
NETS WITH
BOUNDARIES

Pawel Sobocinski, University of Southampton
IFIP WG2.2, Lisbon, 24/09/2013

joint work with R. Bruni, H. Melgratti, U. Montanari, J.Rathke, O. Stephens

ABOUT ME

Undergraduate at Sydney Uni, worked with RFC Walters
and Steve Lack

PhD (2004) at BRICS, Aarhus, supervised by Mogens
Nielsen. Thesis on adhesive categories and relative pushouts
for deriving LTS semantics from reduction semantics.

Keywords: Concurrency, process calculi, graph
transformation, semantics of programming languages,
category theory, model checking, concurrent programming

THIS TALK

Robin Milner

in concurrency, what is
important is the notion
of process

RFC Walters

in concurrency, what
is important is to
discover the right
algebra

ROADMAP

Automata as model of concurrency - Span(Graph)

Nets with boundaries

Application to model checking

Work in progress and future work

AUTOMATA AS MODEL
OF CONCURRENCY

Maurice Nivat, André Arnold

BE : (1,1)

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

Span(Graph) algebra - RFC Walters

Theoretical Computer Science 281 (2002) 31–36
www.elsevier.com/locate/tcs

Nivat’s processes and their synchronization

Andr!e Arnold
Universite de Bordeaux I, LABRI, CNRS UMR 5800, 351 cours de la Liberation,

F-33405 Talence, France

Abstract

This short paper retraces how the notion of synchronization of processes introduced by Maurice
Nivat in 1979 has evolved over more than 20 years. c© 2002 Elsevier Science B.V. All rights
reserved.

At the end of the 1970s, Maurice Nivat took interest in the semantics of parallel
and concurrent systems. With G. Ruggiu of the Laboratoire central de recherches
of the French company Thomson-CSF, he organized a joint seminar on this topic.
That is why his seminal paper on the synchronization of processes [14] appeared in
a technical journal of this company and, therefore, was unfortunately not widely known.
An extended version of this paper [15] was published in a yet more con"dential place.
However, the ideas expressed in these papers have made their way; for instance,

they are implemented in the model-checker MEC [4] and are the basis of the AltaRica
formalism [6].
In this paper, we wish to explain how these ideas have evolved along time and to

compare them with some other similar ideas.
In [14], a process is de"ned as a set of in"nite sequences of actions or events. Each

action or event is denoted by a letter from an alphabet A, so that a process is de"ned
as a set of in"nite words over A. It appeared very soon that this de"nition was not
general enough, in particular, because it did not include the notion of a deadlocking
process, which was nevertheless considered as a very important notion in the last part
of the paper.
Therefore, in [15], a process is de"ned as a triple of languages over A: the set

of in"nite sequences, the set of "nite terminated sequences, and the set of all "nite
sequences the process is able to perform. Clearly the latter set contains all the pre!xes
(or initial subsequences) of the former two.
Such a process is said to be deadlock-free (or nonblocking) if each "nite sequence

which is not terminated can be extended by at least one letter into another "nite

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00006 -3

SYNCHRONISATION

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1) BE : (1,1)

SYNCHRONISATION

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

P
~a�!~c Q R

~c�!~b S
(Cut)

P ;R
~a�!~b Q;S

BE : (1,1) BE : (1,1)

SYNCHRONISATION

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

P
~a�!~c Q R

~c�!~b S
(Cut)

P ;R
~a�!~b Q;S

BE : (1,1) BE : (1,1)
E;E

0/0

1/0

F;E

E;F

0/0

F;F
1/0

0/1

0/1
0/0

0/0

0/0

{0,1}{0,1}

BE ; BE: (1,1)

TENSOR PRODUCT

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1)

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1)

TENSOR PRODUCT

P
~a�!~b Q R

~c�!~d S
(Ten)

P⌦R
~a~c�!~b~d

Q⌦S
E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1)

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1)

TENSOR PRODUCT

P
~a�!~b Q R

~c�!~d S
(Ten)

P⌦R
~a~c�!~b~d

Q⌦S
E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1)

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

BE : (1,1)

E⨂E

00/00

F⨂E

E⨂F

01/10

F⨂F

10/00
00/01

00/01
00/00

00/00

00/00

{0,1}{0,1}
10/00

00/11

00/10

11/00

10/01
01/00

00/10

01/00

{0,1}{0,1}

BE⨂BE: (2,2)

ALGEBRA OF
PROCESSES

BF BE BE

ALGEBRA OF
PROCESSES

BF BE BE

d e

id

ALGEBRA OF
PROCESSES

BF BE BE

d e

id
0/0

1/1

/00

/11

00/

11/

ALGEBRA OF
PROCESSES

BF BE BE

d e

id
0/0

1/1

/00

/11

00/

11/

d ; (id ⨂ (BF ; BE; BE)) ; e : (0,0)

