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Our Recent Research 
(joint work with C. Broadbent, A. Igarashi, K. Matsuda, R. Sato, 

A. Shinohara, T. Terauchi, T. Tsukada, H. Unno, ...) 

• Theory and Practice of Higher-Order Model Checking 
(model = higher-order grammar) 

– properties of higher-order grammars [LICS13] 

– higher-order model checking algorithms  
[JACM 13, FoSSaCS11,CSL13, ESOP13, APLAS13] 

– automated verification of higher-order programs 
[JACM 13, PLDI11,FLOPS12,PEPM13,POPL13] 

– data compression (generalization of grammar-based 
approach) [PEPM12] 
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This Talk 
• A survey on higher-order (formal) languages 

– what are higher-order languages? 
– solved/open problems 

 
• Applications of λ-calculus and types to studies 

of higher-order languages 
– Pumping lemma for higher-order recursion schemes 

(HORS) [K, LICS13] 
– Context-sensitiveness (ongoing work) 



Outline 
• Background 

– What are higher-order languages and 
what are they for? 

– Some variations 
• deterministic/non-deterministic, safe/unsafe, 
OI/IO, word/tree 

• Solved/open problems 
– decision problems 
– language hierarchy 

• Applications of typed λ-calculus  



Higher-Order Grammars 
[Maslov74,Wand75,...] 

• Extension of CFG where non-terminals take 
parameters (cf. macro grammar) 

Example of order-1 grammar G1 
  S  → A e 
  A x → x   
  A x → a (A (b x)) 
S: o, A: o→ o 

S → a(A (b e)) → a(b e) 

L(G1) = {anbne | n ≥ 0} 

→ A e 



Higher-Order Grammars 
• Extension of CFG where non-terminals take 

parameters 

Example of order-2 grammar G2 
  S  → A b       T f x → f (f x) 
  A f → f e      A f → a (A (T f)) 
S: o, A: (o→o)→o, T: (o→o)→o→o 

S → a(A (T b)) →* an(A(Tn b))) 
→ an(Tn b e) →* an(b  e) 2n 

L(G2) = {anb  e | n ≥ 0} 2n 

→ A b 



Why Higher-Order Languages? 
• Semantics of programs 

(“recursive program schemes” [Park68,Nivat72,...]) 

• Natural extension of Chomsky hierarchy 
[Wand74,Damm82,..] (order-0 = regular,  
order-1 = context-free, order-2 = indexed) 

• Verification of higher-order programs 
(higher-order grammars as natural models of 
functional programs [Knapik+02, Ong06, K09,...]) 
– generalization of model checking approach to 

program verification (order-0 = finite state m.c., 
order-1 = pushdown m.c.) 

 



Classification of model checking 
model corresponding 

inclusion 
problem (*) 

software 
model 
checkers 

finite 
state m.c. 

automata, 
regular 
languages 

regular 
⊆ regular 

BLAST  
(for C) 

pushdown 
m.c. 

pushdown, 
context-free 
grammars 

context-free 
⊆ regular 

SLAM  
(for C) 

higher-order 
m.c. 
[Knapik+02] 
[Ong06] 

higher-order 
pushdown, 
higher-order 
grammars 

higher-order 
⊆ regular 
 
 

MoCHi 
 (for ML) 
[K+ PLDI11] 

(*) infinite words/trees may be considered 



Outline 
• Background 

– What are higher-order languages and for 
what? 

– Some variations 
• deterministic/non-deterministic, safe/unsafe 

• Solved/open problems 
– decision problems 
– language hierarchy 

• Applications of typed λ-calculus  



Deterministic vs Non-Deterministic 
Grammars 

• Deterministic (aka higher-order recursion schemes):  
– exactly one rule for each non-terminal 
– generates a single (possibly infinite) tree 

(word, if the arities of terminal symbols are at most 1) 
– models of higher-order model checking  

[Knapik+ 02,Ong06] 

• Non-deterministic:  
– an arbitrary number of rules for each non-terminal 
– generates a language of (usually finite) trees 

