On Full Abstraction

Uwe Nestmann
Daniele Gorla

IFIPWG 2.2 @ Lisbon

Technische . @ -
Universitat Modelle und Theorie L UNIVERSITA DI ROMA

Berlin Verteilter Systeme

Full Abstraction for Expressiveness:
History, Myths and Facts'

Daniele Gorla! and Uwe Nestmann?

' Dip. di Informatica, “Sapienza” Universitd di Roma.

email: gorla@di.uniromal.it

2 Technische Universitat Berlin.

ematl: uwe .nestmann@tu-berlin.de

Received 20 December 2012

first attempt at a “panel discussion” during
EXPRESS 2007 (CONCUR 2007) at Lisbon

Denotational Semantics

Denotational Semantics

“What Is the meaning (semantics) of a program (syntax)?”

Denotational Semantics

“What Is the meaning (semantics) of a program (syntax)?”

[[-1]: Syntax = Math.Domain

Denotational Semantics

“What Is the meaning (semantics) of a program (syntax)?”

[[-1]: Syntax = Math.Domain

full abstraction:
“operational equivalence coincides with denotational equality

o1 =5 it [[Si]] = [[52]]

Denotational Semantics

“What Is the meaning (semantics) of a program (syntax)?”

(11
angd!
erst
““d/

full abstraction:

ath.Domain

o1 =5 it [[Si]] = [[52]]

Denotational Semantics

“What Is the meaning (semantics) of a program (syntax)?”

(11
angd!
erst
““d/

509 fo full abstraction:
«tional equivalence coincides with denotational equality

o1 =5 it [[Si]] = [[52]]

ath.Domain

Milner 1997 in TCS 4 on models of Lambda Calculus
Plotkin 1977 inTCS 5 on PCF

Translational Semantics

Translational Semantics

“Ihe meaning of a program (syntax) Is another syntax.”

[-]]: Source.Syntax = Target.Syntax

Translational Semantics

“Ihe meaning of a program (syntax) Is another syntax.”

[-]]: Source.Syntax = Target.Syntax

“operational equivalence coincides
with denotational equivalence”

Si =95y it [[Si]] = [[S2]]

Translational Semantics

“Ihe meaning of a program (syntax) Is another syntax.”

[-]]: Source.Syntax = Target.Syntax

“operational equivalence coincides
with denotational equivalence”

Si =95y it [[Si]] = [[S2]]

Riecke 1991 in POPL :
Fully abstract translations between functional languages

Translational Semantics

“Ihe meaning of a program (syntax) Is another syntax.”

[-]]: Source.Syntax = Target.Syntax

/ferational equivalence coincides
with denotational equivalence”

Si =95y it [[Si]] = [[S2]]

Riecke 1991 in POPL :
Fully abstract translations between functional languages

Translational Semantics

"The meaning of a program (syntax) Is another syntax.”

[-]]: Source.Syntax = Target.Syntax

/erational equivalence coincides
with denotational equivalence”

Si =95y it [[Si]] = [[S2]]

Box in C.T.
| 991 in POPL :

Fully abstract translations between functional languages

[Fournet, Gonthier 1996]

Definition 1 Let Pi,Ps be two process calculr, with respec-
tive equivalences xy C P1 X P1, &2 C P2 X Po.
P2 15 more expressive than Pi; when there 1s a fully ab-

stract encoding | |,_, from Py to Py: for all P,Q in P, we
have

P=1@Q <« [Pl,_,=[Q] _,

P1 and P2 have the same expressive power when each
one 1s more expressive than the other.

[Fournet, Gonthier 1996]

Definition 1 Let Pi,Ps be two process calculr, with respec-
tive equivalences xy C P1 X P1, &2 C P2 X Po.

P2 15 more expressive than Pi; when there 1s a fully ab-
stract encoding | |,_, from Py to Py: for all P,Q in P, we
have

P=1@Q <« [Pl,_,=[Q] _,

P1 and P2 have the same expressive power when each
one 1s more expressive than the other.

We use observational congruence as the reference equiv-
alence for each process calculus, meaning that our full ab-
straction results are up to observation in any context. This
seems to be the finest results one could expect between dif-
ferent process calculi.

[Fournet, Gonthier 1996]

Definition 1 Let Pi,Ps be two process calculr, with respec-
tive equivalences xy C P1 X P1, &2 C P2 X Po.

P2 15 more expressive than Pi; when there 1s a fully ab-
stract encoding | |,_, from Py to Py: for all P,Q in P, we
have

P=1@Q <« [Pl,_,=[Q] _,

P1 and P2 have the same expressive power when each
one 1s more expressive than the other.

We use observational congruence as the reference equiv-
alence for each process calculus, meaning that our full ab-
straction results are up to observation in any context. This
seems to be the finest results one could expect between dif-
ferent process calculi.

