
On Full Abstraction

Uwe Nestmann
Daniele Gorla

IFIP WG 2.2 @ Lisbon

Under consideration for publication in Math. Struct. in Comp. Science

Full Abstraction for Expressiveness:
History, Myths and Facts†

Daniele Gorla1 and Uwe Nestmann2

1 Dip. di Informatica, “Sapienza” Università di Roma.

email: gorla@di.uniroma1.it

2 Technische Universitat Berlin.

email: uwe.nestmann@tu-berlin.de

Received 20 December 2012

What does it mean that an encoding is fully abstract? What does it not mean? In this

position paper, we want to convince the reader on the real benefits of using such a

notion when studying the expressiveness of programming languages. Several examples

and counter-examples are given. In some cases, we work at a very abstract level; in other

cases, we give concrete samples, mostly taken from the field of process calculi, where the

theory of expressiveness has been mostly developed in the last years.

1. Introduction

The notion of full abstraction came into existence as an attempt to answer the question
“What is the meaning of a program?”, which also drove the development of the field of
denotational semantics. A denotation is a mathematical object that has to capture the
abstract meaning of programs, whereas their concrete meaning is often formalized via the
operational semantics of the language. The aim of full abstraction was to reconcile the
two views (Plotkin 1977). Intuitively, it requires that two programs have the same deno-
tations precisely when they are observationally equivalent, i.e., whenever they behave the
same in every execution context. So, for semantics in the classical style, full abstraction
may be understood roughly as the requirement that “operational equivalence coincides
with denotational equality”, once the denotation function is fixed. Such a function is a
mapping from one world (the one of programs) into another world (the one of denota-
tions). In summary, the notion of full abstraction, originally, was conceived to achieve a
quite specific goal in programming language semantics, but not as a tool to study the
expressiveness of programming languages.

The need to compare programming formalisms w.r.t. their expressive power dates
back to the very origins of computer science, e.g., with the formal comparison of Tur-
ing machines, �-calculi and partially recursive functions. Such a need has become more

† Supported by the Deutsche Forschungsgemeinschaft, grant NE-1505/2-1.

first attempt at a “panel discussion” during
EXPRESS 2007 (CONCUR 2007) at Lisbon

History

Denotational Semantics

Denotational Semantics
“What is the meaning (semantics) of a program (syntax)?”

Denotational Semantics
“What is the meaning (semantics) of a program (syntax)?”

[[-]] : Syntax ➞ Math.Domain

Denotational Semantics

full abstraction:
“operational equivalence coincides with denotational equality”

“What is the meaning (semantics) of a program (syntax)?”

[[-]] : Syntax ➞ Math.Domain

S1 ≃ S2 iff [[S1]] = [[S2]]

Denotational Semantics

full abstraction:
“operational equivalence coincides with denotational equality”

“What is the meaning (semantics) of a program (syntax)?”

[[-]] : Syntax ➞ Math.Domain

S1 ≃ S2 iff [[S1]] = [[S2]]

 good for understanding

Denotational Semantics

full abstraction:
“operational equivalence coincides with denotational equality”

“What is the meaning (semantics) of a program (syntax)?”

[[-]] : Syntax ➞ Math.Domain

S1 ≃ S2 iff [[S1]] = [[S2]]

 good for understanding

Milner 1997 in TCS 4 on models of Lambda Calculus
Plotkin 1977 in TCS 5 on PCF

Translational Semantics

Translational Semantics
“The meaning of a program (syntax) is another syntax.”

[[-]] : Source.Syntax ➞ Target.Syntax

Translational Semantics
“The meaning of a program (syntax) is another syntax.”

[[-]] : Source.Syntax ➞ Target.Syntax

“operational equivalence coincides
with denotational equivalence”

S1 ≃ S2 iff [[S1]] ≃ [[S2]]

Translational Semantics
“The meaning of a program (syntax) is another syntax.”

[[-]] : Source.Syntax ➞ Target.Syntax

“operational equivalence coincides
with denotational equivalence”

S1 ≃ S2 iff [[S1]] ≃ [[S2]]

Riecke 1991 in POPL :
Fully abstract translations between functional languages

Translational Semantics
“The meaning of a program (syntax) is another syntax.”

[[-]] : Source.Syntax ➞ Target.Syntax

“operational equivalence coincides
with denotational equivalence”

S1 ≃ S2 iff [[S1]] ≃ [[S2]]

 g
oo

d
fo

r
pr

ov
in

g

Riecke 1991 in POPL :
Fully abstract translations between functional languages

Translational Semantics
“The meaning of a program (syntax) is another syntax.”

[[-]] : Source.Syntax ➞ Target.Syntax

“operational equivalence coincides
with denotational equivalence”

S1 ≃ S2 iff [[S1]] ≃ [[S2]]

 g
oo

d
fo

r
pr

ov
in

g

Riecke 1991 in POPL :
Fully abstract translations between functional languages

Pandora’s
Box in C.T.

Myths

[Fournet, Gonthier 1996]

{D)u {-r). Ourtransition relation is the smallest relation
such that for every definition D=z(’u)ly(v)D~,

z(s)ly(t) ~R{s/u,t/v}

and for every transition P ~ P’,

PIQ ~ P’IQ

de fDin P~def Din P’ if fw(D) n drJ(6)= 0

de f6in P~def6in P’ ifrS#T

Q ~ Q’ if P= P’and Q=Q’

Lemma 1 The structural congruence z is the smallest con-
gruence that contains all pazr of processes P, Q such that

t-Pe* t- Q. The reduction relation L contazns exactly
the pairs of processes P, Q up to E such that t- P +1- Q

5.2 Observation

While the observation of concurrent processes is difficult
in general, the join-calculus benefits from the experience
gained from CCS and from the m-calculus. After an informal
discussion of observation criteria, we introduce the equiva-
lence among processes as the largest congruence with a few
suitable properties, thus following the approach proposed in
[12, 13] for the w-calculus. This provides an accurate basis
for comparisons with other calculi.

5.2.1 What is observable?

The only way for a process to communicate with the out-
side is to export some names in messages on its free names,
and to wait for an answer from an enclosing definition. We
distinguish processes accordingly: To each free name z, we
associate an asynchronous, output-only barb & , which tests
the ability of processes to emit anything on z. In the fol-
lowing, ---+* stands for any sequence of ~ and &,

P&~’ zGfv(F’) A 3ti,7?/, M, OEP+*’Rk M,z(@

5.2.2 Observational congruence

The congruence between processes is the largest equivalence
relation % that is a refinement of the output barbs $Z, that
is weak-reduction-closed, and that is a congruence for defi-
nitions and parallel compositions: VP, Q, if P = Q, then

1. Vx c N, P JJC implies Q &

2. P —-+” P’ implies 3Q’, Q ---i” Q’ and P’ z Q’

3.VD, de fDln P = de fDin Q

4. VR, RIP z R\Q

In most proofs, we also need a finer, auxdiary ezpun-
sion relation, and we apply the bwimulation up to exPan-
sion technique [25]: the expansion between processes is the
largest relation < that verifies properties hke 1-4, and such
that VP, Q, if P ~ Q, then