PROS AND CONS

Pros

Algebra with formal semantics

Compositional, reasonable equivalences are congruences

Syntax has close correspondence with geometry of
systems

Cons

Automata hide concurrency

ROADMAP

Automata as model of concurrency - Span(Graph)

Nets with boundaries

Application to model checking

Work in progress and future work

NETS AS STRING DIAGRAMS

places drawn with in-port and out-port

transitions are undirected and simply connect a set of ports

(1 BOUNDED) NETS
WITH BOUNDARIES

add boundary ports

transitions can connect also to boundary ports

step semantics

E

F

0/0

0/0

1/00/1
{0,1} {0,1}

COMPOSING NETS

Nets are composed in a “geometrically obvious” way

Two or more transitions connected to a boundary port is a
simple way of including nondeterminism in components

; =

=;
1

0

;
2

3
=

0 2

1 3

TENSOR PRODUCT

=⨂

COMPOSITIONALITY

0

{0/0}

1{0/1}
{1/0}

{0/0}

0

{0/0}

1{0/1}
{1/0}

{0/0}

0

{0/0} 2{0/1}

1{1/0}

{0/0}

{1/1}

3
{0/1}{0/0}

{0/0}
{1/0}

{0/0}

composition
of NFAs

translation to
NFA

translation to
NFAs

composition
of nets

b1 b1

b1 ; b1

The following diagram always commutes

Moreover, all “reasonable equivalences” are congruences

WHY STEP SEMANTICS?

=t1

t2
t3 ({t1, t2}, {t3})

;

Interleaving would not be compositional!

NETS WITH BOUNDARIES

Algebra with formal semantics

Compositional, reasonable equivalences are congruences

Syntax has close correspondence with geometry of
systems

Evident concurrency

GENERATORS

Structure of the paper. In §1 we introduce the two monoid-comonoid
structures that arise from considering cospans and spans of finite sets.
In §2 we introduce sets and relations with contention, and show that the
category of the latter has pullbacks. This allows us, in §3 to consider the
category Sp(Rel

c

f

), a universe where both the monoid-comonoid struc-
tures can be considered. In §4 we discuss multirelations and construct
weak pullbacks, which we then use in §5 to consider another universe
where both the monoid-comonoid structures exist and interact.

Notational conventions. Relations from X to Y are identified with func-
tions X ! 2Y . For k 2 N we abuse notation and denote the kth finite
ordinal {0, 1 . . . , k � 1} with k. For sets X, Y , X + Y

def
= { (x, 0) |x 2

X } [{ (y, 1) | y 2 Y }. Functions are labelled with ! when there is a
unique function with that particular domain and codomain, tw : 2 ! 2
is the function tw(0) = 1 and tw(1) = 0. Given a function f : X ! Y ,

[f] ✓ X ⇥ Y is its graph: [f]
def
= { (x, fx) |x 2 X }. Given a relation

R ✓ X ⇥ Y , Rop

✓ Y ⇥X is the opposite relation.

1 Components of linking diagrams

Let Csp(Set
f

) be the category3 with objects the natural numbers, and
arrows isomorphism classes of cospans k ! x l, where k and l are
considered as finite ordinals. Composition is obtained via pushout in Set

f

,
associativity follows from the universal property. Given k1 ! m1 l

l

and
k2 ! m2 l2, the tensor product is k1 + k2 ! m1 +m2 l1 + l2.

The following diagrams represent certain arrows in Csp(Set
f

). They

(�???r>>>)

� : 1 ! 2 ??? : 1 ! 0
�

: 2 ! 1 >>> : 0 ! 1

have representatives 1
id
�! 1

!
 � 2, 1

id
�! 1

!
 � 0, 2

!
�! 1

id
 � 1 and 0

!
�! 1

id
 � 1.

Our graphical notation calls for further explanation: within the dia-
grams, each link–an undirected multiedge–represents an element of the
carrier set, its connections to boundary ports (elements of the ordinals on
the boundary) are determined in Csp(Set

f

) by the functions from the or-
dinals that represent the boundaries. Each link has a small perpendicular
mark; this is used to distinguish between di↵erent links within diagrams.

The definition of Csp(Set
f

) enforces some structural restrictions on
links. Indeed, each boundary port must be connected to exactly one link;
ie no two links can be connected to the same boundary port. Any link,
however, can be connected to several ports on each boundary.

Now consider Sp(Set
f

), the category with objects the natural num-
bers, and arrows isomorphism classes of spans k x! l, where k and l

are considered as finite ordinals. Composition is obtained via pullback in

3 Not quite the category of cospans. Again, this is a PROP.

Set

f

, and associativity is again guaranteed by a universal property, this
time of pullbacks. Again, + gives a tensor product.

