NETS WITH BOUNDARIES

Pawel Sobocinski, University of Southampton IFIP WG2.2, Lisbon, 24/09/2013

joint work with R. Bruni, H. Melgratti, U. Montanari, J.Rathke, O. Stephens

- Undergraduate at Sydney Uni, worked with RFC Walters and Steve Lack
- PhD (2004) at BRICS, Aarhus, supervised by Mogens Nielsen. Thesis on adhesive categories and relative pushouts for deriving LTS semantics from reduction semantics.
- Keywords: Concurrency, process calculi, graph transformation, semantics of programming languages, category theory, model checking, concurrent programming

THIS TALK

- RFC Walters
- in concurrency, what is important is to discover the right algebra

- Robin Milner
- in concurrency, what is important is the notion of process

ROADMAP

- Automata as model of concurrency - Span(Graph)
- Nets with boundaries
- Application to model checking
- Work in progress and future work

AUTOMATA AS MODEL OF CONCURRENCY

Nivat's processes and their synchronization

André Arnold
Universite de Bordeaux I, LABRI, CNRS UMR 5800, 351 cours de la Liberation, F-33405 Talence, France

Maurice Nivat, André Arnold

Span(Graph) algebra - RFC Walters

SYNCHRONISATION

SYNCHRONISATION

$$
\frac{P \xrightarrow[\vec{a}]{\vec{c}} Q \quad R \stackrel{\vec{c}}{\vec{b}} S}{P ; R \xrightarrow[\vec{b}]{\vec{b}} Q ; S}(\text { CuT })
$$

SYNCHRONISATION

$$
\frac{P \stackrel{\vec{a}}{\vec{c}} Q \quad R \stackrel{\vec{c}}{\vec{b}} S}{P ; R \xrightarrow[\vec{b}]{\vec{b}} Q ; S} \text { (CUT) }
$$

$B_{E} ; B_{E}:(1,1)$

TENSOR PRODUCT

$\mathrm{B}_{\mathrm{E}}:(1,1)$

$B_{E}:(1,1)$

TENSOR PRODUCT

$B_{E}:(1,1)$

$B_{E}:(1,1)$

$$
\frac{P \xrightarrow[\vec{a}]{\vec{b}} Q \quad R \frac{\vec{c}}{\vec{d}} S}{P \otimes R \underset{\vec{b} \vec{d}}{\vec{d}} Q \otimes S}
$$

TENSOR PRODUCT

$B_{E}:(1,1)$

$B_{E}:(1,1)$

$$
\frac{P \xrightarrow[\vec{b}]{\vec{a}} Q \quad R \underset{\vec{d}}{\overrightarrow{\vec{d}} S}}{P \otimes R \xrightarrow[\vec{b} \vec{d} \vec{d}]{\vec{a}} Q \otimes S} \text { (TEN) }
$$

$B_{E} \otimes B_{E}:(2,2)$

ALGEBRA OF PROCESSES

ALGEBRA OF PROCESSES

ALGEBRA OF PROCESSES

ALGEBRA OF PROCESSES

PROS AND CONS

- Pros
- Algebra with formal semantics
- Compositional, reasonable equivalences are congruences
- Syntax has close correspondence with geometry of systems
- Cons
- Automata hide concurrency

ROADMAP

- Automata as model of concurrency - Span(Graph)
- Nets with boundaries
- Application to model checking
- Work in progress and future work

NETS AS STRING DIAGRAMS

- places drawn with in-port and out-port
- transitions are undirected and simply connect a set of ports

(1 BOUNDED) NETS WITH BOUNDARIES

- add boundary ports
- transitions can connect also to boundary ports
- step semantics

COMPOSING NETS

- Nets are composed in a "geometrically obvious" way
- Two or more transitions connected to a boundary port is a simple way of including nondeterminism in components

TENSOR PRODUCT

COMPOSITIONALITY

The following diagram always commutes

Moreover, all "reasonable equivalences" are congruences

WHY STEP SEMANTICS?

- Interleaving would not be compositional!

- Algebra with formal semantics
- Compositional, reasonable equivalences are congruences
- Syntax has close correspondence with geometry of systems
- Evident concurrency

GENERATORS

WHAT ABOUT P/T NETS?