Q ---+ Q’ implies P’ ~ Q’ or 3P’, P ---i P’ ~ Q’

For example we have:

fv(P) = 0 * P

PEQ~P

x (u)

def z(t) D t(u) in ;(z)

z(x)

def u(z) b w(z) in z(u)

Fz o (1)
7s Q (2)

Y(u) (3)

~ def z(t) D t(u) in z(y) (4)

z(y) (5)

= z(w) (6)

In (1) no process has any barb, and reductions are simulated
by no reduction on the other side; in (3) and (4), the two
processes don’t have the same barbs; in (5) the two names z
and y can be distinguished in contexts as in (4); in (6), two
distinct names are sent on x, but their behaviour is the same
in every context (although an internal reduction is needed
to relay values from u to v),

Despite technical differences in their definitions, H is also
the congruence over all contexts that is obtained from the
weak, barbed bisimulation whose barbs are &, as defined
for the n-calculus in [20]. Such barbed congruences can be
defined for many process calculi, independently of their syn-
taxes, and we take advantage of this common framework to
obtain precise results.

5.2.3 Full abstraction

In all the following, we assess the relative expressive powers
of miscellaneous calculi from the existence of fully-abstract
encodings between them,

Definition 1 Let F’l, Pz be two process calcula, wzth respec-
twe equivalences WI C PI X PI, %Z C P2 X Pz.

Tz is more expressive than ‘PI when there ZS a fully ab-
stract encochng []I+z from PI to P,: for all P, Q in P,, we
have

P =, Q ~ [P]l_, =, ~Q]l+,

PI and PZ have the same expressive power when each
one as more ezpressave than the other.

We use observational congruence as the reference equiv-
alence for each process calculus, meaning that our full ab-
straction results are up to observation in any context, This
seems to be the finest results one could expect between dif-
ferent, process calculi.

5.3 Internal encodings

The reflexive CHAM model corresponds to a join-calculus
that IS convergent as the kernel of a programming language.
However, it is possible to reduce it further to simpler prim-
itives. To this end, we successively remove recursive scope,
definitions with several clauses D A D, Join-patterns with
more than two messages, and messages with several trans-
mitted values. We replace them by internal encodings,
which we prove to be fully abstract, Our purpose here is to
isolate the essential features of the join-calculus, and to give
some useful examples. Of course, all the derived features
would be taken as primitives in a realistic implementation.

Theorem 1 The core join-calculus has the same ezpresstve
power than the full jozn-calculus up to congruence; ~n par-
ticular, there r.s a fully-abstract encodzng []0 from the full

378

[Fournet, Gonthier 1996]

{D)u {-r). Ourtransition relation is the smallest relation
such that for every definition D=z(’u)ly(v)D~,

z(s)ly(t) ~R{s/u,t/v}

and for every transition P ~ P’,

PIQ ~ P’IQ

de fDin P~def Din P’ if fw(D) n drJ(6)= 0

de f6in P~def6in P’ ifrS#T

Q ~ Q’ if P= P’and Q=Q’

Lemma 1 The structural congruence z is the smallest con-
gruence that contains all pazr of processes P, Q such that

t-Pe* t- Q. The reduction relation L contazns exactly
the pairs of processes P, Q up to E such that t- P +1- Q

5.2 Observation

While the observation of concurrent processes is difficult
in general, the join-calculus benefits from the experience
gained from CCS and from the m-calculus. After an informal
discussion of observation criteria, we introduce the equiva-
lence among processes as the largest congruence with a few
suitable properties, thus following the approach proposed in
[12, 13] for the w-calculus. This provides an accurate basis
for comparisons with other calculi.

5.2.1 What is observable?

The only way for a process to communicate with the out-
side is to export some names in messages on its free names,
and to wait for an answer from an enclosing definition. We
distinguish processes accordingly: To each free name z, we
associate an asynchronous, output-only barb & , which tests
the ability of processes to emit anything on z. In the fol-
lowing, ---+* stands for any sequence of ~ and &,

P&~’ zGfv(F’) A 3ti,7?/, M, OEP+*’Rk M,z(@

5.2.2 Observational congruence

The congruence between processes is the largest equivalence
relation % that is a refinement of the output barbs $Z, that
is weak-reduction-closed, and that is a congruence for defi-
nitions and parallel compositions: VP, Q, if P = Q, then

1. Vx c N, P JJC implies Q &

2. P —-+” P’ implies 3Q’, Q ---i” Q’ and P’ z Q’

3.VD, de fDln P = de fDin Q

4. VR, RIP z R\Q

In most proofs, we also need a finer, auxdiary ezpun-
sion relation, and we apply the bwimulation up to exPan-
sion technique [25]: the expansion between processes is the
largest relation < that verifies properties hke 1-4, and such
that VP, Q, if P ~ Q, then

Q ---+ Q’ implies P’ ~ Q’ or 3P’, P ---i P’ ~ Q’

For example we have:

fv(P) = 0 * P

PEQ~P

x (u)

def z(t) D t(u) in ;(z)

z(x)

def u(z) b w(z) in z(u)

Fz o (1)
7s Q (2)

Y(u) (3)

~ def z(t) D t(u) in z(y) (4)

z(y) (5)

= z(w) (6)

In (1) no process has any barb, and reductions are simulated
by no reduction on the other side; in (3) and (4), the two
processes don’t have the same barbs; in (5) the two names z
and y can be distinguished in contexts as in (4); in (6), two
distinct names are sent on x, but their behaviour is the same
in every context (although an internal reduction is needed
to relay values from u to v),

Despite technical differences in their definitions, H is also
the congruence over all contexts that is obtained from the
weak, barbed bisimulation whose barbs are &, as defined
for the n-calculus in [20]. Such barbed congruences can be
defined for many process calculi, independently of their syn-
taxes, and we take advantage of this common framework to
obtain precise results.

5.2.3 Full abstraction

In all the following, we assess the relative expressive powers
of miscellaneous calculi from the existence of fully-abstract
encodings between them,

Definition 1 Let F’l, Pz be two process calcula, wzth respec-
twe equivalences WI C PI X PI, %Z C P2 X Pz.

Tz is more expressive than ‘PI when there ZS a fully ab-
stract encochng []I+z from PI to P,: for all P, Q in P,, we
have

P =, Q ~ [P]l_, =, ~Q]l+,

PI and PZ have the same expressive power when each
one as more ezpressave than the other.

We use observational congruence as the reference equiv-
alence for each process calculus, meaning that our full ab-
straction results are up to observation in any context, This
seems to be the finest results one could expect between dif-
ferent, process calculi.

5.3 Internal encodings

The reflexive CHAM model corresponds to a join-calculus
that IS convergent as the kernel of a programming language.
However, it is possible to reduce it further to simpler prim-
itives. To this end, we successively remove recursive scope,
definitions with several clauses D A D, Join-patterns with
more than two messages, and messages with several trans-
mitted values. We replace them by internal encodings,
which we prove to be fully abstract, Our purpose here is to
isolate the essential features of the join-calculus, and to give
some useful examples. Of course, all the derived features
would be taken as primitives in a realistic implementation.

