
Editor support for
formal specifications

(incl. component-based semantics)

Peter D Mosses, Swansea University

IFIP WG 2.2 Meeting, 25 September 2013, Lisbon

1

reusable

PLANCOMPS

C# Java …

…

 fundamental constructs
‘funcons’

translation

Programming
Languages

Components
 and their
Specifications

(incl. DSLs)

2

Component-based specifications
Syntax (concrete, abstract)

‣ BNF + regular expressions

Semantics (static, dynamic)

‣ context-free translation to funcons

Funcons

‣ Modular SOS rules

‣ modular bisimilarity theory

3

Preliminary tool support
Editing language specifications :

‣ Spoofax/Eclipse

Parsing, translation to funcons :

‣ ASF+SDF (migrating to Spoofax)

Funcon interpretation :

‣ Prolog (rules transformed to big-step)

4

Spoofax
– an editor generator –

5

 The Spoofax Language Workbench
Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats
Delft University of Technology

l.c.l.kats@tudelft.nl

Eelco Visser
Delft University of Technology

visser@acm.org

Abstract
Spoofax is a language workbench for efficient, agile devel-
opment of textual domain-specific languages with state-of-
the-art IDE support. Spoofax integrates language processing
techniques for parser generation, meta-programming, and
IDE development into a single environment. It uses concise,
declarative specifications for languages and IDE services. In
this paper we describe the architecture of Spoofax and in-
troduce idioms for high-level specifications of language se-
mantics using rewrite rules, showing how analyses can be
reused for transformations, code generation, and editor ser-
vices such as error marking, reference resolving, and content
completion. The implementation of these services is sup-
ported by language-parametric editor service classes that can
be dynamically loaded by the Eclipse IDE, allowing new
languages to be developed and used side-by-side in the same
Eclipse environment.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.6 [Software
Engineering]: Programming Environments

General Terms Languages

1. Introduction
Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain [38, 47].
They provide linguistic abstractions over common tasks
within a domain, so that developers can concentrate on ap-
plication logic rather than the accidental complexity of low-
level implementation details. DSLs have a concise, domain-
specific notation for common tasks in a domain, and al-
low reasoning at the level of these constructs. This allows
them to be used for automated, domain-specific analysis,
verification, optimization, parallelization, and transforma-
tion (AVOPT) [38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c� 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

For developers to be productive with DSLs, good in-
tegrated development environments (IDEs) for these lan-
guages are essential. Over the past four decades, IDEs have
slowly risen from novelty tool status to becoming a funda-
mental part of software engineering. In early 2001, IntelliJ
IDEA [42] revolutionized the IDE landscape [17] with an
IDE for the Java language that parsed files as they were typed
(with error recovery in case of syntax errors), performed se-
mantic analysis in the background, and provided code nav-
igation with a live view of the program outline, references
to declarations of identifiers, content completion proposals
as programmers were typing, and the ability to transform
the program based on the abstract representation (refactor-
ings). The now prominent Eclipse platform, and soon af-
ter, Visual Studio, quickly adopted these same features. No
longer would programmers be satisfied with code editors
that provided basic syntax highlighting and a “build” button.
For new languages to become a success, state-of-the-art IDE
support is now mandatory. For the production of DSLs this
requirement is a particular problem, since these languages
are often developed with much fewer resources than general
purpose languages.

There are five key ingredients for the construction of a
new domain-specific language. (1) A parser for the syntax
of the language. (2) Semantic analysis to validate DSL pro-
grams according to some set of constraints. (3) Transfor-
mations manipulate DSL programs and can convert a high-
level, technology-independent DSL specification to a lower-
level program. (4) A code generator that emits executable
code. (5) Integration of the language into an IDE.

Traditionally, a lot of effort was required for each of these
ingredients. However, there are now many tools that support
the various aspects of DSL development. Parser generators
can automatically create a parsers from a grammar. Mod-
ern parser generators can construct efficient parsers that can
be used in an interactive environment, supporting error re-
covery in case of syntax-incorrect or incomplete programs.
Meta-programming languages [3, 10, 12, 20, 35] and frame-
works [39, 57] make it much easier to specify the semantics
of a language. Tools and frameworks for IDE development
such as IMP [7, 8] and TMF [56], simplify the implemen-
tation of IDE services. Other tools, such as the Synthesizer

444

OOPSLA/SPLASH 2010

Spoofax is a language workbench for efficient,
agile development of textual domain-specific
languages with state-of-the-art IDE support.

Spoofax integrates language processing techniques
for parser generation, meta-programming, and IDE
development into a single environment. It uses
concise, declarative specifications for languages
and IDE services.

6

The Spoofax Name Binding Language

Gabriël D. P. Konat, Vlad A. Vergu, Lennart C. L. Kats, Guido H. Wachsmuth, Eelco Visser
Delft University of Technology, The Netherlands

g.d.p.konat@student.tudelft.nl, {v.a.vergu, l.c.l.kats, g.h.wachsmuth, e.visser}@tudelft.nl

Abstract

In textual software languages, names are used to identify
program elements such as variables, methods, and classes.
Name analysis algorithms resolve names in order to estab-
lish references between definitions and uses of names. In
this poster, we present the Spoofax Name Binding Language
(NBL), a declarative meta-language for the specification of
name binding and scope rules, which departs from the pro-
grammatic encodings of name binding provided by regular
approaches. NBL aspires to become the universal language
for name binding, which can be used next to BNF defini-
tions in reference manuals, as well as serve the generation of
implementations.