(words, if the arities of terminal symbols are at most 1) 
– further classification based on evaluation order 

(OI and IO [Damm82] ) 
 



Safe vs Unsafe Grammar 
 safe (“derived types” [Damm82]) 

– The arguments of non-terminals are sorted in the 
decreasing order of their type-theoretic orders 
   ((o→o)→o) → (o→o) → (o→o→o) → o → o 
   

order-2 order-1 order-0 

order(o) = 0 
order(τ1 →τ2 )=max(order(τ1 )+1, order(τ2)) 
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Safe vs Unsafe Grammar 
 safe 

– The arguments of non-terminals are sorted in the 
decreasing order of type-theoretic orders 
   ((o→o)→o) → (o→o) → (o→o→o) → o → o 
    (o → o) → o → (o → o) → o 

– Arguments of the same order must be passed  
at the same time 
   

Non-example： 
S -> F h a a.    F z x y -> f (F (F z y) y (z x)) x. 
(S:o, F: (o→o)→o→o → o, f:o→o→o, h:o→o, a:o) 



Safe vs Unsafe Grammar 
 safe 

– The arguments of non-terminals are sorted  
in the decreasing order of type-theoretic orders 
   ((o→o)→o) → (o→o) → (o→o→o) → o → o 
    (o → o) → o → (o → o) → o 

– Arguments of the same order must be passed  
at the same time 

– Targets of earlier studies [Damm82, Knapik+02,...] 
– Equivalent to higher-order pushdown automata 

[Maslov74,Knapik+02,...] 

 unsafe 
– Without safety restriction 
– Targets of recent studies [Ong06,K09,...] 
– Equivalent to collapsible pushdown automata [Hague+08] 



Outline 
• Background 

– What are higher-order languages and for 
what? 

– Some variations 
• Solved/open problems 

– decision problems 
– language hierarchy 

• Applications of typed λ-calculus  



Some decision problems 
• Model Checking 

– Input:  deterministic HO grammar (HORS)  G 
       regular (or MSO-definable) language R  
       (of infinite trees) 

– Output:  Tree(G) ∈ R? 
• Language inclusion 

– Input:  non-deterministic HO grammar G,  
         regular language R (of finite words/trees) 

– Output: L(G)⊆ R? 
• Equivalence 

– Input: deterministic HO grammars (HORS) G1, G2 

– Output:  Tree(G1) = Tree(G2)? 
 



Problem Status 

safe unsafe 

model 
checking 

decidable 
[Knapik+02] 

decidable 
[Ong06] 

inclusion decidable 
[Damm82?] decidable 

equivalence open 
(for order ≥ 2) 

open 
(for order ≥ 2) 



Language hierarchies 
• Language/tree classes 

– LANGn = {L(G) | G: order-n n.d. word grammar} 
– TREEn = {Tree(G) | G: order-n HORS} 

• Some questions about language hierarchy 
– strictness of word language hierarchy 

  LANGn ≠ LANGn+1 for all n? 
– strictness of tree hierarchy 
     TREEn ≠ TREEn+1 for all n? 
– context-sensitiveness 

 Is L(G) context-sensitive for all G? 
– Is safety a genuine restriction? 
    SafeLANGn = UnsafeLANGn?  SafeTREEn = UnsafeTREEn? 
 
 



Problem Status 
safe unsafe 

strictness of  
language hierarchy 

yes 
[Engelfriet91] open 

strictness of tree 
hierarchy 

yes 
[Damm82?] 

yes 
[Kartzow&Parys12] 

context 
sensitiveness 

yes 
[Inaba&Maneth08] 

open 
(for order ≥ 3) 

safe trees 
= unsafe trees? no [Parys 12] 

safe languages 
= unsafe languages? open 



Outline 
• Background 
• Solved/open problems 
• Our approach based on typed λ-calculus  

– motivation 
– pumping lemma 
– towards context-sensitiveness 



Motivation 

safe unsafe 

strictness of  
language hierarchy 

yes 
[Engelfriet91] open 

strictness of tree 
hierarchy 

yes 
[Damm82?] 

