Controlled Language and

Machine Translation by GF:

a brief introduction
K.V.S. Prasad

Dept of Computer Science

Chalmers University

Main Sources for talk

"Implementing Controlled Languages in GF”
— Krasimir Angelov and Aarne Ranta
”Controlled Language for Everyday Use”

— Aarne Ranta, Ramona Enache, Gregoire Detrez
"The GF Mathematics Library”

— Jordi Saludes and Sebastian Xambo

”"Grammatical Framework: Formalizing the
Grammars of the World” (slides of talk)

— Aarne Ranta
See http://www.grammaticalframework.org/

Our view of Controlled Language (CL)

 ACLis anatural language (NL)
— but with restricted (formal) syntax and semantics

* to reduce ambiguity
* help human understanding,
* enable mechanical processing
 Compared with a formal notation, such as
maths or programming Ianguages

— You can understand CL without special training

— Provided you know the NL the CL came from

Target application of CL in GF

e Technical documentation

— from a formal knowledge base

* Mute(Loud) -> Soft; Mute(Soft) -> Loud
— Might describe a toggle button on a phone

* Loud_b -> Loud; Soft_b -> Soft
— Separate buttons for loudspeaker on/off
— mechanically generated CL (Eng., Hin., ...)
* “When the loudspeaker is off, MUTE turns it on”
o IF ATSSTIDY 9¢ &, MUTE 38 IATdT &

Classification of CL's

* Huijsen classifies CL's into

— Human-Oriented CL
* To improve readability and comprehensibilty

— Machine-Oriented CL
* To improve translatability

e Then a GF CLis an MOCL

— promising potential application:
* meaning-preserving high-quality automatic translation.
* O’Brien analyses several CL’s for English
— Only rule in common: encouraging brief sentences
— GF has no such restriction, only formal grammar

What is GF?

* GF provides
* a high-level grammar formalism
* A programming language for grammars

* aresource grammar library (RGL)

— Together, these help write grammars that cover
* similar fragments in several natural languages
e at the same time.

— As the grammars are formal, they are amenable to
computer processing. In particular, translation.

Why “Framework”?

 Example: to formalise mathematics
— We can do it all in one formal system, say ZF

— Or use a logical framework

* To define a logic for the task at hand
» Different logics for different bits of mathematics

* Controlled language design in GF
— You decide what semantics you need
— Express it in the GF language

GF abstract and concrete syntax

e The semantic model in GF

— "abstract syntax”
* Give the signature for a many-sorted algebra
* Elements of this algebra usually shown as trees

— Not necessarily given any other semantics
* But can be done, e.g., operational semantics

* Syntactic realization: “concrete syntax”
— Interpretation of signature in a world of strings

* Morphisms
— From semantics to syntax: “linearisation” (generation)
— From syntax to semantics: parsing

Example

e Categories: problem, prop, and exp

— Functions to construct abstract syntax trees
* Prove (Even (Sgrt (EInt 36)))
* Means "prove that the square root of 36 is even”

* GF trees are statically typed
— type checker verifies the above tree is well-typed

An abstract syntax for math problems

abstract Math =
{cat Problem ; Prop; Exp ;
fun
Prove : Prop - Problem;
Compute : Exp - Problem;
Even : Exp = Prop;
Div : Exp - Exp = Prop ;
Sgrt : Exp - Exp;
Elnt:Int > Exp; }

Eng. concrete syntax: math problems

concrete MathEng of Math =

{lincat
Problem, Prop, Exp = Str;

lin
Prove p = "prove that” + p ;
Compute e = “compute” + e ;
Even x = x +”is even”;
Div xy = x + "is divisible by” + vy ;
Sgrt x = "the square root of” + x;
EIntx=x}

French syntax?

* A concrete syntax for French
— Multi-lingual syntax for same abstract sentence
— Translate between English and French

* But French has
— Gender, and agreement

— Indicative and subjunctive moods

e Captured by parameters in the concrete
syntax, without affecting abstract syntax

Fre. concrete syntax: mood, gender

concrete MathFre of Math = {

param

Mood = Ind | Subj; Gender = Masc | Fem ;
lincat

Prop = Mood = Str;

Exp ={s:Str; g : Gender };
lin

Even x = table {Ind = x .s + “est” + pair;

Subj = x .s + "soit” + pair}
where {pair = case x .g of {Masc = "pair”;
Fem = "paire”}};}

Resource Grammar Libraries

e But that was a fair amount of French!
— For a small mathematics (application) CL
— What about the next CL? French again?

e Put the French in a resource grammar library (RGL)
— RGL based on linguistic concepts
— independent of domain-specific semantics
— implemented by linguists, to be used by nonlinguists.

