
Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Specification Languages and Applications to
the Verification of Graph Transformation Systems

Barbara König

Universität Duisburg-Essen, Germany

Joint work with Christoph Blume, Sander Bruggink,
Raphaël Cauderlier, Mathias Hülsbusch

Barbara König Graph Specification Languages and Verification of GTSs 1

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Overview

1 Motivation

2 Graph Specification Languages

3 Logics vs. Automata

4 A Cospan-based View: Conditions & Graph Automata

5 Verification of Graph Transformation Systems

6 Conclusion

Barbara König Graph Specification Languages and Verification of GTSs 2

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Dynamic Systems

Systems with a dynamic topology

Heap, consisting of graph-like pointer structures

NULL

Object-oriented systems

Network protocols
↔

Mobile systems

Process mobility
Ubiquitous computing

Barbara König Graph Specification Languages and Verification of GTSs 3

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Problems with Analysis und Verification

Problems

Infinite state space

Dynamic creation and deletion of objects

Mobility

Variable topology

; suitable analysis and verification techniques are needed

; we focus on a simple, but expressive modelling language which
can naturally describe dynamic systems: graph transformation
systems

Barbara König Graph Specification Languages and Verification of GTSs 4

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Transformation Systems (GTS)

System state specified by edge-labelled directed graphs (in general:
hypergraphs)

C

B

A

B

Dynamics: (Initial graph +) transformation rules

RL

L R

1 2

n

...

...

1 2

n

...

...

Barbara König Graph Specification Languages and Verification of GTSs 5

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Specification Languages

Specification languages (logics) are needed to describe sets of
graphs.

There are several choices . . .

First-order logics

Monadic second-order logics

Separation logic [O’Hearn]

Various kinds of spatial logics (for instance for process calculi)
[Cardelli]

Recently there has been a renewed interest in studying spatial
logics, in addition to temporal logics

Logics (and related formalisms) are not only needed to specify
properties, but are also used within verification algorithms.

Barbara König Graph Specification Languages and Verification of GTSs 6

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Monadic Second-Order and First-Order Graph Logics

Monadic second-order graph logics may quantify over nodes, edges,
node sets and edge sets.

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | (∃X : V) ϕ | (∃X : E) ϕ | (∃x : v) ϕ | (∃x : e) ϕ |
x = y | x ∈ X | edgeA(x , y1, y2)

Barbara König Graph Specification Languages and Verification of GTSs 7

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Monadic Second-Order and First-Order Graph Logics

First-order graph logics may quantify over nodes, edges, but not
over sets.

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | (∃X : V) ϕ | (∃X : E) ϕ | (∃x : v) ϕ | (∃x : e) ϕ |
x = y | x ∈ X | edgeA(x , y1, y2)

Barbara König Graph Specification Languages and Verification of GTSs 7

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Monadic Second-Order and First-Order Graph Logics

Examples:

First-order:

(∃x : v) (∃y : v) (∃z : e) (edgeA(z , x , y) ∧ x = y)

“There exists an A-labelled loop.”

Second-order:

RC (X : V) = (∀z : e) (∀x : v) (∀y : v) (x ∈ X ∧
edgeA(z , x , y)→ y ∈ X)

“The set of nodes X is closed under reachability over
A-edges.”

APath(x , y : v) = (∀Z : V) (x ∈ Z ∧ RC (Z)→ y ∈ Z)

“There is an A-path from x to y : all sets of nodes Z that
contain x and are closed under reachability contain y .”

Barbara König Graph Specification Languages and Verification of GTSs 8

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Regular Languages and Monadic Second-Order Logic

There is an intimate connection between formal languages of words
and logics.

Theorem [Büchi, Elgot]

A language L ⊆ Σ∗ is regular if and only if it is expressible in
monadic second-order logic on words.

Example:

1 2

a

b

a, cb, c

Σ = {a, b, c}

∀x(Pa(x)→ ∃y(x ≤ y ∧ Pb(y)))

“For every position in the word
with an a, there is a subsequent
position in the word with a b.”

Barbara König Graph Specification Languages and Verification of GTSs 9

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Regular Languages and Monadic Second-Order Logic

Why is this interesting?

Transforming a logical formula into an automaton transforms
a specification into an algorithm (for deciding the membership
problem).

Automata are well-suited for answering the following
questions:

Is the given regular language L empty? (unsatisfiability)
Is L1 included in L2: L1 ⊆ L2? (entailment)
Are L1 and L2 equal: L1 = L2? (equivalence)

Barbara König Graph Specification Languages and Verification of GTSs 10

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Regular Languages and Monadic Second-Order Logic

What about graph logics and graph languages?

There is a notion of recognizable graph languages by Courcelle,
which can either be defined via Myhill-Nerode style equivalences or
via graph automata. More details will follow . . .

Theorem (Courcelle)

Every graph language expressible in monadic second-order graph
logic is recognizable.
(The other direction does not hold.)

Barbara König Graph Specification Languages and Verification of GTSs 11

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Cospans of Graphs

Towards graph automata:

Find appropriate decompositions of graphs in order to process
them with automata.