Theorem 1 The core join-calculus has the same ezpresstve
power than the full jozn-calculus up to congruence; ~n par-
ticular, there r.s a fully-abstract encodzng []0 from the full

378

[Fournet, Gonthier 1996]

{D)u {-r). Ourtransition relation is the smallest relation
such that for every definition D=z(’u)ly(v)D~,

z(s)ly(t) ~R{s/u,t/v}

and for every transition P ~ P’,

PIQ ~ P’IQ

de fDin P~def Din P’ if fw(D) n drJ(6)= 0

de f6in P~def6in P’ ifrS#T

Q ~ Q’ if P= P’and Q=Q’

Lemma 1 The structural congruence z is the smallest con-
gruence that contains all pazr of processes P, Q such that

t-Pe* t- Q. The reduction relation L contazns exactly
the pairs of processes P, Q up to E such that t- P +1- Q

5.2 Observation

While the observation of concurrent processes is difficult
in general, the join-calculus benefits from the experience
gained from CCS and from the m-calculus. After an informal
discussion of observation criteria, we introduce the equiva-
lence among processes as the largest congruence with a few
suitable properties, thus following the approach proposed in
[12, 13] for the w-calculus. This provides an accurate basis
for comparisons with other calculi.

5.2.1 What is observable?

The only way for a process to communicate with the out-
side is to export some names in messages on its free names,
and to wait for an answer from an enclosing definition. We
distinguish processes accordingly: To each free name z, we
associate an asynchronous, output-only barb & , which tests
the ability of processes to emit anything on z. In the fol-
lowing, ---+* stands for any sequence of ~ and &,

P&~’ zGfv(F’) A 3ti,7?/, M, OEP+*’Rk M,z(@

5.2.2 Observational congruence

The congruence between processes is the largest equivalence
relation % that is a refinement of the output barbs $Z, that
is weak-reduction-closed, and that is a congruence for defi-
nitions and parallel compositions: VP, Q, if P = Q, then

1. Vx c N, P JJC implies Q &

2. P —-+” P’ implies 3Q’, Q ---i” Q’ and P’ z Q’

3.VD, de fDln P = de fDin Q

4. VR, RIP z R\Q

In most proofs, we also need a finer, auxdiary ezpun-
sion relation, and we apply the bwimulation up to exPan-
sion technique [25]: the expansion between processes is the
largest relation < that verifies properties hke 1-4, and such
that VP, Q, if P ~ Q, then

Q ---+ Q’ implies P’ ~ Q’ or 3P’, P ---i P’ ~ Q’

For example we have:

fv(P) = 0 * P

PEQ~P

x (u)

def z(t) D t(u) in ;(z)

z(x)

def u(z) b w(z) in z(u)

Fz o (1)
7s Q (2)

Y(u) (3)

~ def z(t) D t(u) in z(y) (4)

z(y) (5)

= z(w) (6)

In (1) no process has any barb, and reductions are simulated
by no reduction on the other side; in (3) and (4), the two
processes don’t have the same barbs; in (5) the two names z
and y can be distinguished in contexts as in (4); in (6), two
distinct names are sent on x, but their behaviour is the same
in every context (although an internal reduction is needed
to relay values from u to v),

Despite technical differences in their definitions, H is also
the congruence over all contexts that is obtained from the
weak, barbed bisimulation whose barbs are &, as defined
for the n-calculus in [20]. Such barbed congruences can be
defined for many process calculi, independently of their syn-
taxes, and we take advantage of this common framework to
obtain precise results.

5.2.3 Full abstraction

In all the following, we assess the relative expressive powers
of miscellaneous calculi from the existence of fully-abstract
encodings between them,

Definition 1 Let F’l, Pz be two process calcula, wzth respec-
twe equivalences WI C PI X PI, %Z C P2 X Pz.

Tz is more expressive than ‘PI when there ZS a fully ab-
stract encochng []I+z from PI to P,: for all P, Q in P,, we
have

P =, Q ~ [P]l_, =, ~Q]l+,

PI and PZ have the same expressive power when each
one as more ezpressave than the other.

We use observational congruence as the reference equiv-
alence for each process calculus, meaning that our full ab-
straction results are up to observation in any context, This
seems to be the finest results one could expect between dif-
ferent, process calculi.

5.3 Internal encodings

The reflexive CHAM model corresponds to a join-calculus
that IS convergent as the kernel of a programming language.
However, it is possible to reduce it further to simpler prim-
itives. To this end, we successively remove recursive scope,
definitions with several clauses D A D, Join-patterns with
more than two messages, and messages with several trans-
mitted values. We replace them by internal encodings,
which we prove to be fully abstract, Our purpose here is to
isolate the essential features of the join-calculus, and to give
some useful examples. Of course, all the derived features
would be taken as primitives in a realistic implementation.

Theorem 1 The core join-calculus has the same ezpresstve
power than the full jozn-calculus up to congruence; ~n par-
ticular, there r.s a fully-abstract encodzng []0 from the full

378

Facts

Main Problem

the large choice of involved equivalences
(especially in Concurrency Theory)

Main Problem

the large choice of involved equivalences
(especially in Concurrency Theory)

much debate about divergence-sensitiveness !

Setting

Full Abstraction for Expressiveness: History, Myths and Facts 3

A further important argument in the discussion on full abstraction for expressiveness
stems from the presence or absence of the desire to relate the notion of encodability with
the notion of implementability.† Here, two fields with di↵erent interests come to di↵er-
ent conclusions. If one is only interested in the possibility of transferring equations—as
implied by the usual reference equivalences—between source and target languages, then
the criteria for considering an encoding to be of high quality are clearly di↵erent from
one who is interested in the implementability of one language into the other—maybe,
without the introduction of divergence or in a distributed way. In the current paper, we
do not emphasize this aspect of the discussion; even without it, our criticism stands.

In the light of the above-mentioned problems, we come to the conclusion that full
abstraction as the criterion to study and measure the relative expressive power of pro-
gramming languages is largely debatable. In this paper, we provide several examples that
may convince the reader that—from the expressiveness point of view—full abstraction
has only little to do with the actual quality of an encoding. It is nice to have, when it
can be proved for some equivalences, but it is not the ultimate measure.

The problem of expressiveness has been identified as an increasingly important topic in
concurrency theory (Nestmann 2006, Parrow 2008). In recent years, new approaches for
the evaluation of the quality of encodings from the expressiveness perspective have been
proposed (Palamidessi 2003, Carbone & Ma↵eis 2003, Gorla 2008, Haagensen, Ma↵eis &
Phillips 2008, Gorla 2010a, Gorla 2010b, Peters & Nestmann 2012, van Glabbeek 2012, Fu
& Lu 2010). This paper can be seen as an a posteriori justification for such works.

2. Technical Preliminaries

2.1. Basic Notions

A language is a triple L = (P, 7�!,'), where P is the set of language terms, 7�! ✓

P ⇥ P is the operational semantics specified via reductions (e.g., �-reductions in �-
calculus, synchronizations in CCS, communications in ⇡-calculus, ...), and ' ✓ P ⇥P is
a behavioral equivalence.