- Very similar algebra available for infinite state nets
- in particular, for P / T nets we have the same generators
- Both algebras can be understood as certain process calculi
- passing from bounded to unbounded nets is particularly easy from the point of view of process algebra, essentially one adds one new SOS rule:

$$
\frac{P \xrightarrow[\beta_{1}]{\stackrel{\alpha_{1}}{\rightarrow}} R \quad R \xrightarrow[\beta_{2}]{\alpha_{2}} Q}{P \xrightarrow[\beta_{1}+\beta_{2}]{\alpha_{1}+\alpha_{2}} Q}\left(\text { WEAK }^{*}\right)
$$

ROADMAP

- Automata as model of concurrency - Span(Graph)
- Nets with boundaries
- Application to model checking
- Work in progress and future work

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

APPLICATION: REACHABILITY

- Reachability in 1-bounded nets is PSPACE-complete
- most "real" systems are quite modular - can we exploit this?

DECOMPOSING

"synchronisation policies"
N_{2} can reach desired local after firing t_{2} twice, after which it can be fired an arbitrary additional number of times

NI can reach desired local marking and fire t_{2} an arbitrary number of times

INTERACTION IS WHAT MATTERS

- in concurrency, what is important is the notion of process
- ie. can throw away unnecessary local state and keep only the minimal amount of information necessary to express communication with environment
N_{2} can reach desired local after firing t_{2} twice, after which it can be fired an arbitrary additional number of times

Nı can reach desired local marking and fire t_{2} an arbitrary number of times

N_{2} can reach desired local after firing t_{2} twice, after which it can be fired an arbitrary additional number of times

Nı can reach desired local marking and fire t_{2} an arbitrary number of times

N_{2} can reach desired local after firing t_{2} twice, after which it can be fired an arbitrary additional number of times

Nı can reach desired local marking and fire t_{2} an arbitrary number of times

N_{2} can reach desired local after firing t_{2} twice, after which it can be fired an arbitrary additional number of times

Nı can reach desired local marking and fire t_{2} an arbitrary number of times

N_{2} can reach desired local after firing t_{2} twice, after which it can be fired an arbitrary additional number of times

Nı can reach desired local marking and fire t_{2} an arbitrary number of times

PERFORMANCE IS NOT ASSOCIATIVE

right

balanced

	min $\#$	Time [s]		
n	firing sequence	right	left	balanced
16	136	0.000	0.020	0.008
32	528	0.000	0.140	0.024
64	2080	0.000	1.108	0.172
128	8256	0.000	12.597	2.954
256	32896	0.000	-	74.737
65536	2147516416	0.228	-	-

Penrose tool

http://users.ecs.soton.ac.uk/os1v07/Penrose CALCO13/
joint work with
Owen Stephens

PHILOSOPHERS

PHILOSOPHERS

PHILOSOPHERS

ANALYSING PHILOSOPHERS

- Minimization reaches a fixpoint at PhRowz
- a nice example of when a model-checking technique gives a proof for all n.

CORBETT'S ELEVATORS

ROADMAP

- Automata as model of concurrency - Span(Graph)
- Nets with boundaries
- Application to model checking
- Work in progress and future work

WHEN DOES THE TECHNIQUE WORK?

- When the net can be "decomposed well"
- we don't want too many places in the leaves (\# of states is exponential wrt places)
- we don't want big boundaries (\# of labels is exponential wrt boundary size)
- AND when the state-space "grows slowly" as we recompose

DECOMPOSITION WIDTH

- A decomposition has width k when
- all leaves have $\max (\#$ places,boundary) $\leq \mathrm{k}$
- all complete subtrees have boundary size $\leq \mathrm{k}$
- e.g. the composition on the
 right has width 4

DECOMPOSITION WIDTH

- e.g. cliques

DECOMPOSITION WIDTH

- e.g. cliques

DECOMPOSITION WIDTH

- e.g. cliques

DECOMPOSITION WIDTH

- e.g. cliques

related to rank width of graphs

SYNCHRONISATION AS OO PROGRAMMING PRIMITIVE

- Body of work on compositional model checking via interface theories going back to Clarke
- Work on compositional algebras of Petri nets going back to Mazurkiewicz
- Work on reachability in bounded nets using unfolding going back to McMillan
- Body of work on algebraic approaches to nets, including the Petri box calculus of Koutny, Esparza and Best

THE END