The following diagrams represent certain arrows in Sp(Set
f

). They

(⇤ ### V """)

⇤ : 1 ! 2 ### : 1 ! 0 V : 2 ! 1 """ : 0 ! 1

have representatives 1
!
 � 2

id
�! 2, 1

!
 � 0

id
�! 0, 2

id
 � 2

!
�! 1 and 0

id
 � 0

!
�! 1.

In the diagrams, the links again represent elements of the carrier set
but connections to boundary ports are now given by the functions from

the carrier to the boundaries. Due to the definition of Sp(Set
f

), there are
again structural restrictions: each link is connected to exactly one port
on each boundary. Any port, however, can be connected to many links.

The following diagrams represent certain arrows in Csp(Set
f

) and
Sp(Set

f

). As (isomorphism classes of) cospans they are 1 ! 1 1,

(I X)

I : 1 ! 1 X : 2 ! 2

2
tw

�! 2 2, as spans they are 1 1! 1, 2 2
tw

�! 2.

1.1 The algebra of Csp(Setf)

In Fig. 1 we give some of the equations satisfied by the algebra generated
from the components (�???r>>>) and (I X) in Csp(Set

f

): (�UC) and (�A)
show that � is the comultiplication of a cocommutative comonoid. The
symmetric equations hold for

�

, meaning that it is part of a commutative
monoid structure. The Frobenius axioms (F) [6, 15] hold, and the alge-
bra is separable (S). In fact Csp(Set

f

) is the free PROP on (�???r>>>)
satisfying such axioms, where (F), (S) can be understood as witnessing a
distributive law of PROPs; see [16] for the details. In (CC) we indicate
how the (self dual) compact closed structure of Csp(Set

f

) arises.

1.2 The algebra of Sp(Setf)

In Fig. 2 we exhibit some equations satisfied by the components (⇤ ### V """)
and (I X) in Sp(Set

f

): (⇤UC) and (⇤A) show that ⇤ is the multiplication of
a cocommutative comonoid, similarly the symmetric equations, which we
do not illustrate, show that that V is a commutative monoid. Di↵erently
from Fig. 1, here the Frobenius equations do not hold; but rather the
equations of commutative and cocommutative bialgebras: in (B), (V###)
and (⇤V) we show how the monoid and comonoid structures interact in

Set

f

, and associativity is again guaranteed by a universal property, this
time of pullbacks. Again, + gives a tensor product.

The following diagrams represent certain arrows in Sp(Set
f

). They

(⇤ ### V """)

⇤ : 1 ! 2 ### : 1 ! 0 V : 2 ! 1 """ : 0 ! 1

have representatives 1
!
 � 2

id
�! 2, 1

!
 � 0

id
�! 0, 2

id
 � 2

!
�! 1 and 0

id
 � 0

!
�! 1.

In the diagrams, the links again represent elements of the carrier set
but connections to boundary ports are now given by the functions from

the carrier to the boundaries. Due to the definition of Sp(Set
f

), there are
again structural restrictions: each link is connected to exactly one port
on each boundary. Any port, however, can be connected to many links.

The following diagrams represent certain arrows in Csp(Set
f

) and
Sp(Set

f

). As (isomorphism classes of) cospans they are 1 ! 1 1,

(I X)

I : 1 ! 1 X : 2 ! 2

2
tw

�! 2 2, as spans they are 1 1! 1, 2 2
tw

�! 2.

1.1 The algebra of Csp(Setf)

In Fig. 1 we give some of the equations satisfied by the algebra generated
from the components (�???r>>>) and (I X) in Csp(Set

f

): (�UC) and (�A)
show that � is the comultiplication of a cocommutative comonoid. The
symmetric equations hold for

�

, meaning that it is part of a commutative
monoid structure. The Frobenius axioms (F) [6, 15] hold, and the alge-
bra is separable (S). In fact Csp(Set

f

) is the free PROP on (�???r>>>)
satisfying such axioms, where (F), (S) can be understood as witnessing a
distributive law of PROPs; see [16] for the details. In (CC) we indicate
how the (self dual) compact closed structure of Csp(Set

f

) arises.

1.2 The algebra of Sp(Setf)

In Fig. 2 we exhibit some equations satisfied by the components (⇤ ### V """)
and (I X) in Sp(Set

f

): (⇤UC) and (⇤A) show that ⇤ is the multiplication of
a cocommutative comonoid, similarly the symmetric equations, which we
do not illustrate, show that that V is a commutative monoid. Di↵erently
from Fig. 1, here the Frobenius equations do not hold; but rather the
equations of commutative and cocommutative bialgebras: in (B), (V###)
and (⇤V) we show how the monoid and comonoid structures interact in

The resulting algebraic theory can be

studied using category theoretical

machinery (PROPS) - some initial

results reported at CALCO `13

WHAT ABOUT P/T
NETS?