An encoding [[·]] of language S = (PS, 7�!S,'S) into language T = (PT, 7�!T,'T) is
a (total) function [[·]] : PS �! PT mapping terms of PS into terms of PT; by overloading,
we also write [[·]] : S �! T. We sometimes abbreviate PS and PT by S and T . We let S
and T range over terms of the source language (S) and target language (T), respectively.

Definition 1. An encoding [[·]] : S ! T is fully abstract i↵, for every S1, S2 2 PS:

(S1 'S S2) () ([[S]]1 'T [[S2]])

[[·]] : PS �! PT is then called fully abstract w.r.t. ('S,'T).

We usually call the ‘)’ implication as equivalence preservation whereas the ‘(’ implica-
tion as equivalence reflection.

† In the case of process calculi, the quest for distributed implementability often yields negative results.

False Positives

False Positives

Full Abstraction for Expressiveness: History, Myths and Facts 7

target, where an easier-to-handle equivalence is developed. Something similar happens in
the higher-order ⇡-calculus, a variant of the ⇡-calculus where also processes (and not only
names) can be passed in a communication. In (Sangiorgi 2001), it is proved that higher-
order communications can be encoded into first-order ones in a fully abstract way; this
fact can be used to simplify the way in which equivalences are proved in the higher-order
setting.

4. False Positives

We now show that there are ‘bad’ encodings that nevertheless satisfy full abstraction.
This fact shows that such a property is not that demanding as it is sometimes believed.
For the following two observations, let S and T be arbitrary sets (of terms).

Fact 1. Let [[·]] : S ! T be abitrary.
Let S = (S, 7�!S,Ker([[·]])) for arbitrary 7�!S.
Let T = (T , 7�!T, Id) for arbitrary 7�!T.
Then, [[·]] : S ! T is fully abstract.

Proof. By definition, (S1, S2) 2 Ker([[·]]) i↵ [[S1]]=[[S2]], i.e. ([[S1]], [[S2]]) 2 Id.

Fact 2. Let [[·]] : S ! T with [[S]] = T , for all S 2 S and some T 2 T .
Let S = (S, 7�!S,S ⇥ S) for arbitrary 7�!S.
Let T = (T , 7�!T,'T) for arbitrary 7�!T and 'T.
Then, [[·]] : S ! T is fully abstract.

Proof. (Case “)”): For every S1 'S S2, it holds that [[S]]1 'T [[S2]]: indeed, [[S1]] =
T = [[S2]] and the implication holds because of reflexivity of 'T. (Case “(”): For every
S1 and S2 such that [[S1]] 'T [[S2]], it holds that S1 'S S2: indeed, 'S is the total
relation on S and hence it relates every pair of source terms.

Concerning the previous two facts, one can complain that the equivalences considered
are ad hoc. We now provide an example (taken from (Beauxis, Palamidessi & Valencia
2008)) where the equivalences are the most widely accepted ones for the formalisms
considered, viz. language equivalence for both Turing machines and finite automata.

Fact 3. Let TM and FA denote the sets of Turing machines and of finite automata. Let
TM = (TM, 7�!TM,'TM) and FA = (FA, 7�!FA,'FA) be defined with their standard
operational semantics (viz., 7�!TM and 7�!FA) and language equivalence (viz., 'TM and
'FA). Then, there exists a fully abstract encoding [[·]] : TM ! FA.

Proof. Consider an enumeration of Turing machines, {Tn}n, and an enumeration of
minimal finite automata, {An}n. Consider the following encoding of Turing machines
into (minimal) finite automata:

[[Tm]] = [[Tk]] if k < m and Tk 'TM Tm

[[Tm]] = An otherwise

False Positives

Full Abstraction for Expressiveness: History, Myths and Facts 7

target, where an easier-to-handle equivalence is developed. Something similar happens in
the higher-order ⇡-calculus, a variant of the ⇡-calculus where also processes (and not only
names) can be passed in a communication. In (Sangiorgi 2001), it is proved that higher-
order communications can be encoded into first-order ones in a fully abstract way; this
fact can be used to simplify the way in which equivalences are proved in the higher-order
setting.

4. False Positives

We now show that there are ‘bad’ encodings that nevertheless satisfy full abstraction.
This fact shows that such a property is not that demanding as it is sometimes believed.
For the following two observations, let S and T be arbitrary sets (of terms).

Fact 1. Let [[·]] : S ! T be abitrary.
Let S = (S, 7�!S,Ker([[·]])) for arbitrary 7�!S.
Let T = (T , 7�!T, Id) for arbitrary 7�!T.
Then, [[·]] : S ! T is fully abstract.

Proof. By definition, (S1, S2) 2 Ker([[·]]) i↵ [[S1]]=[[S2]], i.e. ([[S1]], [[S2]]) 2 Id.

Fact 2. Let [[·]] : S ! T with [[S]] = T , for all S 2 S and some T 2 T .
Let S = (S, 7�!S,S ⇥ S) for arbitrary 7�!S.
Let T = (T , 7�!T,'T) for arbitrary 7�!T and 'T.
Then, [[·]] : S ! T is fully abstract.

Proof. (Case “)”): For every S1 'S S2, it holds that [[S]]1 'T [[S2]]: indeed, [[S1]] =
T = [[S2]] and the implication holds because of reflexivity of 'T. (Case “(”): For every
S1 and S2 such that [[S1]] 'T [[S2]], it holds that S1 'S S2: indeed, 'S is the total
relation on S and hence it relates every pair of source terms.

Concerning the previous two facts, one can complain that the equivalences considered
are ad hoc. We now provide an example (taken from (Beauxis, Palamidessi & Valencia
2008)) where the equivalences are the most widely accepted ones for the formalisms
considered, viz. language equivalence for both Turing machines and finite automata.

Fact 3. Let TM and FA denote the sets of Turing machines and of finite automata. Let
TM = (TM, 7�!TM,'TM) and FA = (FA, 7�!FA,'FA) be defined with their standard
operational semantics (viz., 7�!TM and 7�!FA) and language equivalence (viz., 'TM and
'FA). Then, there exists a fully abstract encoding [[·]] : TM ! FA.

Proof. Consider an enumeration of Turing machines, {Tn}n, and an enumeration of
minimal finite automata, {An}n. Consider the following encoding of Turing machines
into (minimal) finite automata:

[[Tm]] = [[Tk]] if k < m and Tk 'TM Tm

[[Tm]] = An otherwise

Full Abstraction for Expressiveness: History, Myths and Facts 7

target, where an easier-to-handle equivalence is developed. Something similar happens in
the higher-order ⇡-calculus, a variant of the ⇡-calculus where also processes (and not only
names) can be passed in a communication. In (Sangiorgi 2001), it is proved that higher-
order communications can be encoded into first-order ones in a fully abstract way; this
fact can be used to simplify the way in which equivalences are proved in the higher-order
setting.

4. False Positives

We now show that there are ‘bad’ encodings that nevertheless satisfy full abstraction.
This fact shows that such a property is not that demanding as it is sometimes believed.
For the following two observations, let S and T be arbitrary sets (of terms).