 RGL too has a common abstract syntax.
— Contains common syntactic structures

— Example, predication function,
e fun PredVP : NP - VP = (I

A library-based French concrete syntax
for mathematical problems

concrete MathFre of Math = open SyntaxFre, ParadigmsFre in {
lincat
Problem =Utt; Prop=Cl; Exp=NP;
lin
Prove p = mkUtt (mkVP (mkVS "de” montrer”) (mkS p));
Compute e = mkUtt (mkVP (mkV2 “calculer”) e);
Even x = mkCl x (mkA ”pair”);
Div x y = mkCl x (mkA2 "divisible” "par”) y ;
Sgrt x = mkNP defArt (mkCN (mkCN (mkN “racine”
(mkA “carre” ” (mkAdv de Prep x)));
Elnt x = mkNP x ;}

Syntax preserved as well as semantics?

* How do the English and French syntaxes differ?

— Main difference is in words:
* de” montrer -> to prove
* pair ->even
— But the syntactic structure is largely the same
e the combinations of resource grammar APl functions

— With one exception

 the main verb
— French uses the infinitive
— English, the imperative

* Prove p = mkUtt (mkimp (mkVP (mkVS “prove”) (mkS p)));

Functors

* Translations preserve up to 90% of the syntax
— GF “Functors” parameterize syntax modules

Grammars

* Morphology
— definitions of parts of speech
— synthesis: produce all forms of words
— analysis: recognize forms of words
* Syntax
— definitions of phrase structures
— synthesis: produce all well-formed phrases

— analysis: recognize phrase structures

Availability

 GFis free open-source software
— linguistic knowledge must accumulate!

Applications of GF

* Translation
— interlingual / hybrid
— automatic / interactive
— domain-specific / general
* Natural language interaction

— voice commands / dialogue systems
— software localization

 Platforms
— desktop / mobile / cloud-based

Phrasebook (for Tourists)

* Controlled Language for Everyday Use
— As opposed to the usual technical domains
— No existing formalism or domain. So CL
* Eliminates ambiguity
* What have Berlitz, Lonely Planet, ... not done?
— They offer a finite list of canned phrases

— Grammars generate infinitely many sentences

Abstract Syntax to order a beer

Cat
Phrase ; ltem

fun
GivePlease : I[tem -> Phrase
HereWeAre : Phrase
ThankYou : Phrase
YouAreWelcome : Phrase

ABeer : ltem

German concrete syntax

lin
GivePlease item = item ++ "bitte”
HereWeAre = "bitte”
ThankYou = "Danke”
YouAreWelcome = "bitte”
ABeer = "ein Bier"

So parsing is ambiguous. What does “bitte” mean?

Depends on the context. Disambiguate in the
abstract syntax.

But other languages?

* They make for other ambiguities

e But after design for some known languages
— Scales up to new languages with little change

 Example:
— “Are you Swedish?”

— has the tree PQuestion (QProp
(PropAction(ACitizen YouFamMale (CitiNat
Swedish))))

— Other trees possible because “you” is ambiguous

Politeness and Gender

YouFamMale, YouFamFemale, YouPolMale, YouPolFemale

Varying this constant in the above tree gives four French
linearizations:

— YouFamMale: Est-ce que tu es suédois ?

— YouFamFemale: Est-ce que tu es suédoise ?

— YouPolMale: Est-ce que vous étes suédois ?

— YouPolFemale: Est-ce que vous étes suédoise ?

Although German also has gender, it makes no difference
in this example.

— YouFamMale, YouFamFemale: Bist du schwedisch?
— YouPolMale, YouPolFemale: Sind Sie schwedisch?

Design Principles for
Phrasebook Abstract Syntax

Convexity: If | can say Swedish and France, | can say Sweden and French
This helps users guess what they can say.

Orthogonality: develop using the minimum of concepts to implement
The category Nationality = (language, nationality, country).

These triples can often be formed systematically (e.g. Swedish, Swedish,
Sweden). But Belgium has no associated language, whereas Flemish has no
associated country.

“Thank you” is a fixed phrase, but others need grammar. Use the RGL.

Functors again

 The RGL has a common API for the syntax functions

— If the languages use the same syntactic structures to
express the meanings, we can use a functor.

— But idioms mean exceptions
* | am fifty years old
— French: j’ai cinquante ans (“I have fifty years”).

* My name is Bond
— German: ich heisse Bond (“l have-name Bond”)
— French: je m’appelle Bond (“I call myself Bond”).

* |lam hungry
— French: j’ai faim (“l have hunger”)
— 130 combination rules, 96 (74%) implemented by functor
(usually the percentage is close to 100).

State of coverage in GF

 There are 6000+ languages in the world.
 We have studied ca. 100 of them in GF.

 We cover 26 languages as of Dec 2012 in the
RGL, plus 6 on-going.