Split graphs into (atomic) building blocks (cospans).

Atomic cospans play the role of alphabet symbols.

Close relation to tree and path decompositions of graphs
[Robertson, Seymour] [Bodlaender].

Barbara König Graph Specification Languages and Verification of GTSs 12

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Cospans of Graphs

Cospans are graphs with an inner and an outer interface,
composition is performed by gluing over the joint interface.
(Cospan composition is denoted by ;.)

Formally: a cospan consists of three graphs (middle graph, inner
and outer interface) with graph morphisms from the interface into
the middle graph

Barbara König Graph Specification Languages and Verification of GTSs 13

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Cospans of Graphs

Cospans are graphs with an inner and an outer interface,
composition is performed by gluing over the joint interface.
(Cospan composition is denoted by ;.)

Formally: a cospan consists of three graphs (middle graph, inner
and outer interface) with graph morphisms from the interface into
the middle graph

Barbara König Graph Specification Languages and Verification of GTSs 13

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Cospans of Graphs

Cospans are graphs with an inner and an outer interface,
composition is performed by gluing over the joint interface.
(Cospan composition is denoted by ;.)

Formally: a cospan consists of three graphs (middle graph, inner
and outer interface) with graph morphisms from the interface into
the middle graph

Barbara König Graph Specification Languages and Verification of GTSs 13

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Cospans of Graphs

Cospans are graphs with an inner and an outer interface,
composition is performed by gluing over the joint interface.
(Cospan composition is denoted by ;.)

Formally: a cospan consists of three graphs (middle graph, inner
and outer interface) with graph morphisms from the interface into
the middle graph

Barbara König Graph Specification Languages and Verification of GTSs 13

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Cospans of Graphs

Cospans are graphs with an inner and an outer interface,
composition is performed by gluing over the joint interface.
(Cospan composition is denoted by ;.)

Formally: a cospan consists of three graphs (middle graph, inner
and outer interface) with graph morphisms from the interface into
the middle graph

Barbara König Graph Specification Languages and Verification of GTSs 13

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rule `→ r (`: left-hand side, r : right-hand side)

→

Left-hand side and right-hand side are cospans with empty inner
interface

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rewriting: graph with an outer interface (to be rewritten) r

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rewriting: graph decomposed into ` and a context

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rewriting: graph decomposed into ` and a context

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rewriting: replace ` by r

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rewriting: graph decomposed into r and the context

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

A Cospan View of Graph Transformation

Graph transformation (double-pushout rewriting [Ehrig]) can be
defined via cospan compositions.

Rewriting: resulting graph

Barbara König Graph Specification Languages and Verification of GTSs 14

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Automata Based on Cospans

Atomic cospans:

vertexk = resk = transk =

connectk
A = fusek = permk =

A

Barbara König Graph Specification Languages and Verification of GTSs 15

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Automata Based on Cospans

Graph automata [Bruggink, König]:

states are typed by interface
size (nodes only),

transitions are labelled with
atomic cospans (playing the
role of alphabet symbols).

Different decompositions of the same cospan must induce the same
transition function. Only finitely many states for each interface.

Graph automata yield a notion of recognizability equivalent to
Courcelle’s (more expressive than monadic second-order logics).

For practical applications the interface size has to be bounded (=
languages of bounded pathwidth).

Barbara König Graph Specification Languages and Verification of GTSs 16

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Conditions Based on Cospans

Graph condition:

Acyclic finite automaton

Transition labels are
arbitrary cospans (not
necessarily atomic cospans)

Quantifiers on the states (as
in alternating automata
[Chandra, Kozen,
Stockmeyer])

States with universal
quantification and no
outgoing transitions accept
everything (they represent
true)

∀

∀

∀

∀

∃

∃

Barbara König Graph Specification Languages and Verification of GTSs 17

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Conditions Based on Cospans

Expressiveness of Graph Conditions

Under certain conditions (finite set of edge labels) graph conditions
are . . .

equivalent to nested application conditions [Habel,
Pennemann] . . .

and also equivalent to first-order logic (cf. [Rensink])

But: can be more expressive when we generalize to more general
graph-like structures [Bruggink, Cauderlier, Hülsbusch, König]

Barbara König Graph Specification Languages and Verification of GTSs 18

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Comparison of Specification Formalisms

Summary: hierarchy of specification formalisms

Graph conditions on cospans

Monadic second-order logic

Recognizable graph languages

= First-order logic

Barbara König Graph Specification Languages and Verification of GTSs 19

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Graph Conditions Based on Cospans

Graphic notation:

c

A

A represents a property (graph condition, graph language) for
cospans with a fixed inner interface (= type of the initial state
of the automaton)

c |= A says that cospan c satisfies property A

Barbara König Graph Specification Languages and Verification of GTSs 20

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Algorithmic Constructions: Shift, Partial Evaluation

Define: a construction (shift, partial evaluation) on graph
properties that satisfies

c ; d |= A ⇐⇒ d |= A↓c

A A↓c

c d

On graph automata: replace initial states by the states
reachable via c (from the initial state)

On graph conditions: more complex, basically determine all
overlaps between A and c

Such a shift operation is much more difficult to define directly on
the logics.

