Deconstructing general references
via game semantics

Andrzej Murawski Nikos Tzevelekos

University of Warwick Queen Mary
University of London

1/19

References

let x=
- : 1nt

ref (0) in x:=2013; !x;;
2013

let y= ref(fun n -> n+l1);;

val vy

(

int -> int) ref = {contents =

(ly) 2013;;

- : 1int

2014

y:= (fun n -> n+2);;

- : unit

= O

(1y) 2013;;

- : 1nt

2015

<fun>}

2 /19

Circularity in the store

y := (fun _ -> (l'y) 2013);;
- : unit = ()

(ly) 0;;

"CInterrupted.

0 Divergence
1 Recursion

3/19

More on expressivity

0 Object-oriented programming
[0 Aspect-oriented programming

Beyond lexical environment

y := <intermediate value/closure>

SOMEWHERE ELSE

(ly)

4 /19

ML-like language with higher-order state

Types

0 = unit | int | 00— 6 | ref (6)

Reference constructor

I’efg (M)

Creates a fresh memory cell for storage of type 6 and initialises it to M.

5 /19

Expressivity problems

-

3.

When can one replace
FEfg

with refy for simpler 8’7

When can one eliminate higher-order state, i.e.,

ref91_+92?

When can ref, be replaced altogether?

In all cases we would like program behaviour to be preserved.

6 /19

Solvability

In general the problem cannot be solved: reference names are typed!

refint re]cunit—>unit ref(int—)unit)—)int

But it can be attacked in cases when references are used internally,
l.e. they are never communicated to the environment.

Hence, we pose the problem for terms

:L'l:@l,---,xnzﬁn = M : 6

where 61,--- ,0,,0 is ref-free.

7/ 19

Answers

4 N

1. Can we replace uses of refy with refy for some simpler 6’7

Single uses of ref;,; and ref,;;—unit Suffice!

2. When can we eliminate uses of refy, 4,7

We can give a full type-theoretic characterisation.

3. When can refy be replaced altogether?

We can give a full type-theoretic characterisation.

8 /19

Two lines of attack

semantic: game semantics

syntactic: program transformation

9 /19

Game semantics

0 Two players: environment (O) and program (P)
0 Moves determined by types
0 Programs interpreted as strategies

TN N

01 P1 09 P2 03 P4

Strategies capture interactions of a program with
environments in which it can be placed.

10 / 19

The relevant game model (LICS’98)

A fully abstract game semantics for general references

Samson Abramsky Kohei Honda Guy McCusker
LFCS, University of Edinburgh St John’s College, Oxford
{samson, kohei}@dcs.ed.ac.uk mccusker@comlab.ox.ac.uk
Abstract

A games model of a programming language with higher-order store in the style of ML-references is introduced. The category
used for the model is obtained by relaxing certain behavioural conditions on a category of games previously used to provide
fully abstract models of pure functional languages. The model is shown to be fully abstract by means of factorization
arguments which reduce the question of definability for the language with higher-order store to that for its purely functional

fragment.

11 / 19

Higher-order state in game semantics

First-order state corresponds to a technical condition called visibility.

Visibility satisfied

/‘\m/‘\

01 P1 02 P2 03 P4

Visibility violated

AN N

01 P1 02 P2 03 P4

12 / 19

Here is a play from a strategy corresponding to ref nit—unit-

° o write ok read * dr Quw

13 / 19

Semantic solution

Strategies can be composed

o,: A= B o9 : B=C

01,09 : A=C

Theorem

For any strategy o, there exists a strategy oyisibie Satisfying the visibility
condition and such that

0 = Ce”u—)u; O visible -

14 / 19

Syntactic solution

Idea: use bad variables as intermediate objects

M :unit — 6 N : 0 — unit
mkvar (M, N) : ref(0)

Theorem
For all 91, @2,
refo, o, = letxy, xo, f = refy,, refy,, refunic—unit in mkvar (M,., M,,)

where

)\yunit.|eth =!fin A0 (xl = h(); !$2)a
AgP170 f o= (A 3y = g(lay)).

=
1l

15 / 19

Bad variables can be eliminated

When z; : 04,--- ,x,:0, - M :0 and 64,--- ,0,,0 are ref-free,
bad variables can be eliminated from the language.

Imkvar (Au.M, \v.N) = letu=()inM

mkvar (Au.M, \v.N):=Q = letv=QinN

Altogether occurrences of refy, .4, can be successively removed so that
only those of ref,it—unit remain. These can subsequently be merged.

A single use of ref,,;:—unit Suffices for higher-order state!

16 / 19

When higher-order references are replaceable

Visibility distinguishes between first-order and higher-order state.

What types determine plays in which the visibility condition
holds for free?

-y, f:iint—---—=int ,--- F M:int
., f:(int—---—=int) —»int ,--- F M:int—--- —int

If a piece of code has a type of the above shape then the same effect can
be achieved without higher-order state!

17 / 19

When all references are replaceable

There is another technical condition called innocence (Hyland, Ong,
Nickau) that corresponds to the absence of state.

f:int— .-+ —int oo+ = M :int

Programs of the above type can be written without using state
(purely functional).

18 / 19

Conclusions

O refunit—unit 1S VEry expressive.

[0 Focus on simple higher-order types will not lead to decidability.

Ideas for future work

0 Consider weakened references, e.g. without cycles in the store.

0 Can anything be done in presence of reference types?

19 / 19

	References
	Circularity in the store
	More on expressivity
	ML-like language with higher-order state
	Expressivity problems
	Solvability
	Answers
	
	Game semantics
	The relevant game model (LICS'98)
	Higher-order state in game semantics
	 celluu
	Semantic solution
	Syntactic solution
	Bad variables can be eliminated
	When higher-order references are replaceable
	When all references are replaceable
	Conclusions