yes 
[Kartzow&Parys12] 

context 
sensitiveness 

yes 
[Inaba&Maneth08] 

open 
(for order ≥ 3) 

- Many results have been obtained through higher-order  
  pushdown systems/transducers 
    -> non-intuitive, complex proofs 

- Simpler, more direct reasoning about grammars 
seems possible through λ-calculus and types 

pushdown 

pushdown 

pushdown 



Motivation 
- Many results have been obtained through higher-order  

  pushdown systems/trandsducers 
    -> non-intuitive, complex proofs 

- Simpler, more direct reasoning about grammars 
seems possible through λ-calculus and types 
- Demonstration through: 

- pumping lemma (for deterministic case) and 
application to strictness of tree hierarchy 

- context-sensitiveness (ongoing work, with only 
preliminary result) 



Outline 
• Background 
• Solved/open problems 
• Applications of typed λ-calculus  

– motivation 
– pumping lemma for deterministic HO tree 
grammar (HORS) 
• background 
• statement of the lemma 
• proof sketch 

– towards context-sensitiveness 



Pumping Lemmas 
• State properties about “repeated structures” 

generated by grammars/automata 
e.g. Pumping lemma for CFL: 
 “Any sufficiently long word s∈L can be decomposed to 
         s = uvwxy (with vx≠ ε) 
   and uviwxiy ∈L for every i≥0” 
 

• Used for separation of language classes 
 e.g. L = {anbncn | n≥0} is not a CFL. 
   If L were CFL, then for sufficiently large n, 
        anbncn = uvwxy and uviwxiy ∈L for every i≥0, 
   but this is impossible. 
 



Pumping lemmas  
for “higher-order” grammars/PDA 
• Pumping lemma for indexed languages [Hayashi 73] 

• Pumping lemmas for HPDS/CPDS 
[Parys 12; Kartzow&Parys 12]  
– strictness of hierarchy of trees/graphs generated 

by CPDS/HORS [Kartzow&Parys 12]  

– separation between HPDS and CPDS 
(or “safe” vs “unsafe” trees) [Parys 12] 

Proofs are: 
- complex (at least for non-experts on CPDS) 
- indirect (for reasoning about HORS) 
(cf. proof of pumping lemma for CFL) 



Outline 
• Background 
• Solved/open problems 
• Applications of typed λ-calculus  

– motivation 
– pumping lemma for deterministic HO tree 
grammar (HORS) 
• background 
• statement of the lemma and application 
• proof sketch 

– towards context-sensitiveness 



Higher-Order Recursion Scheme (HORS) 
 Simply-typed, deterministic, higher-order 

grammar for an infinite tree 

Order-1 HORS 
  S  → A e 
  A x → a  x  (A (b x)) 
S: o, A: o→ o 

→A e 
 

e A(b e) 

→ a 
 

 →  ... → 
 

e a 

→ a 
 

b A(b(b e)) 

e 

e a 
a 

b 
e 

a 
b 
b 
e 

a 
b 
b 
b 
e 

... 
S 



HORS as Labeled Transition System 
[Carayol&Serre, LICS12] 

   ε 
S → A e 
   ε 
   → a e (A (b e)) 
  (a,2) 
   →  A (b e) 
     

S  → A e 
A x→ a x (A(b x)) 

e a 
a 

b 
e 

a 
b 
b 
e 

a 
b 
b 
b 
e 

... 
The second 
branch of 
node a has 
been chosen. 



HORS as Labeled Transition System 
[Carayol&Serre, LICS12] 

   ε 
S → A e 
   ε 
   → a e (A (b e)) 
  (a,2) 
   →  A (b e) 
     ε 
   → a (b e) (A (b (b e))) 
  (a,1)      
   →  b e 
  (b,1) 
   →  e 
 

S  → A e 
A x→ a x (A(b x)) 

e a 
a 

b 
e 

a 
b 
b 
e 

a 
b 
b 
b 
e 

... 