Categories and Subject Descriptors D.2.1 [Requirements-
/Specifications]: Languages; D.3.2 [Language Classifica-
tions]: Very high-level languages

Keywords name binding, name resolution, declarative,
meta-language, Spoofax

1. Introduction

Name binding is concerned with the relation between def-
initions and references through identifiers in textual soft-
ware languages, including scope rules that govern these rela-
tions. Classical approaches to name binding provide defini-
tions in terms of programmatic encodings that carry environ-
ments through tree traversals. Attempts at abstractions such
as attribute grammars (3; 4) or dynamic rewrite rules (2) re-
duce the overhead of such programmatic encodings, but are
still algorithmic in nature. Our goal is a declarative domain-
specific language for name binding that can be used to ex-
plain the binding rules of a language and and from which an
efficient name resolution algorithm can be automatically de-
rived, much like grammar formalisms (EBNF) abstract from
the programmatic encoding of parsers.

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

In this poster, we present the Spoofax Name Binding Lan-
guage (NBL) (6), a declarative meta-language for the spec-
ification of name binding in terms of namespaces, defini-
tions, references, scopes, and imports. From definitions in
NBL, a compiler generates a language-specific name res-
olution strategy in the Stratego rewriting language (1) by
parametrizing an underlying generic, language independent
strategy. Name resolution results in a persistent symbol ta-
ble for use by semantic editor services such as reference res-
olution, consistency checking of definitions, type checking,
refactoring, and code generation. NBL is integrated in the
Spoofax Language Workbench (5), but should be reusable
in other language processing environments.

2. Name Binding and Scope Rules

We discuss the core concepts of NBL and illustrate their
usage for a subset of C#.

Definitions and References The essence of name binding
is establishing relations between a definition that binds a
name and a reference that uses that name. Each class in a
C# program defines the name of a class. Figure 1 defines the
classes Env, Expr, BinOp, Plus and Let. Base class declara-
tions are references to class definitions. For example, class
Plus has a reference to its base class BinOp.

An NBL specification consists of a collection of rules of
the form pattern : clause⇤, where pattern is an abstract
tree (term) pattern and clause⇤ is a list of name binding
declarations about the language construct that matches with
pattern. Figure 2 shows the NBL specification for name
analysis of the C# subset. The first rule declares that a node
matching the pattern Class(x, ,) defines a class with name
x. The second rule declares that the term pattern Base(x)

is a reference to a class with name x. Thus, : BinOp is a
reference to class BinOp.

Namespaces Definitions and references declare relations
between named program elements and their uses. Languages
typically distinguish several namespaces, i.e. different kinds
of names, such that an occurrence of a name in one names-
pace is not related to an occurrence of that same name in an-
other. The Let class in the example has a method and a field
with name eval; methods and fields have their own names-
pace in our C# subset.

79

SPLASH 2012

In this poster, we present the Spoofax Name Binding
Language (NBL), a declarative meta-language for the
specification of name binding and scope rules […].

NBL aspires to become the universal language for
name binding, which can be used next to BNF
definitions in reference manuals, as well as serve the
generation of implementations.

7

 Declarative Name Binding and Scope Rules

Gabriël Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser

Delft University of Technology, The Netherlands
g.d.p.konat@student.tudelft.nl,

{l.c.l.kats,g.h.wachsmuth,e.visser}@tudelft.nl

Abstract. In textual software languages, names are used to reference
elements like variables, methods, classes, etc. Name resolution analyses
these names in order to establish references between definition and use
sites of elements. In this paper, we identify recurring patterns for name
bindings in programming languages and introduce a declarative meta-
language for the specification of name bindings in terms of namespaces,
definition sites, use sites, and scopes. Based on such declarative name
binding specifications, we provide a language-parametric algorithm for
static name resolution during compile-time. We discuss the integration
of the algorithm into the Spoofax Language Workbench and show how
its results can be employed in semantic editor services like reference res-
olution, constraint checking, and content completion.

1 Introduction

Software language engineering is concerned with linguistic abstraction, the for-
malization of our understanding of domains of computation in higher-level soft-
ware languages. Such languages allow direct expression in terms of the domain,
instead of requiring encoding in a less specific language. They raise the level of
abstraction and reduce accidental complexity. One of the key goals in the field
of language engineering is to apply these techniques to the discipline itself: high-
level languages to specify all aspects of software languages. Declarative languages
are of particular interest since they enable language engineers to focus on the
What? instead of the How?. Syntax definitions are a prominent example. With
declarative formalisms such as EBNF, we can specify the syntactic concepts of a
language without specifying how they can be recognized programmatically. This
declarativity is crucial for language engineering. Losing it hampers evolution,
maintainability, and compositionality of syntax definitions [15].

Despite the success of declarative syntax formalisms, we tend to program-
matic specifications for other language aspects. Instead of specifying languages,
we build programmatic language processors, following implementation patterns
in rather general specification languages. These languages might still be con-
sidered domain-specific, when they provide special means for programmatic lan-
guage processors. They also might be considered declarative, when they abstract
over computation order. However, they enable us only to implement language

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 311–331, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SLE 2012

[…] we identify recurring patterns for
name bindings in programming languages
and introduce a declarative meta-language
for the specification of name bindings in
terms of namespaces, definition sites, use
sites, and scopes

8

Demo

9

reusable

PLANCOMPS
Programming
Languages

Components
 and their
Specifications

C# Java …

…

 fundamental constructs
‘funcons’

translation
(incl. DSLs)

10

