stokkermans.

Hierarchical Reasoning for the Verification of Parametric Systems.

Proceedings of IJCAR 2010, LNCS 6173, pages 171-187, Springer.

• V. Sofronie-Stokkermans.

Hierarchical Reasoning and Model Generation for the Verification of Parametric Hybrid Systems.

Proceedings of CADE 2013, LNCS 7898, pages 360-376, Springer.

• C. Tinelli and C. Ringeissen.

Unions of non-disjoint theories and combinations of satisfiability procedures.

Theoretical Computer Science, 290(1):291-353, 2003.

• C. Tinelli and C. Zarba.

Combining nonstably infinite theories.

Journal of Automated Reasoning, 34(3):209-238, 2005.

• . . .

44