Pumping Lemma 
∀G: order-n HORS. ∃c,d. 
   w 
S → e and |w| > expn-1(c) imply: 
  
  (i) 
 
 
 
 
  (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm 
 
  (iii) um≠um’  if |m-m’|≥d 
 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 

expn(x) =  

      x 
     2 
   .. 
  2 
2 



Strictness of HORS Tree Hierarchy 
TREEn = { Tree(G) | G: an order-n HORS} 
Theorem [Kartzow&Parys 12] : 
 TREE0 ⊆ TREE1 ⊆ ... ⊆ TREEn ⊆ TREEn+1 ⊆ ... 
 
 

regular 
trees 

= TREE0 

algebraic trees 
= TREE1 
 

... 

TREE3 

TREE2 



Witness of TREEn ⊆ TREEn+1  

a 
a 

... 

b 
e b 

e 

expn(0) 

expn(1) a 

b 
expn(2) 

e 

Order-(n+1) HORS that 
generates ExpTreen: 
S → F Tn-1 

F f → a (F (Tn f)) 
          (f Tn-2 ... T1 b e) 
Tk f x → f(f x) 
          (for k=1,...,n) 

            (a,1)k                       (a,2)                      (b,1) 
S → F Tn-1 →  F (Tk

n Tn-1) → Tk
n Tn-1...T1 b e →    e 

 

expn(k) 

ExpTreen =  



ExpTreen ∉ TREEn 
a 

a 

... 

b 

e b 

e 

expn(0) 

expn(1) a 

b 
expn(2) 

e 

Suppose ExpTreen ∈ TREEn. 
∃ u1, u1+d, u1+2d,...  
(i)  
(ii) |u1+kd| ≤ expn-1((kd+2)c2)  
(iii) u1+kd ≠ u1+jd if k ≠ j. 

S 

u1+kd 
 e 

   w 
S → e and |w| > expn-1(c) imply: 
  
  (i) 
 
 
 
  (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm 
 
  (iii) um≠um’  if |m-m’|≥d 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 



ExpTreen ∉ TREEn 
a 

a 

... 

b 

e b 

e 

expn(0) 

expn(1) a 

b 
expn(2) 

e 

Suppose ExpTreen ∈ TREEn. 
∃ u1, u1+d, u1+2d,... 
(i)  
(ii) |u1+kd| ≤ expn-1((kd+2)c2)  
(iii) u1+kd ≠ u1+jd if k ≠ j. 
 
expn-1((kd+2)c2)  
 ≥ max(|u1|, |u1+d|,..., |u1+kd|)  
 ≥ the length of (k+1)-th shortest path 
 = k+2+expn(k)  
Contradiction for large k 
 

S 

u1+kd 
 e 



Strictness of HORS Tree Hierarchy 
TREEn = { Tree(G) | G: an order-n HORS} 
Theorem [Kartzow&Parys 12] : 
 TREE0 ⊆ TREE1 ⊆ ... ⊆ TREEn ⊆ TREEn+1 ⊆ ... 
 
 

regular 
trees 

= order-0 

algebraic trees 
=order-1 

order-2 

... 

order-3 



Outline 
• Background 
• Solved/open problems 
• Applications of typed λ-calculus  

– motivation 
– pumping lemma for deterministic HO tree 
grammar (HORS) 
• background 
• statement of the lemma and application 
• proof sketch 

– towards context-sensitiveness 



How to prove pumping lemma? 
∀G: order-n HORS. ∃c,d. 
   w 
S → e and |w| > expn-1(c) imply: 
  
  (i) 
 
 
 
 
  (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm 
 
  (iii) um≠um’  if |m-m’|≥d 
 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 

expn(x) =  

      x 
     2 
   .. 
  2 
2 



Pumping Lemma for CFL 
 “Any sufficiently long word s∈L can be decomposed to 
         s = uvwxy (with vx≠ ε) 
   and uviwxiy ∈L for every i≥0” 
 
Proof. 
The derivation of s must contain repeated occurrences 
of a non-terminal F: 
  S →* uFy →* uvFxy →* uvwxy (=s). 
By repeating the part F →* vFx,  
  S →* uFy →* uvFxy →* uvvFxxy →* uviFxiy→* uviwxiy 
 
 



Pumping for HORS? 
• Sufficiently long transition sequence must 

contain repeated occurrences of non-terminal 
in the head position? 
 