Very similar algebra available for infinite state nets

in particular, for P/T nets we have the same generators

Both algebras can be understood as certain process calculi

passing from bounded to unbounded nets is particularly
easy from the point of view of process algebra, essentially
one adds one new SOS rule:

20 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

` � : (1, 1) ` �• : (1, 1) ` I : (1, 1) ` X : (2, 2) ` � : (1, 2) ` �

: (2, 1) ` ??? : (1, 0) ` >>> : (0, 1)

` ⇤ : (1, 2) ` V : (2, 1) ` ### : (1, 0) ` """ : (0, 1)

` P : (k, l) ` R : (m,n)

` P⌦R : (k+m, l+n)

` P : (k, n) ` R : (n, l)

` P ;R : (k, l)

Figure 9: Sort inference rules.

(TkI)
� 1�!

0 �•
(TkO)

�• 0�!
1 �

(Id)
I

1�!
1 I

(Tw)
X

ab��!
ba

X
(???)

??? 1�! ???
(>>>)

>>> �!
1 >>>

(�)
�

1�!
11 �

(

�

)�11��!
1

�

(⇤a)
⇤

1��!
(1�a)a ⇤

(Va)

V
(1�a)a����!

1 V

C:(k, l) a basic connector
(Refl)

C
0k��!
0l

C

P

↵�!
�

Q R

��!
�

S

(Cut)
P ;R

↵�!
�

Q;S

P

↵1��!
�1

Q R

↵2��!
�2

S

(Ten)
P⌦R

↵1↵2���!
�1�2

Q⌦S

P

↵1��!
�1

R R

↵2��!
�2

Q

(Weak*)

P

↵1+↵2�����!
�1+�2

Q

Figure 10: Structural rules for operational semantics. Assume that a, b 2 {0, 1} and
↵, �, � 2 {0, 1}⇤ (strong variant) and ↵, �, � 2 N⇤ (weak variant).

term, it is thus a pair (k, l), where k, l 2 N. The syntax-directed sort inference rules are
given in Fig. 9. Due to their simplicity, a trivial induction confirms uniqueness of sorting:
if ` P : (k, l) and ` P : (k0

, l

0) then k = k

0 and l = l

0.
As evident from the rules in Fig. 9, a term generated from (6.1) fails to have a sort i↵

it contains a subterm of the form P ; R with ` P : (k, l) and ` R : (m, n) such that
l 6= m. Coming back to our intuition, this means that P ; R refers to a system in which
box P is connected to box R, yet they do not have a compatible common boundary; we
consider such an operation undefined and we shall not consider it further. Consequently in
the remainder of the paper we shall only consider those terms that have a sort.

The structural inference rules for the operational semantics of the Petri Calculus are
given in Fig. 10. Actually, two variants of the operational semantics are considered, to
which we shall refer to as the strong and weak operational semantics. The strong variant
is obtained by considering all the rules in Fig. 10 apart from the rule (Weak*).

The labels on transitions are pairs of binary vectors; i.e., P

↵�!
�

Q with ↵, � 2 {0, 1}⇤.
The transition P

↵�!
�

Q describes the evolution of P that exhibits the behavior ↵ over its
left boundary and � over its right boundary. It is easy to check that whenever P : (n, m)
and P

↵�!
�

Q then ↵ 2 {0, 1}n, � 2 {0, 1}m and Q : (n, m). Intuitively, ↵ and � describe
the observation on each wire of the boundaries.

For instance, (TkI) states that the empty place � becomes a full place �• when one token
is received over its left boundary and no token is produced on its right boundary. Rule (TkO)

describes the transition of a full place that becomes an empty place and releases a token
over its right boundary. Rule (Id) states that connector I replicates the same observation on
its two boundaries. Rule (Tw) shows that the connector X exchanges the order of the wires
on its two interfaces. Rules (>>>) and (???) say that both >>> and ??? hide to one of its boundaries
the observation that takes over the other. By rule (�), the connector � duplicates the

ROADMAP

Automata as model of concurrency - Span(Graph)

Nets with boundaries

Application to model checking

Work in progress and future work

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

APPLICATION:
REACHABILITY

Reachability in 1-bounded nets is PSPACE-complete

most “real” systems are quite modular - can we exploit this?

t0 t1 t2 t3 t4

DECOMPOSING

t0 t1 t2

N0

t2 t3 t4

N1

“synchronisation policies”

N1 can reach desired
local marking and fire t2

an arbitrary number of times

N2 can reach desired
local after firing t2 twice, after

which it can be fired an
arbitrary additional number of

times

INTERACTION IS
WHAT MATTERS

in concurrency, what is important is
the notion of process

ie. can throw away unnecessary
local state and keep only the
minimal amount of information
necessary to express
communication with environment

N1 can reach desired
local marking and fire t2

an arbitrary number of times

N2 can reach desired
local after firing t2 twice, after

which it can be fired an
arbitrary additional number of

times
;

;;

;