Fact 1. Let [[·]] : S ! T be abitrary.
Let S = (S, 7�!S,Ker([[·]])) for arbitrary 7�!S.
Let T = (T , 7�!T, Id) for arbitrary 7�!T.
Then, [[·]] : S ! T is fully abstract.

Proof. By definition, (S1, S2) 2 Ker([[·]]) i↵ [[S1]]=[[S2]], i.e. ([[S1]], [[S2]]) 2 Id.

Fact 2. Let [[·]] : S ! T with [[S]] = T , for all S 2 S and some T 2 T .
Let S = (S, 7�!S,S ⇥ S) for arbitrary 7�!S.
Let T = (T , 7�!T,'T) for arbitrary 7�!T and 'T.
Then, [[·]] : S ! T is fully abstract.

Proof. (Case “)”): For every S1 'S S2, it holds that [[S]]1 'T [[S2]]: indeed, [[S1]] =
T = [[S2]] and the implication holds because of reflexivity of 'T. (Case “(”): For every
S1 and S2 such that [[S1]] 'T [[S2]], it holds that S1 'S S2: indeed, 'S is the total
relation on S and hence it relates every pair of source terms.

Concerning the previous two facts, one can complain that the equivalences considered
are ad hoc. We now provide an example (taken from (Beauxis, Palamidessi & Valencia
2008)) where the equivalences are the most widely accepted ones for the formalisms
considered, viz. language equivalence for both Turing machines and finite automata.

Fact 3. Let TM and FA denote the sets of Turing machines and of finite automata. Let
TM = (TM, 7�!TM,'TM) and FA = (FA, 7�!FA,'FA) be defined with their standard
operational semantics (viz., 7�!TM and 7�!FA) and language equivalence (viz., 'TM and
'FA). Then, there exists a fully abstract encoding [[·]] : TM ! FA.

Proof. Consider an enumeration of Turing machines, {Tn}n, and an enumeration of
minimal finite automata, {An}n. Consider the following encoding of Turing machines
into (minimal) finite automata:

[[Tm]] = [[Tk]] if k < m and Tk 'TM Tm

[[Tm]] = An otherwise

False Positives

Full Abstraction for Expressiveness: History, Myths and Facts 7

target, where an easier-to-handle equivalence is developed. Something similar happens in
the higher-order ⇡-calculus, a variant of the ⇡-calculus where also processes (and not only
names) can be passed in a communication. In (Sangiorgi 2001), it is proved that higher-
order communications can be encoded into first-order ones in a fully abstract way; this
fact can be used to simplify the way in which equivalences are proved in the higher-order
setting.

4. False Positives

We now show that there are ‘bad’ encodings that nevertheless satisfy full abstraction.
This fact shows that such a property is not that demanding as it is sometimes believed.
For the following two observations, let S and T be arbitrary sets (of terms).

Fact 1. Let [[·]] : S ! T be abitrary.
Let S = (S, 7�!S,Ker([[·]])) for arbitrary 7�!S.
Let T = (T , 7�!T, Id) for arbitrary 7�!T.
Then, [[·]] : S ! T is fully abstract.

Proof. By definition, (S1, S2) 2 Ker([[·]]) i↵ [[S1]]=[[S2]], i.e. ([[S1]], [[S2]]) 2 Id.

Fact 2. Let [[·]] : S ! T with [[S]] = T , for all S 2 S and some T 2 T .
Let S = (S, 7�!S,S ⇥ S) for arbitrary 7�!S.
Let T = (T , 7�!T,'T) for arbitrary 7�!T and 'T.
Then, [[·]] : S ! T is fully abstract.

Proof. (Case “)”): For every S1 'S S2, it holds that [[S]]1 'T [[S2]]: indeed, [[S1]] =
T = [[S2]] and the implication holds because of reflexivity of 'T. (Case “(”): For every
S1 and S2 such that [[S1]] 'T [[S2]], it holds that S1 'S S2: indeed, 'S is the total
relation on S and hence it relates every pair of source terms.

Concerning the previous two facts, one can complain that the equivalences considered
are ad hoc. We now provide an example (taken from (Beauxis, Palamidessi & Valencia
2008)) where the equivalences are the most widely accepted ones for the formalisms
considered, viz. language equivalence for both Turing machines and finite automata.

Fact 3. Let TM and FA denote the sets of Turing machines and of finite automata. Let
TM = (TM, 7�!TM,'TM) and FA = (FA, 7�!FA,'FA) be defined with their standard
operational semantics (viz., 7�!TM and 7�!FA) and language equivalence (viz., 'TM and
'FA). Then, there exists a fully abstract encoding [[·]] : TM ! FA.

Proof. Consider an enumeration of Turing machines, {Tn}n, and an enumeration of
minimal finite automata, {An}n. Consider the following encoding of Turing machines
into (minimal) finite automata:

[[Tm]] = [[Tk]] if k < m and Tk 'TM Tm

[[Tm]] = An otherwise

True Positives?

Gorla and Nestmann 8

where n is the minimum number such that An has not been used to encode any Tk,
with k < m. By definition, we have that, for every m and n, Tm 'TM Tn if and only if
[[Tm]] 'FA [[Tn]].

Of course, even if the encoding provided in Fact 3 enjoys full abstraction w.r.t. the
expectable equivalences for the languages studied, this certainly does not prove that finite
automata are as powerful as Turing machines. Obviously, the encoding is non-e↵ective.
This is fine for our purpose, which is simply to show that full abstraction alone, i.e.,
without extra conditions on the encoding, is not a very meaningful notion. It would be
even more interesting to exhibit an e↵ective and fully abstract encoding between some
S and T for which most people would agree that T is strictly less powerful than S.

5. False Negatives? True Positives?

The usefulness and importance of congruences is justified by the fact that equivalent
terms still remain equivalent in any context. Sometimes, a limited form of congruence
su�ces. For example, in process calculi, one is also interested in congruences w.r.t. just
parallel contexts, i.e. in equivalences preserved by contexts of the form “ | P”; such
contexts usually su�ce to model the execution environment of a process. Note that the
limitation of the set of contexts is intrinsic to the considered language.

In this section, however, we use a well-known encoding example to point out a wide-
spread problem of encodings, which are only correct w.r.t. notions of congruence that
limit the set of observing target contexts. In constrast to the above discussion, here the
limitation on the set of contexts is defined by means of the encoding itself.

Consider the encoding by (Milner 1993) that shows how to render the transmission of
two names along a channel by multiple single-name exchanges:

[[ahb, ci.P]] = (⌫ d)ahdi.dhbi.dhci.[[P]]

[[a(x, y).Q]] = a(z).z(x).z(y).[[Q]]

The idea is that ahdi sends the new (secret) channel d along channel a; then, a(z) retrieves
such a message from a and uses it to replace z in the continuation. Then, the simultaneous
transmission of the two names (b and c) is rendered via two single-name transmissions
along the new channel d (we have used just two names for simplicity; the case for n > 2
names is straightforward).

