
1 / 19

Deconstructing general references

via game semantics

Andrzej Murawski Nikos Tzevelekos

University of Warwick Queen Mary
University of London

References

2 / 19

let x= ref (0) in x:=2013; !x;;

- : int = 2013

let y= ref(fun n -> n+1);;

val y : (int -> int) ref = {contents = <fun >}

(!y) 2013;;

- : int = 2014

y:= (fun n -> n+2);;

- : unit = ()

(!y) 2013;;

- : int = 2015

Circularity in the store

3 / 19

y := (fun _ -> (!y) 2013);;

- : unit = ()

(!y) 0;;

^CInterrupted.

� Divergence
� Recursion

More on expressivity

4 / 19

� Object-oriented programming
� Aspect-oriented programming

Beyond lexical environment

...

y := <intermediate value/closure >

...

SOMEWHERE ELSE

...

(!y) ...

...

ML-like language with higher-order state

5 / 19

Types

θ ::= unit | int | θ → θ | ref(θ)

Reference constructor

refθ(M)

Creates a fresh memory cell for storage of type θ and initialises it to M .

Expressivity problems

6 / 19

1. When can one replace
refθ

with refθ′ for simpler θ′?

2. When can one eliminate higher-order state, i.e.,

refθ1→θ2
?

3. When can refθ be replaced altogether?

In all cases we would like program behaviour to be preserved.

Solvability

7 / 19

In general the problem cannot be solved: reference names are typed!

ref int refunit→unit ref(int→unit)→int

But it can be attacked in cases when references are used internally,
i.e. they are never communicated to the environment.

Hence, we pose the problem for terms

x1 : θ1, · · · , xn : θn ⊢ M : θ

where θ1, · · · , θn, θ is ref-free.

Answers

8 / 19

1. Can we replace uses of refθ with refθ′ for some simpler θ′?

Single uses of ref int and refunit→unit suffice!

2. When can we eliminate uses of refθ1→θ2
?

We can give a full type-theoretic characterisation.

3. When can refθ be replaced altogether?

We can give a full type-theoretic characterisation.

9 / 19

Two lines of attack

semantic: game semantics

syntactic: program transformation

Game semantics

10 / 19

� Two players: environment (O) and program (P)
� Moves determined by types
� Programs interpreted as strategies

o1 p1 o2 p2 o3 p4

Strategies capture interactions of a program with
environments in which it can be placed.

The relevant game model (LICS’98)

11 / 19

Higher-order state in game semantics

12 / 19

First-order state corresponds to a technical condition called visibility.

Visibility satisfied

o1 p1 o2 p2 o3 p4

Visibility violated

o1 p1 o2 p2 o3 p4

cellu→u

13 / 19

Here is a play from a strategy corresponding to refunit→unit.

• ◦ write ok read ⋆ qr qw

Semantic solution

14 / 19

Strategies can be composed

σ1 : A ⇒ B σ2 : B ⇒ C

σ1;σ2 : A ⇒ C

Theorem

For any strategy σ, there exists a strategy σvisible satisfying the visibility
condition and such that

σ = cellu→u;σvisible.

Syntactic solution

15 / 19

Idea: use bad variables as intermediate objects

M : unit → θ N : θ → unit

mkvar (M,N) : ref(θ)

Theorem

For all θ1, θ2,

refθ1→θ2
∼= let x1, x2, f = refθ1, refθ2, refunit→unit inmkvar (Mr,Mw)

where

Mr ≡ λyunit.leth =!f inλzθ1. (x1 := z; h(); !x2),
Mw ≡ λgθ1→θ2. f := (λzunit. x2 := g(!x1)).

Bad variables can be eliminated

16 / 19

When x1 : θ1, · · · , xn : θn ⊢ M : θ and θ1, · · · , θn, θ are ref-free,
bad variables can be eliminated from the language.

!mkvar (λu.M, λv.N) ∼= letu = () inM

mkvar (λu.M, λv.N):=Q ∼= let v = Q inN

Altogether occurrences of refθ1→θ2
can be successively removed so that

only those of refunit→unit remain. These can subsequently be merged.

A single use of refunit→unit suffices for higher-order state!

When higher-order references are replaceable

17 / 19

Visibility distinguishes between first-order and higher-order state.

What types determine plays in which the visibility condition
holds for free?

· · · , f : int → · · · → int , · · · ⊢ M : int
· · · , f : (int → · · · → int) → int , · · · ⊢ M : int → · · · → int

If a piece of code has a type of the above shape then the same effect can
be achieved without higher-order state!

When all references are replaceable

18 / 19

There is another technical condition called innocence (Hyland, Ong,
Nickau) that corresponds to the absence of state.

· · · , f : int → · · · → int , · · · ⊢ M : int

Programs of the above type can be written without using state
(purely functional).

Conclusions

19 / 19

� refunit→unit is very expressive.

� Focus on simple higher-order types will not lead to decidability.

Ideas for future work

� Consider weakened references, e.g. without cycles in the store.

� Can anything be done in presence of reference types?

	References
	Circularity in the store
	More on expressivity
	ML-like language with higher-order state
	Expressivity problems
	Solvability
	Answers
	
	Game semantics
	The relevant game model (LICS'98)
	Higher-order state in game semantics
	 celluu
	Semantic solution
	Syntactic solution
	Bad variables can be eliminated
	When higher-order references are replaceable
	When all references are replaceable
	Conclusions