Barbara König Graph Specification Languages and Verification of GTSs 21

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Invariant Checking

We now look into applications in the area of verification (of graph
transformation systems):

Problem

Check that a rule R = (`→ r) preserves property A. That is given
a graph (seen as a cospan with empty interface) that satisfies A,
we can ensure that it satisfies A after application of rule R.

Solution

Check
A↓` |= A↓r

Read: the contexts in which the left-hand side ` satisfies A are
contained in the contexts in which the right-hand side r satisfies A.

Barbara König Graph Specification Languages and Verification of GTSs 22

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Invariant Checking

Example: Multi-user file system

Forbidden Subgraphs (multiple write access)

u f

w

w

u

f
u

w

w

Show that certain reconfiguration rules preserve the absence of
forbidden subgraphs

u0 f 1

u2 f 3

=⇒
u0 f 1

u3 f 4

w

w

w

w

Barbara König Graph Specification Languages and Verification of GTSs 23

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Strongest Postconditions

Problem

Let R = (`→ r) be a transformation rule.
Compute the strongest postcondition sp(A, R) for A and R
(characterize the set of successors of the graphs specified by A
after application of rule R)

Solution

sp(A, R) = ∃r .(A↓`)

Read: there exists a right-hand side r and a context which –
together with the left-hand ` – satisfies A

Needed: operator ∃r (“there exists a cospans r such that . . . ”)

Barbara König Graph Specification Languages and Verification of GTSs 24

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Strongest Postconditions

Operator ∃r

On graph automata: fairly complex operation

On graph conditions: just introduce a new initial state
(existentially quantified) and add an r -transition to the
previous initial state

Similarly: define weakest precondition using universal quantification

Barbara König Graph Specification Languages and Verification of GTSs 25

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Abstract Interpretation

Problem

Obtain an abstract transition system that simulates the original
transition system. The abstraction can be used to verify safety
properties (such as non-reachability queries).

Solution (initial ideas, work in progress)

Describe abstract states via graph properties

Abstract transitions are obtained by computing strongest
postconditions (cf. materializations in abstract graph
transformation [Rensink] [Sagiv, Reps, Wilhelm])

Abstraction/widening techniques to keep number of abstract
states finite

Counterexample-guided abstraction refinement (CEGAR)

Barbara König Graph Specification Languages and Verification of GTSs 26

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Conclusion

Implementation

Graph automata are huge! (State space explosion when the
permissible interface size is increased)

; use reduction techniques for large state spaces (binary decision
diagrams)

Tool Raven (developed by Christoph Blume at the university of
Duisburg-Essen)

Barbara König Graph Specification Languages and Verification of GTSs 27

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Conclusion

Undecidability issues

The satisfiability (and entailment) problem is undecidable, already
for first-order logic!

Workaround:

Both problems become decidable for monadic second-order
logic if we restrict to graphs of bounded pathwidth (bound
the interface size of atomic cospans) or of bounded treewidth
[Courcelle]

Heuristics for first-order logic [Pennemann]

Barbara König Graph Specification Languages and Verification of GTSs 28

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Conclusion

Categorical foundations

All definitions and constructions can be extended to arbitrary
graph-like structures (adhesive categories).

Related work

Recognizable graph languages [Courcelle]

Nested application conditions in graph rewriting (and rewriting
in adhesive categories) [Habel/Pennemann, Ehrig et al.]

Weakest preconditions and strongest postconditions in
high-level transformation systems [Habel/Pennemann ’09]

First-order graph logic vs. conditions [Rensink ’04]

Barbara König Graph Specification Languages and Verification of GTSs 29

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Blume, C., Bruggink, H. S., Friedrich, M., and König, B.
(2013).
Treewidth, pathwidth and cospan decompositions with
applications to graph-accepting tree automata.
Journal of Visual Languages & Computing, 24(3):192–206.

Blume, C., H. J. S. B., Engelke, D., and König, B. (2012).
Efficient symbolic implementation of graph automata with
applications to invariant checking.
In Proc. of ICGT ’12 (International Conference on Graph
Transformation), pages 264–278. Springer.
LNCS 7562.

Bruggink, H. S., Cauderlier, R., König, B., and Hülsbusch, M.
(2011).
Conditional reactive systems.
In Proc. of FSTTCS ’11, volume 13 of LIPIcs. Schloss
Dagstuhl – Leibniz Center for Informatics.

Barbara König Graph Specification Languages and Verification of GTSs 29

Motivation Graph Specification Languages Logics vs. Automata Conditions & Automata on Cospans Verification Conclusion

Bruggink, H. S. and König, B. (to appear).
Recognizable languages of arrows.
Mathematical Structures in Computer Science.

Barbara König Graph Specification Languages and Verification of GTSs 29

	Motivation
	Graph Specification Languages
	Logics vs. Automata
	A Cospan-based View: Conditions & Graph Automata
	Verification of Graph Transformation Systems
	Conclusion