N1 can reach desired
local marking and fire t2

an arbitrary number of times

N2 can reach desired
local after firing t2 twice, after

which it can be fired an
arbitrary additional number of

times

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/*} =

0 {/0}

1

{/1}{/0}

{/0}

0 {/0}

1

{/1}

{/*}

;

close &
minimisetranslate

;

;;

;

N1 can reach desired
local marking and fire t2

an arbitrary number of times

N2 can reach desired
local after firing t2 twice, after

which it can be fired an
arbitrary additional number of

times

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/*} =

0 {/0}

1

{/1}{/0}

{/0}

0 {/0}

1

{/1}

{/*}

;

close &
minimisetranslate

0 {/0}

2

{/1}

1

{/0}

{/0}

{/1}

3

{/1}

{/0}

{/0}

{/0}

{/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/0}

1

{/1}

{/*}

=

0 {/0}

1

{/1}

{/0}

2

{/1}

{/*}

close &
minimise;

;

;

memoised
translation

;

;;

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}

0 {0/}

1

{0/}{1/}

{0/}

;

=
0 {*/};

translate
close &

minimise

N1 can reach desired
local marking and fire t2

an arbitrary number of times

N2 can reach desired
local after firing t2 twice, after

which it can be fired an
arbitrary additional number of

times

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/*} =

0 {/0}

1

{/1}{/0}

{/0}

0 {/0}

1

{/1}

{/*}

;

close &
minimisetranslate

0 {/0}

2

{/1}

1

{/0}

{/0}

{/1}

3

{/1}

{/0}

{/0}

{/0}

{/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/0}

1

{/1}

{/*}

=

0 {/0}

1

{/1}

{/0}

2

{/1}

{/*}

close &
minimise;

;

;

memoised
translation

;

;;

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}

0 {0/}

1

{0/}{1/}

{0/}

;

=
0 {*/};

translate
close &

minimise

N1 can reach desired
local marking and fire t2

an arbitrary number of times

N2 can reach desired
local after firing t2 twice, after

which it can be fired an
arbitrary additional number of

times

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}

;

;

;

memoized
composition &
minimisation

0 {*/}

memoised
translation

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/*} =

0 {/0}

1

{/1}{/0}

{/0}

0 {/0}

1

{/1}

{/*}

;

close &
minimisetranslate

0 {/0}

2

{/1}

1

{/0}

{/0}

{/1}

3

{/1}

{/0}

{/0}

{/0}

{/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/0}

1

{/1}

{/*}

=

0 {/0}

1

{/1}

{/0}

2

{/1}

{/*}

close &
minimise;

;

;

memoised
translation

;

;;

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/0}

2

{/1}

1

{/0}

{/0}

{/1}

3

{/1}

{/0}

{/0}

{/0}

{/0}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}

0 {0/}

1

{0/}{1/}

{0/}

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {*/}

;

0 {0/0}

1

{0/1}{1/0}

{0/0}

0 {/*} =

0 {/0}

1

{/1}{/0}

{/0}

0 {/0}

1

{/1}

{/*}

0 {/0}

1

{/1}

{/*}

=

0 {/0}

1

{/1}

{/0}

2

{/1}

{/*}

;

=
0 {*/}

;

;

;

memoized
composition &
minimisation

0 {/0}

1

{/1}

{/0}

2

{/1}

{/*}

;

;
;

;

;

0 {*/}

0 {/}

1

{/}

{/}

2

{/}

{/}

=
0 {/}

(i)

(ii)

(iii)

(iv)

(v)

0 {*/}

;

translate
close &

minimise

;

close &
minimisetranslate

close &
minimise;

;

;

;

close &
minimise

memoised
translation

memoised
translation

Fig. 7: Translation of the decompositions in Fig. 6. (i),(ii) initial steps using the right decom-
position; (iii), (iv) initial steps using the left decomposition; (v) final step using the balanced
decomposition of B4.

min # Time [s]
n firing sequence right left balanced
16 136 0.000 0.020 0.008
32 528 0.000 0.140 0.024
64 2080 0.000 1.108 0.172
128 8256 0.000 12.597 2.954
256 32896 0.000 - 74.737

65536 2147516416 0.228 - -

(a) Time to construct minimal DFA for Bn with
the three decompositions illustrated in Fig. 6.

n # places in net min # firing sequence time [s]
6 63 120 0.028
8 255 502 0.088
10 1023 2036 0.312
12 4095 8178 1.332
14 16383 32752 5.864
16 65535 131054 25.014

(b) Time to construct minimal DFA for Tn, us-
ing the decomposition described in Fig. 9.

Fig. 8: NFA construction times for Bn and Tn.

;

⌦

; ;

⌦ ⌦

Fig. 9: The net T3, in traditional and alternative graphical notation, and its decomposition.

;

;

;

. . .

;

;

;

;

...

; ; . . .

.