 
Yes!  

• Can the part “F s1→ F s2” be pumped?? 
Not necessarily:  
   For G = {S → F(F e), F x →x}, 
        S → F(F e) → F e → e  
   but the part “F(F e) → F e” cannot be repeated!  

 
 

S F s1 
u w F s2 

v e 



Conditions for Pumping F s1→ F s2?  

• F should be obtained by unfolding F 
F(F e) → F e where F x →x 
 F e →(a,1) F (c e)  where F x →a (F (c x)) 
Sufficient? 
No.  
For G={S→F I, F f→f(F K), I x→x, K x→e}, 
   S →F I →I(F K) → F K, 
but F K 
because I and K have different behaviors! 
(I uses the argument but K ignores it) 

→K(F K) →* F ... →e 



Conditions for Pumping F s1→ F s2?  

• F should be obtained by unfolding F 
 F(F e) → F e where F x →x 
F e →(a,1) F (c e)  where F x →a (F (c x)) 

• s2 should have the same type as s1 
For G={S→F I, F f→f(F K), I x→x, K x→e}, 
   S →F I →I(F K) → F K, 
but I: r→r and K: T→r 
 

Use an argument Ignore an argument 



Types Examples Non-examples 

Intersection Types for 
 Expressing Reduction Behavior 

  τ (types) ::= 
   r                  (terms that reduce to e) 

 (τ1∧ ... ∧τk) →τ      (functions that use an argument  
                           as a value of types τ1,... ,τk  and  
                           return a value of type τ) 

r → r  λx.x,  λx.a x e λx.e 

T → r λx.e,  λx.a x e λx.x 

(r → r) → r  λf.f e,  λf.f(f e) λf.e 



(inaccurate) Key Lemma 

 If 
   (i) F s1→* F s2  
   (ii) F comes from F  
   (iii) F and F have the same type τ,  
  then 
   (1) F s2→* F s3 for some s3 
   (2) F comes from F 
   (3) F has type τ 
 



Proof Sketch of Pumping Lemma 

   w 
S → e and |w| > expn-1(c) imply: 
  
  (i) 
 
 
 
  (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm 
 
  (iii) um≠um’  if |m-m’|≥d 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 

1. A sufficiently long transition sequence is of the form 
   (for a sufficiently large k > #types):  
  
S F t1 

u1 u2 F t2 
u3 F tk 

uk ... e 
uk+1 

2. Assign an intersection type to each F. 

τ1 τ2 τk 

3. Pick i and j such that τi = τj and 
   “pump” the part F ti 

ui+1...uj 
 F tj 



Proof Sketch 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 

1. A sufficiently long transition sequence is of the form 
   (for a sufficiently large k > #types):  
  
S F t1 

u1 u2 F t2 
u3 F tk 

uk ... e 
uk+1 

2. Assign an intersection type to each F. 

τ1 τ2 τk 

3. Pick i and j such that τi = τj and 
   “pump” the part F ti 

ui+1...uj 
 F tj 

and obtain: 



Proof Sketch 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 

... 
3. Pick i and j such that τi = τj and 
   “pump” the part F ti 

ui+1...uj 
 F tj 

and obtain: 

4. To obtain the bound |w1...wmvm | ≤ expn-1((m+1)c2), 
   simulate S 

w1...wmvm 
 
 

e 

by: t 
w1...wmvm 
 
 

e 

for a λ-term t (obtained by unfolding S). 
|w1...wmvm | is bounded by the size of  
β-normal form of t [Beckmann 01] 



Pumping Lemma for HORS: summary 

• The same reasoning as for context-free 
languages is possible, with a help of types 
– A sufficiently long transition sequence must contain 

repeated occurrences of the same non-terminal 

– The part where the same non-terminal is used as 
the same type can be pumped 

– The length of pumped words can be bounded  
by using the standard result on the size of  
β-normal form of simply typed λ-terms 



Pumping Lemma for  
Word Language Grammar? 

   w 
S → e and |w| > expn-1(c) imply: 
  
  (i) 
 
 
 
  (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm 
 
  (iii) um≠um’  if |m-m’|≥d 

S F s1 
w1 

v1 

w2 F s2 
w3 F s3 

e 
v2 

e 
v3 

e 

w4 ... 