This looks like a rather natural encoding; however, it does not enjoy full abstraction
w.r.t. the most widely-used equivalences for process calculi. For example, we have that
ahb, ci.ahb, ci is equivalent to ahb, ci | ahb, ci, w.r.t. almost every equivalence (actually,
in all the ones that ignore causality). However, their encodings, placed in the context
“� | a(z)” behave di↵erently:

[[ahb, ci.ahb, ci]] | a(z) 7�! (⌫ d)dhbi.dhci.[[ahb, ci]] (4)

and the latter term is usually equivalent to a dead process. On the contrary,

[[ahb, ci | ahb, ci]] | a(z) 7�! (⌫ d)dhbi.dhci | [[ahb, ci]]

perfectly fine encoding, but not fully abstract

can be made fully abstract
by cheating on

the considered target contexts

True Negatives?

Full Abstraction for Expressiveness: History, Myths and Facts 9

and the latter term is usually equivalent to [[ahb, ci]], that is not dead.

Here the problem is that the context “� | a(z)” does not respect the protocol put
forward by the encoding; in particular, it does not retrieve the two names coming along
the received channel d. This fact blocks [[ahb, ci]] in (4).

Thus, the polyadic ⇡-calculus can be encoded in the monadic one, but this encoding is
not fully abstract. Does this mean that the monadic ⇡-calculus is less expressive than the
polyadic one, or that the encoding provided in loc.cit. is not ‘good’? In the concurrency
community, it is very well accepted that the two formalisms have the same expressive
power and that Milner’s encoding is the most natural and ‘good’ way to pass from one
to the other. Something similar happens in the setting of the asynchronous ⇡-calculus:
it can encode the synchronous one (Boudol 1992, Honda & Tokoro 1991) but such an
encoding is not fully abstract (Quaglia &Walker 2000) and it can be proved (Cacciagrano,
Corradini & Palamidessi 2007) that no fully abstract encoding can exist, if the reference
equivalence is must testing (De Nicola & Hennessy 1984).

So, are these examples “false negatives” of full abstraction?

There are two possible ways to solve this kind of problems: declare the encoding fully
abstract either w.r.t. encoded contexts (i.e., the target equivalence is closed only un-
der context that arise from the translation of a source context) or w.r.t. some typed
equivalence (that only considers contexts that respect the protocol put forward by the
encoding). The two solutions are similar in spirit; the first one has been adopted, e.g.,
in (Boreale 1998), whereas the second one in (Yoshida 1996, Quaglia & Walker 2005). In
both cases, however, the target equivalences are quite weak and the use of target tools
is not applicable.

So, are these examples “true positives” of full abstraction? Supporting this interpre-
tation, Parrow (Parrow 2008) introduced the term weak full abstraction to describe this
relaxation.

6. False Negatives? True Negatives?

We describe some intuitively ‘good’ encodings and show that they do not enjoy full
abstraction when accompanied by the “wrong” equivalences. Consider the two versions
of CCS presented in Section 2.2. It is well-known (Milner 1980) that weak bisimilarity
in CCS is not a full congruence; in particular, it is not closed under non-deterministic
choice. Let ⇡� be the largest congruence contained in ⇡. By contrast, ⇡ is a congruence
in CCSgc .

Let us now consider:

— L1 = (CCS, 7�!,⇡)

— L2 = (CCS, 7�!,⇡

�)

— L3 = (CCSgc , 7�!,⇡)

Fact 4. The embedding encoding of L3 into L2 does not preserve equivalences.

Proof. The two CCSgc-processes a.0 and ⌧.a.0 are '3-equivalent but their encodings

Full Abstraction for Expressiveness: History, Myths and Facts 9

and the latter term is usually equivalent to [[ahb, ci]], that is not dead.

Here the problem is that the context “� | a(z)” does not respect the protocol put
forward by the encoding; in particular, it does not retrieve the two names coming along
the received channel d. This fact blocks [[ahb, ci]] in (4).

Thus, the polyadic ⇡-calculus can be encoded in the monadic one, but this encoding is
not fully abstract. Does this mean that the monadic ⇡-calculus is less expressive than the
polyadic one, or that the encoding provided in loc.cit. is not ‘good’? In the concurrency
community, it is very well accepted that the two formalisms have the same expressive
power and that Milner’s encoding is the most natural and ‘good’ way to pass from one
to the other. Something similar happens in the setting of the asynchronous ⇡-calculus:
it can encode the synchronous one (Boudol 1992, Honda & Tokoro 1991) but such an
encoding is not fully abstract (Quaglia &Walker 2000) and it can be proved (Cacciagrano,
Corradini & Palamidessi 2007) that no fully abstract encoding can exist, if the reference
equivalence is must testing (De Nicola & Hennessy 1984).

So, are these examples “false negatives” of full abstraction?

There are two possible ways to solve this kind of problems: declare the encoding fully
abstract either w.r.t. encoded contexts (i.e., the target equivalence is closed only un-
der context that arise from the translation of a source context) or w.r.t. some typed
equivalence (that only considers contexts that respect the protocol put forward by the
encoding). The two solutions are similar in spirit; the first one has been adopted, e.g.,
in (Boreale 1998), whereas the second one in (Yoshida 1996, Quaglia & Walker 2005). In
both cases, however, the target equivalences are quite weak and the use of target tools
is not applicable.

So, are these examples “true positives” of full abstraction? Supporting this interpre-
tation, Parrow (Parrow 2008) introduced the term weak full abstraction to describe this
relaxation.

6. False Negatives? True Negatives?

We describe some intuitively ‘good’ encodings and show that they do not enjoy full
abstraction when accompanied by the “wrong” equivalences. Consider the two versions
of CCS presented in Section 2.2. It is well-known (Milner 1980) that weak bisimilarity
in CCS is not a full congruence; in particular, it is not closed under non-deterministic
choice. Let ⇡� be the largest congruence contained in ⇡. By contrast, ⇡ is a congruence
in CCSgc .

Let us now consider:

— L1 = (CCS, 7�!,⇡)

— L2 = (CCS, 7�!,⇡

�)

— L3 = (CCSgc , 7�!,⇡)

Fact 4. The embedding encoding of L3 into L2 does not preserve equivalences.

Proof. The two CCSgc-processes a.0 and ⌧.a.0 are '3-equivalent but their encodings

Gorla and Nestmann 10

(i.e., themselves) are not'2-equivalent. Indeed, it su�ces to take the CCS-context + b.0

to distinguish them.‡

Fact 5. The identity encoding of L2 into L1 does not reflect equivalences.

Proof. Consider again the two CCS-processes a.0 and ⌧.a.0: their encodings (i.e., them-
selves) are '1-equivalent but they are not '2-equivalent.

Another remarkable example is in the setting of the ⇡-calculus. Obviously, the asyn-
chronous ⇡-calculus can be rendered in the synchronous one by placing a “.0” after every
output particle. Similarly, it is widely accepted that the natural equivalences for such lan-
guages are the asynchronous weak bisimilarity (⇡a) and the standard weak bisimilarity
(⇡), respectively. Nevertheless, we have the following:

Fact 6. Consider the encoding of the asynchronous ⇡-calculus with ⇡a into the syn-
chronous ⇡-calculus with ⇡ such that

[[ahbi]] = ahbi.0

and homomorphic on all the other operators. Such an encoding does not preserve equiv-
alences.