Main Problem

the large choice of involved equivalences
(especially in Concurrency Theory)

Main Problem

the large choice of involved equivalences
(especially in Concurrency Theory)

much debate about divergence-sensitiveness !

Setting

An encoding | - | of language S = (Ps,—>g, ~s) into language T = (Pr,—1, 1) is
a (total) function | - | : Ps — Pt mapping terms of Pg into terms of Pr; by overloading,
we also write [-] : S — T. We sometimes abbreviate Pg and Pt by & and 7. We let S
and T range over terms of the source language (S) and target language (7), respectively.

Definition 1. An encoding [-] : S — T is fully abstract iff, for every S1,52 € Ps:

(515 52) <= ([S]1 = [S52])

[-]:Ps — Pr is then called fully abstract w.r.t. (~g,~T).

False Positives

False Positives

Fact 1. Let |[-]|: S — T be abitrary.

Let S = (S,——s,Ker([|-])) for arbitrary —s.
Let T = (T,—7,1d) for arbitrary — .
Then, |-]:S — T is fully abstract.

False Positives

Fact 1. Let |[-]|: S — T be abitrary.

Let S = (S,——s,Ker([|-])) for arbitrary —s.
Let T = (T,—7,1d) for arbitrary — .
Then, |-]:S — T is fully abstract.

Fact 2. Let [-|:S— T with [S]| =T, forall S €S and someT € T.
Let S = (S,—s,S X S) for arbitrary —s.

Let T = (T,——7,~7) for arbitrary —1 and >~ .

Then, [-] : S — T is fully abstract.

False Positives

Fact 3. Let TM and FA denote the sets of Turing machines and of finite automata. Let
TM = (TM,—1Mm, ~1m) and FA = (FA, ——pa, ~pa) be defined with their standard
operational semantics (viz., —ym and —pa) and language equivalence (viz., ~7y and
~pa). Then, there exists a fully abstract encoding | -] : TM — FA.

True Po

la(b,c).P| = (v

—
&
—~

S
N
—
&
—
|

perfectly fine encoding

sitives!?

dya(d).d(b).d(c).[P]

a(z).2(x).2(y).| Q]

but not fully abstract

can be made fully abstract
by cheating on

the considered target contexts

True Negatives!?

L1 = (CCS, —, %)
Ly = (CCS, —s, ~°)
Ly = (CCS,., s, ~)

Fact 4. The embedding encoding of L3 into Lo does not preserve equivalences.

Fact 5. The identity encoding of Lo into L; does not reflect equivalences.

True Negatives!?

Fact 6. Consider the encoding of the asynchronous mw-calculus with ~, into the syn-
chronous m-calculus with ~ such that

[ab) | = a(b).0

and homomorphic on all the other operators. Such an encoding does not preserve equiv-
alences.

Proof. Consider P = 0 and Q) = a(x).a(x); it is well-known (Amadio et al. 1998) that
P, Q,but [P][Q]

Changing Equivalences

Source Only

First of all, for a fully abstract encoding, one cannot change only the source equivalence
without breaking full abstraction, be it by weakening or strenghtening of the equivalence.

Fact 7. Let S = (S,—s,~s), T=(T,—71,~1) and |-] : S — T fully abstract.

1 Let ~5 C ~g and S" = (S,—s,~g). Then, the encoding [-] : 8" — T is not fully
abstract.

2 Let ~5 D ~g and S" = (S,—s,~g). Then, the encoding -] : S" = T is not fully
abstract.

Changing Equivalences

Target Only

By contrast, it is possible to change only the target equivalence without breaking full
abstraction only if the encoding is not surjective (as it is usually the case). For surjective
encodings, a situation similar to Fact 7 holds.

Fact 8. Let S = (S,——g,~s), T = (T,—71,~1) and [-] : S = T fully abstract and
not surjective. Then, there exists a ~ different from ~1 such that -] : S — T', for
T = (T,——7, %), is still fully abstract.

Changing Equivalences

Both Source and Target

Fact 9. Let S = (S,—g,~g), T = (T,—71,~1) and [-] : S = T fully abstract
and injective. Then, for every ~g C ~g, there exists ~m C ~7 such that the encoding
[-]:S"— T is fully abstract, where S" = (S,—g,~g) and T' = (T ,—>1,>~7).

Fact 10. Let S = (S,—s,~g), T = (T,—7,~1) and [-] : S — T fully abstract.
Then, for every ~g D ~g, there exists ~ D ~1 such that the encoding -] : S" — T’
is fully abstract, where S" = (S,——g,~g) and T' = (T, —,>~5).

Conclusions ?

Pros & Cons

full abstraction

* may well be iInformative
to discuss “aspects” of expressive power

* |s (alone) useless for separation results ...