; ;

{

n

n/2n/2

; ; ; ;

n/4

{{

. . .{. . .

n/4

{ . . .

n/4

{

...

n/4

{

right left balanced

PERFORMANCE IS NOT
ASSOCIATIVE

Penrose tool

joint work with

Owen Stephens

http://users.ecs.soton.ac.uk/os1v07/Penrose_CALCO13/

http://users.ecs.soton.ac.uk/os1v07/Penrose_CALCO13/
http://users.ecs.soton.ac.uk/os1v07/Penrose_CALCO13/

PHILOSOPHERS

P1

P2P3

F1 F2

F3

PHILOSOPHERS

P1

P2P3

F1 F2

F3

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic

in that they consider a net as a whole. Penrose takes a di↵erent approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⌦’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k ! l if N has a left boundary of size k and right boundary of size l.

d2 : 0 ! 4 ph : 2 ! 2 fk : 2 ! 2 i2 : 2 ! 2 e2 : 4 ! 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⌦ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic

in that they consider a net as a whole. Penrose takes a di↵erent approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⌦’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k ! l if N has a left boundary of size k and right boundary of size l.

d2 : 0 ! 4 ph : 2 ! 2 fk : 2 ! 2 i2 : 2 ! 2 e2 : 4 ! 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⌦ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

PHILOSOPHERS

P1

P2P3

F1 F2

F3

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic

in that they consider a net as a whole. Penrose takes a di↵erent approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⌦’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k ! l if N has a left boundary of size k and right boundary of size l.

d2 : 0 ! 4 ph : 2 ! 2 fk : 2 ! 2 i2 : 2 ! 2 e2 : 4 ! 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⌦ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic

in that they consider a net as a whole. Penrose takes a di↵erent approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⌦’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k ! l if N has a left boundary of size k and right boundary of size l.

d2 : 0 ! 4 ph : 2 ! 2 fk : 2 ! 2 i2 : 2 ! 2 e2 : 4 ! 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⌦ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

ANALYSING
PHILOSOPHERS

• Minimization reaches a fixpoint at PhRow2

• a nice example of when a model-checking technique gives a
proof for all n.

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic

in that they consider a net as a whole. Penrose takes a di↵erent approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⌦’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k ! l if N has a left boundary of size k and right boundary of size l.

d2 : 0 ! 4 ph : 2 ! 2 fk : 2 ! 2 i2 : 2 ! 2 e2 : 4 ! 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⌦ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A local approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic

in that they consider a net as a whole. Penrose takes a di↵erent approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets
by adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⌦’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k ! l if N has a left boundary of size k and right boundary of size l.

d2 : 0 ! 4 ph : 2 ! 2 fk : 2 ! 2 i2 : 2 ! 2 e2 : 4 ! 0

Fig. 2: Component nets with boundaries of Dining Philosophers.

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⌦ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.

2

CORBETT’S
ELEVATORS

ROADMAP

Automata as model of concurrency - Span(Graph)

Nets with boundaries

Application to model checking

Work in progress and future work

WHEN DOES THE
TECHNIQUE WORK?

When the net can be “decomposed well”

we don’t want too many places in the leaves (# of states is
exponential wrt places)

we don’t want big boundaries (# of labels is exponential wrt
boundary size)

AND when the state-space “grows slowly” as we recompose

DECOMPOSITION
WIDTH

A decomposition has width k
when

all leaves have
max(#places,boundary)≤k

all complete subtrees have
boundary size≤k

e.g. the composition on the
right has width 4

;

⌦

; ;