Proof. Consider P = 0 and Q = a(x).ahxi; it is well-known (Amadio et al. 1998) that
P ⇡a Q, but [[P]] 6⇡ [[Q]].

The above examples highlight the fact that it is naive to expect that an embedding that
keeps source terms (almost) identical, will result in a positive full abstraction result. Both
preservation and reflection properties may be easily violated. The chosen equivalences are
crucial, and even the choice of the “natural” equivalence for a calculus can be harmful
for naive encodings. Referring to the title of this section, the above results are “false
negatives” when naively just focusing on the translation function, and they are “true
negatives” when taking the contextual di↵erences of the two calculi—be it the di↵erent
availablilty of contexts or the di↵erent granularity of the equivalences—into account.

7. On Changing Equivalences

In this section, we generalize the observations of the previous section by analyzing the
e↵ect of varying the involved equivalences at the source and target level. The common
understanding of full abstraction is that it exactly preserves and reflects equivalences
of the source and of the target language. So, it states an exact correspondence of the
equivalences of the source and the target. For this reason, it should be expectable that, by
changing only one of the equivalences involved, the full abstraction result will be broken.
Actually, this is the case only in some circumstances.

‡ Of course, this is not a valid CCSgc-context: indeed, if we replace the hole with a process like P1 |P2,
we would obtain (P1 |P2) + b.0, that is not a valid CCSgc process (the choice does not involve only

prefixed processes). Thus, such a context cannot be used in the source language, where the considered

processes are equivalent.

True Negatives?

Gorla and Nestmann 10

(i.e., themselves) are not'2-equivalent. Indeed, it su�ces to take the CCS-context + b.0

to distinguish them.‡

Fact 5. The identity encoding of L2 into L1 does not reflect equivalences.

Proof. Consider again the two CCS-processes a.0 and ⌧.a.0: their encodings (i.e., them-
selves) are '1-equivalent but they are not '2-equivalent.

Another remarkable example is in the setting of the ⇡-calculus. Obviously, the asyn-
chronous ⇡-calculus can be rendered in the synchronous one by placing a “.0” after every
output particle. Similarly, it is widely accepted that the natural equivalences for such lan-
guages are the asynchronous weak bisimilarity (⇡a) and the standard weak bisimilarity
(⇡), respectively. Nevertheless, we have the following:

Fact 6. Consider the encoding of the asynchronous ⇡-calculus with ⇡a into the syn-
chronous ⇡-calculus with ⇡ such that

[[ahbi]] = ahbi.0

and homomorphic on all the other operators. Such an encoding does not preserve equiv-
alences.

Proof. Consider P = 0 and Q = a(x).ahxi; it is well-known (Amadio et al. 1998) that
P ⇡a Q, but [[P]] 6⇡ [[Q]].

The above examples highlight the fact that it is naive to expect that an embedding that
keeps source terms (almost) identical, will result in a positive full abstraction result. Both
preservation and reflection properties may be easily violated. The chosen equivalences are
crucial, and even the choice of the “natural” equivalence for a calculus can be harmful
for naive encodings. Referring to the title of this section, the above results are “false
negatives” when naively just focusing on the translation function, and they are “true
negatives” when taking the contextual di↵erences of the two calculi—be it the di↵erent
availablilty of contexts or the di↵erent granularity of the equivalences—into account.

7. On Changing Equivalences

In this section, we generalize the observations of the previous section by analyzing the
e↵ect of varying the involved equivalences at the source and target level. The common
understanding of full abstraction is that it exactly preserves and reflects equivalences
of the source and of the target language. So, it states an exact correspondence of the
equivalences of the source and the target. For this reason, it should be expectable that, by
changing only one of the equivalences involved, the full abstraction result will be broken.
Actually, this is the case only in some circumstances.

‡ Of course, this is not a valid CCSgc-context: indeed, if we replace the hole with a process like P1 |P2,
we would obtain (P1 |P2) + b.0, that is not a valid CCSgc process (the choice does not involve only

prefixed processes). Thus, such a context cannot be used in the source language, where the considered

processes are equivalent.

Changing EquivalencesFull Abstraction for Expressiveness: History, Myths and Facts 11

Source Only

First of all, for a fully abstract encoding, one cannot change only the source equivalence
without breaking full abstraction, be it by weakening or strenghtening of the equivalence.

Fact 7. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract.

1 Let '0
S ⇢ 'S and S0 = (S, 7�!S,'

0
S). Then, the encoding [[·]] : S0

! T is not fully
abstract.

2 Let '0
S � 'S and S0 = (S, 7�!S,'

0
S). Then, the encoding [[·]] : S0

! T is not fully
abstract.

Gorla and Nestmann 12

Proof.

1 If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split. This breaks equiv-

alence reflection.
2 If '0

S � 'S, then at least two di↵erent 'S-equivalence classes have been merged.
This breaks equivalence preservation.

Target Only

By contrast, it is possible to change only the target equivalence without breaking full
abstraction only if the encoding is not surjective (as it is usually the case). For surjective
encodings, a situation similar to Fact 7 holds.

Fact 8. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract and
not surjective. Then, there exists a '

0
T di↵erent from 'T such that [[·]] : S ! T0, for

T0 = (T , 7�!T,'
0
T), is still fully abstract.

Proof. If there are 'T-equivalence classes containing encoded and not encoded terms,
then '

0
T is the relation obtained from 'T by splitting at least one of these classes in

two subclasses: one containing only encoded terms and the other one containing only
non-encoded terms. Otherwise, let T 62 Im([[·]]), let CT the 'T-equivalence class of T
and C another 'T-equivalence class (at least another one exists). Then, '0

T is obtained
by moving T from CT into C.

Both Source and Target

If we are ready to change both the source and the target, it is possible to move from
one equivalence to a stricter/coarser one (both in the source and in the target) with-
out a↵ecting full abstraction. Notice that di↵erent source terms usually have di↵erent
encodings ([[·]] : P1 ! P2 is injective); so the hypothesis in Fact 9 is satisfied in practice.

Fact 9. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract
and injective. Then, for every '

0
S ⇢ 'S, there exists '

0
T ⇢ 'T such that the encoding

[[·]] : S0
! T0 is fully abstract, where S0 = (S, 7�!S,'

0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split into several

'

0
S-classes. We obtain '

0
T by splitting the corresponding classes accordingly. This can

always be done except if we have two di↵erent (but 'S-equivalent) source terms with
the same encoding and we try to separate them. But this is ruled out by the injectivity
of the encoding function.

Fact 10. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract.
Then, for every '

0
S � 'S, there exists '

0
T � 'T such that the encoding [[·]] : S0

! T0

is fully abstract, where S0 = (S, 7�!S,'
0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S � 'S, then at least two 'S-equivalence classes have been merged together

into one '

0
S-class. We obtain '

0
T by merging the corresponding classes accordingly.

Changing Equivalences

Gorla and Nestmann 12

Proof.