 
 
 
 A further twist is required 



Outline 
• Background 
• Solved/open problems 
• Applications of typed λ-calculus  

– motivation 
– pumping lemma 
– towards context-sensitiveness of unsafe languages 

(ongoing work with Kazuhiro Inaba and Takeshi Tsukada) 



Chomsky hierarchy and HO languages 

regular 
= order-0 

recursively enumerable 

context-free 
=order-1 

order-2 
order-3 

order-4 

... 



Chomsky hierarchy and HO languages 

regular 
= order-0 

recursively enumerable 

context-free 
=order-1 

order-2 
order-3 

order-4 

... 
context-sensitive 
(=LSPACE) 

Theorem [Inaba&Maneth 08] 
Safe order-n word languages are  
context-sensitive for every n 
(The proof goes through decomposition of 
higher-order transducers.) 



Context-sensitiveness of 
Context-free languages 

 Eliminate ε-generating rules 
 
 
 
 
 
 

  
The normalized grammar has only    
  monotonically increasing production sequences 
 (S → t1 → t2 → ... →w implies |S|≤|t1|≤|t2|≤... ≤|w|)  
⇒ membership is NLINSPACE 

S -> aAb 
A -> ε         A -> aAb  

S -> aAb    S -> ab 
A -> ε       A -> aAb     A -> ab  



Context-sensitiveness of 
Order-1 tree grammar? 

What should be removed to ensure 
 the monotonicity of production sequence? 
– Redundant arguments 

S → F e        F x → e        F x → F (a x)    

S → F e → F (a e) →* F (an e) → e 

S → F e        F x → e        F x → F (a x)    

cf.  type-based useless code elimination 
      [Damiani&Prost 96, K 2000]  



Context-sensitiveness of 
Order-1 tree grammar? 

What should be removed to ensure 
 the monotonicity of production sequence? 
– Redundant arguments 

 
 

– Identity functions 

S → F e        F x → e        F x → F (a x)    

S → F e        F x → x        F x → F (F x)        

S → F e → F (F e) → Fn e → F e → e  

S → e | F e    F x → x      F x → F (F x) | F x        



Context-sensitiveness of 
Order-2 tree grammar? 

What should be removed to ensure 
 the monotonicity of production sequence? 
– Redundant arguments 
– Identity functions 
– Permutators (+α) 

S → F a        F x  → x c d      F x → F (G x) 
G x y z → x z y       

S → F a → F (G a) →* F (G2n a) → (G2n a) c d 
→ G2n-1 a d c → G2n-2 a c d→*  a c d 

S → F a          F x  → x c d        F x → FG  x 
FG  x → x d c    FG  x → F x     G x y z → x z y 



Open Problems 
 (for proving context-sensitiveness) 
What should be removed to ensure 

the monotonicity of production sequence for 
grammars of arbitrary orders? 
– Removing hereditary permutators is necessary, 

but not sufficient 

 Is there a systematic transformation that 
removes them? 

A positive answer would imply context-sensitiveness 
of (unsafe) higher-order languages 



Summary 
• A survey of properties of higher-order 

languages 
– Many problems have been solved for safe languages,  

but open for unsafe ones 

•  λ-calculus and types seem to be a promising 
approach to studies of unsafe languages 
– simpler proof of strictness of tree hierarchy 
– work is under way for proving context-sensitiveness 

of HO languages 
– “safety” is natural for HPDS, 

but “unsafety” is more natural for λ-calculus 
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