⌦ ⌦

a

b d

e

f

g

DECOMPOSITION
WIDTH

e.g. cliques
0

1 3

2

DECOMPOSITION
WIDTH

e.g. cliques
0

1 3

2

DECOMPOSITION
WIDTH

e.g. cliques
0

1 3

2

DECOMPOSITION
WIDTH

e.g. cliques
0

1 3

2

related to rank width of graphs

SYNCHRONISATION AS OO
PROGRAMMING PRIMITIVE

P

C2

+ +

+ −

+
+

+

Buf C1− −+ −

−

−

+

Buf+ −
- buffer combinator

+ + - connectors

+ − - synchronisation
combinator

Legend

+
+

+
− −

)LJXUH �� 6\VWHP�RI�FRPSRVHG�FRPELQDWRUV�

LV�DV\QFKURQRXV� 7KHUH�DUH�WZR�V\QFKURQLVDWLRQ
SRLQWV� �ZKHUH� WKH�SRODULWLHV�DUH�UHYHUVHG�RQ� WKH
ERXQGDULHV�³�L��WKH�EXIIHU�FRPELQDWRU %XI� ZKLFK
FRXOG�EH�LPSOHPHQWHG�XVLQJ�D�FRQFXUUHQW�TXHXH�
DQG� LL�� WKH� V\QFKURQLVDWLRQ� FRPELQDWRU� LPPHGL�
DWHO\�WR�WKH�OHIW�RI &�� 7KH�ODWWHU�GHVHUYHV�VRPH
H[SODQDWLRQ� LQ� WKH�VLPSOHVW� LPSOHPHQWDWLRQ� WKH
FRPELQDWRU�VLPSO\�EORFNV�RQ�D�UHDG�FDOO�RQ�LWV�ULJKW
ERXQGDU\�RU�D�ZULWH�FDOO�RQ� LWV� OHIW�ERXQGDU\�XQ�
WLO�D�FRUUHVSRQGLQJ�FRPSOHPHQWDU\�ZULWH�RU�UHDG
DUULYHV³LW� LV�DW�WKLV�SRLQW�ZKHUH�V\QFKURQLVDWLRQ
EHWZHHQ�WKUHDGV�RFFXUV�DQG�GDWD�LV�H[FKDQJHG�

7KH� GLDJUDP� LQ�)LJXUH � LV� PHUHO\� D� JUDSKL�
FDO� UHSUHVHQWDWLRQ�RI�D�V\QWDFWLF� WHUP� WKH�FRP�
ELQDWRU�H[SUHVVLRQ� EXLOW�IURP�SULPLWLYH�FRPELQD�
WRUV�DQG�WKH�WZR�DIRUHPHQWLRQHG�FDWHJRULFDO�RS�
HUDWLRQV� IRU�FRPSRVLWLRQ� $WRPLFLW\�DQG�FRUUHFW�
QHVV�ZLOO�IROORZ�E\�FRQVWUXFWLRQ� YLD�FRPSRVLWLRQ�
DOLW\� 2XU� SURSRVHG�PRGHO� RI� FRQFXUUHQF\� LV� D
PL[WXUH�RI�VKDUHG�PHPRU\�DQG�PHVVDJH�SDVVLQJ
FRQFXUUHQF\� EXW�GLIIHUHQWO\�WR�PHVVDJH�SDVVLQJ�
WKH�GHVWLQDWLRQ�RI�PHVVDJHV�DQG�WKH�V\QFKURQLVD�
WLRQ�PHFKDQLVPV�XVHG�LQ�WKH�FRPPXQLFDWLRQ�DUH
GHWHUPLQHG�E\�WKH�FRPELQDWRU�H[SUHVVLRQV� 7KH
UHVXOWLQJ�YLHZ�RI�WKUHDGHG�REMHFWV�LV�DQDORJRXV�WR
DV\QFKURQRXV�FLUFXLWV� DQG� LQGHHG� VLPLODU�DOJH�
EUDV�KDYH�UHFHQWO\�EHHQ�SURSRVHG >��@�LQ�RUGHU�WR
JLYH�FRPSRVLWLRQDO�DFFRXQWV�RI�JOREDO�EHKDYLRXU
LQ�DV\QFKURQRXV�FLUFXLWV�DQG�UHODWHG�SK\VLFDO�V\V�
WHPV� ZKHUH�FRQFXUUHQF\�LV�D�QDWXUDOO\�RFFXUULQJ
SKHQRPHQRQ�

:H�KDYH�LGHQWLÀHG�WKUHH�PHDVXUDEOH�REMHFWLYHV
E\�ZKLFK�ZH�H[SHFW� WKH�SURMHFW� WR�EH�DVVHVVHG�
7KH�ÀUVW�LV�WKH�GHYHORSPHQW�RI�IRUPDO�VHPDQWLFV�RI
FRQQHFWRU�FRPELQDWRU�IDPLOLHV�WRJHWKHU�ZLWK FRU�
UHFWQHVV�WKHRUHPV� 7KLV�ZRUN�ZLOO�EH�EDVHG�RQ

H[WHQGLQJ� H[LVWLQJ� ZRUN� RQ� FRQQHFWRU� DOJHEUDV
WR�D�FRQFXUUHQW�SURJUDPPLQJ�VHWWLQJ� 7KH�VHF�
RQG� LV� WKH�GHYHORSPHQW�RI�SURJUDP�HTXLYDOHQFH
DQG SURRI�WHFKQLTXHV IRU�FRGH�V\QFKURQLVHG�ZLWK
FRPELQDWRUV�)LQDOO\� D� SURJUDPPLQJ� ODQJXDJH
LPSOHPHQWDWLRQ LQ� D� KLJK�OHYHO� REMHFW� RULHQWHG
VHWWLQJ�WRJHWKHU�ZLWK�GHSOR\PHQW�FDVH�VWXGLHV�RQ
GLVWULEXWHG�DUFKLWHFWXUHV�

7KLV� SURMHFW� LV� WLPHO\� LW� KDV� EHHQ� SRVWX�
ODWHG >��@� WKDW� KDUGZDUH� LV� DKHDG� RI� VRIWZDUH
LQ� GLVWULEXWHG� V\VWHPV� DQG� IXQGDPHQWDO� EUHDN�
WKURXJKV�QHHG�WR�EH�PDGH�DW�WKH�VRIWZDUH�OHYHO�
5HODWHG� SURJUDPPLQJ� ODQJXDJH� WHFKQRORJ\� IRU
ÀQH�JUDLQHG�FRQFXUUHQW�DOJRULWKPV�KDYH�UHFHQWO\
EHHQ�SURSRVHG >��� ��@�DQG�WKHUH�LV�D�UHQHZHG�IR�
FXV�RQ�GHYHORSLQJ�FRQFXUUHQF\�DEVWUDFWLRQV�WKDW
DUH�ÀW�IRU�SXUSRVH� &UXFLDOO\� WKH�UHVHDUFK�ZH�SUR�
SRVH�EXLOGV�RQ�H[LVWLQJ� UHFHQWO\�GHYHORSHG�WKHRU\
WKDW�LV�UHDG\�IRU�H[SORLWDWLRQ�DQG�IXUWKHU�GHYHORS�
PHQW� JXLGHG�E\�SUDFWLFDO�DSSOLFDWLRQV�

2XU�SURSRVDO� LV�QRYHO� LQ�VHYHUDO�DVSHFWV� ZH
EULQJ�D�QHZ�PRGHO�RI�FRQFXUUHQF\� EDVHG�RQ�FRQ�
QHFWRUV� DQG� V\QFKURQLVDWLRQ� FRPELQDWRUV� 2XU
UHVHDUFK� PHWKRGRORJ\� LV� FRPSUHKHQVLYH� LQ� LWV
VFRSH� ZH�ZLOO�ZRUN� RQ� WKH�PDWKHPDWLFDO� IRXQ�
GDWLRQV� IRUPDO�VHPDQWLFV� SURJUDP�HTXLYDOHQFH�
LPSOHPHQWDWLRQ� FRGH� JHQHUDWLRQ� DQG� ULJRURXV
HYDOXDWLRQ�WKURXJK�FDVH�VWXGLHV�

3URJUDPPH�DQG�0HWKRGRORJ\

7KH� SURMHFW� ZLOO� FRQVLVW� RI� WKUHH� LQWHUFRQQHFWHG
VWUDQGV�RI�ZRUN� ,Q�:3��DQG�:3��ZH�SODQ�WR�XQ�
GHUWDNH�UHVHDUFK�WKDW�ZLOO�SURYLGH�WKH�WKHRUHWLFDO
IRXQGDWLRQV� :H�ZLOO�FRPSOHPHQW�DQG�LQIRUP�WKH
WKHRU\�E\�GHYHORSLQJ�D�FRPELQDWRU�H[WHQVLRQ� WR
DQ�LQGXVWULDO�VWUHQJWK�22 SURJUDPPLQJ�ODQJXDJH
JXLGHG� E\� D� IRUPDO� RSHUDWLRQDO� VHPDQWLFV� DQG
XWLOLVLQJ�PRGHUQ�SURJUDP�JHQHUDWLRQ�WHFKQLTXHV�
7KLUG� ZH� ZLOO� WHVW� RXU� K\SRWKHVHV� WKURXJK� LP�
SOHPHQWDWLRQ�ZRUN�RQ�VRIWZDUH�GHYHORSPHQW�DQG
GHSOR\PHQW�RQ�PRGHUQ�PDQ\�FRUH�DUFKLWHFWXUHV�
:RUN�RQ�WKHVH�WKUHH�VWUDQGV�ZLOO�RYHUODS�DQG�ZH
DQWLFLSDWH�WKDW�QHZ�WKHRUHWLFDO�FKDOOHQJHV�ZLOO�EH
SRVHG�E\�WKH�SUDFWLFDO�DVSHFWV�RI�WKH�SURMHFW�)RU
HDFK�:3 WKH�DFDGHPLF�OLVWHG�ÀUVW�ZLOO�EH�UHVSRQ�
VLEOH�IRU�RYHUVHHLQJ�WKH�ZRUN�GHVFULEHG�

:3��2SHUDWLRQDO�VHPDQWLFV�RI�ZLULQJ�FRPEL�
QDWRUV��36��-5��3'5$��

:H�ZLOO� LGHQWLI\�DQG�DGDSW�D�VLPSOH�SURFHVV�FDO�
FXOXV�RI� WKUHDGHG� LPSHUDWLYH�REMHFWV >��@�E\�H[�
WHQGLQJ�REMHFWV�ZLWK�H[SOLFLW�ERXQGDULHV�WKDW�VHUYH

�

RELATED WORK

Body of work on compositional model checking via interface theories
going back to Clarke

Work on compositional algebras of Petri nets going back to Mazurkiewicz

Work on reachability in bounded nets using unfolding going back to
McMillan

Body of work on algebraic approaches to nets, including the Petri box
calculus of Koutny, Esparza and Best

THE END