1 If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split. This breaks equiv-

alence reflection.
2 If '0

S � 'S, then at least two di↵erent 'S-equivalence classes have been merged.
This breaks equivalence preservation.

Target Only

By contrast, it is possible to change only the target equivalence without breaking full
abstraction only if the encoding is not surjective (as it is usually the case). For surjective
encodings, a situation similar to Fact 7 holds.

Fact 8. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract and
not surjective. Then, there exists a '

0
T di↵erent from 'T such that [[·]] : S ! T0, for

T0 = (T , 7�!T,'
0
T), is still fully abstract.

Proof. If there are 'T-equivalence classes containing encoded and not encoded terms,
then '

0
T is the relation obtained from 'T by splitting at least one of these classes in

two subclasses: one containing only encoded terms and the other one containing only
non-encoded terms. Otherwise, let T 62 Im([[·]]), let CT the 'T-equivalence class of T
and C another 'T-equivalence class (at least another one exists). Then, '0

T is obtained
by moving T from CT into C.

Both Source and Target

If we are ready to change both the source and the target, it is possible to move from
one equivalence to a stricter/coarser one (both in the source and in the target) with-
out a↵ecting full abstraction. Notice that di↵erent source terms usually have di↵erent
encodings ([[·]] : P1 ! P2 is injective); so the hypothesis in Fact 9 is satisfied in practice.

Fact 9. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract
and injective. Then, for every '

0
S ⇢ 'S, there exists '

0
T ⇢ 'T such that the encoding

[[·]] : S0
! T0 is fully abstract, where S0 = (S, 7�!S,'

0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split into several

'

0
S-classes. We obtain '

0
T by splitting the corresponding classes accordingly. This can

always be done except if we have two di↵erent (but 'S-equivalent) source terms with
the same encoding and we try to separate them. But this is ruled out by the injectivity
of the encoding function.

Fact 10. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract.
Then, for every '

0
S � 'S, there exists '

0
T � 'T such that the encoding [[·]] : S0

! T0

is fully abstract, where S0 = (S, 7�!S,'
0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S � 'S, then at least two 'S-equivalence classes have been merged together

into one '

0
S-class. We obtain '

0
T by merging the corresponding classes accordingly.

Gorla and Nestmann 12

Proof.

1 If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split. This breaks equiv-

alence reflection.
2 If '0

S � 'S, then at least two di↵erent 'S-equivalence classes have been merged.
This breaks equivalence preservation.

Target Only

By contrast, it is possible to change only the target equivalence without breaking full
abstraction only if the encoding is not surjective (as it is usually the case). For surjective
encodings, a situation similar to Fact 7 holds.

Fact 8. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract and
not surjective. Then, there exists a '

0
T di↵erent from 'T such that [[·]] : S ! T0, for

T0 = (T , 7�!T,'
0
T), is still fully abstract.

Proof. If there are 'T-equivalence classes containing encoded and not encoded terms,
then '

0
T is the relation obtained from 'T by splitting at least one of these classes in

two subclasses: one containing only encoded terms and the other one containing only
non-encoded terms. Otherwise, let T 62 Im([[·]]), let CT the 'T-equivalence class of T
and C another 'T-equivalence class (at least another one exists). Then, '0

T is obtained
by moving T from CT into C.

Both Source and Target

If we are ready to change both the source and the target, it is possible to move from
one equivalence to a stricter/coarser one (both in the source and in the target) with-
out a↵ecting full abstraction. Notice that di↵erent source terms usually have di↵erent
encodings ([[·]] : P1 ! P2 is injective); so the hypothesis in Fact 9 is satisfied in practice.

Fact 9. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract
and injective. Then, for every '

0
S ⇢ 'S, there exists '

0
T ⇢ 'T such that the encoding

[[·]] : S0
! T0 is fully abstract, where S0 = (S, 7�!S,'

0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split into several

'

0
S-classes. We obtain '

0
T by splitting the corresponding classes accordingly. This can

always be done except if we have two di↵erent (but 'S-equivalent) source terms with
the same encoding and we try to separate them. But this is ruled out by the injectivity
of the encoding function.

Fact 10. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract.
Then, for every '

0
S � 'S, there exists '

0
T � 'T such that the encoding [[·]] : S0

! T0

is fully abstract, where S0 = (S, 7�!S,'
0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S � 'S, then at least two 'S-equivalence classes have been merged together

into one '

0
S-class. We obtain '

0
T by merging the corresponding classes accordingly.

Gorla and Nestmann 12

Proof.

1 If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split. This breaks equiv-

alence reflection.
2 If '0

S � 'S, then at least two di↵erent 'S-equivalence classes have been merged.
This breaks equivalence preservation.

Target Only

By contrast, it is possible to change only the target equivalence without breaking full
abstraction only if the encoding is not surjective (as it is usually the case). For surjective
encodings, a situation similar to Fact 7 holds.

Fact 8. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract and
not surjective. Then, there exists a '

0
T di↵erent from 'T such that [[·]] : S ! T0, for

T0 = (T , 7�!T,'
0
T), is still fully abstract.

Proof. If there are 'T-equivalence classes containing encoded and not encoded terms,
then '

0
T is the relation obtained from 'T by splitting at least one of these classes in

two subclasses: one containing only encoded terms and the other one containing only
non-encoded terms. Otherwise, let T 62 Im([[·]]), let CT the 'T-equivalence class of T
and C another 'T-equivalence class (at least another one exists). Then, '0

T is obtained
by moving T from CT into C.

Both Source and Target

If we are ready to change both the source and the target, it is possible to move from
one equivalence to a stricter/coarser one (both in the source and in the target) with-
out a↵ecting full abstraction. Notice that di↵erent source terms usually have di↵erent
encodings ([[·]] : P1 ! P2 is injective); so the hypothesis in Fact 9 is satisfied in practice.

Fact 9. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract
and injective. Then, for every '

0
S ⇢ 'S, there exists '

0
T ⇢ 'T such that the encoding

[[·]] : S0
! T0 is fully abstract, where S0 = (S, 7�!S,'

0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S ⇢ 'S, then at least one 'S-equivalence class has been split into several

'

0
S-classes. We obtain '

0
T by splitting the corresponding classes accordingly. This can

always be done except if we have two di↵erent (but 'S-equivalent) source terms with
the same encoding and we try to separate them. But this is ruled out by the injectivity
of the encoding function.

Fact 10. Let S = (S, 7�!S,'S), T = (T , 7�!T,'T) and [[·]] : S ! T fully abstract.
Then, for every '

0
S � 'S, there exists '

0
T � 'T such that the encoding [[·]] : S0

! T0

is fully abstract, where S0 = (S, 7�!S,'
0
S) and T0 = (T , 7�!T,'

0
T).

Proof. If '0
S � 'S, then at least two 'S-equivalence classes have been merged together

into one '

0
S-class. We obtain '

0
T by merging the corresponding classes accordingly.

Changing Equivalences

Conclusions ?

Pros & Cons

full abstraction

• may well be informative
to discuss “aspects” of expressive power

• is (alone) useless for separation results ...

