
On Properties of
Higher-Order Languages

Naoki Kobayashi
The University of Tokyo

Our Recent Research
(joint work with C. Broadbent, A. Igarashi, K. Matsuda, R. Sato,

A. Shinohara, T. Terauchi, T. Tsukada, H. Unno, ...)

• Theory and Practice of Higher-Order Model Checking
(model = higher-order grammar)

– properties of higher-order grammars [LICS13]

– higher-order model checking algorithms
[JACM 13, FoSSaCS11,CSL13, ESOP13, APLAS13]

– automated verification of higher-order programs
[JACM 13, PLDI11,FLOPS12,PEPM13,POPL13]

– data compression (generalization of grammar-based
approach) [PEPM12]

Our Recent Research
• Theory and Practice of Higher-Order Model Checking

(model = higher-order grammar)

– properties of higher-order grammars [LICS13]

– higher-order model checking algorithms
[JACM 13, FoSSaCS11,CSL13, ESOP13, APLAS13]

– automated verification of higher-order programs
[JACM 13, PLDI11,FLOPS12,PEPM13,POPL13]

– data compression (generalization of grammar-based
approach) [PEPM12]

This Talk
• A survey on higher-order (formal) languages

– what are higher-order languages?
– solved/open problems

• Applications of λ-calculus and types to studies

of higher-order languages
– Pumping lemma for higher-order recursion schemes

(HORS) [K, LICS13]
– Context-sensitiveness (ongoing work)

Outline
• Background

– What are higher-order languages and
what are they for?

– Some variations
• deterministic/non-deterministic, safe/unsafe,
OI/IO, word/tree

• Solved/open problems
– decision problems
– language hierarchy

• Applications of typed λ-calculus

Higher-Order Grammars
[Maslov74,Wand75,...]

• Extension of CFG where non-terminals take
parameters (cf. macro grammar)

Example of order-1 grammar G1
 S → A e
 A x → x
 A x → a (A (b x))
S: o, A: o→ o

S → a(A (b e)) → a(b e)

L(G1) = {anbne | n ≥ 0}

→ A e

Higher-Order Grammars
• Extension of CFG where non-terminals take

parameters

Example of order-2 grammar G2
 S → A b T f x → f (f x)
 A f → f e A f → a (A (T f))
S: o, A: (o→o)→o, T: (o→o)→o→o

S → a(A (T b)) →* an(A(Tn b)))
→ an(Tn b e) →* an(b e) 2n

L(G2) = {anb e | n ≥ 0} 2n

→ A b

Why Higher-Order Languages?
• Semantics of programs

(“recursive program schemes” [Park68,Nivat72,...])

• Natural extension of Chomsky hierarchy
[Wand74,Damm82,..] (order-0 = regular,
order-1 = context-free, order-2 = indexed)

• Verification of higher-order programs
(higher-order grammars as natural models of
functional programs [Knapik+02, Ong06, K09,...])
– generalization of model checking approach to

program verification (order-0 = finite state m.c.,
order-1 = pushdown m.c.)

Classification of model checking
model corresponding

inclusion
problem (*)

software
model
checkers

finite
state m.c.

automata,
regular
languages

regular
⊆ regular

BLAST
(for C)

pushdown
m.c.

pushdown,
context-free
grammars

context-free
⊆ regular

SLAM
(for C)

higher-order
m.c.
[Knapik+02]
[Ong06]

higher-order
pushdown,
higher-order
grammars

higher-order
⊆ regular

MoCHi
 (for ML)
[K+ PLDI11]

(*) infinite words/trees may be considered

Outline
• Background

– What are higher-order languages and for
what?

– Some variations
• deterministic/non-deterministic, safe/unsafe

• Solved/open problems
– decision problems
– language hierarchy

• Applications of typed λ-calculus

Deterministic vs Non-Deterministic
Grammars

• Deterministic (aka higher-order recursion schemes):
– exactly one rule for each non-terminal
– generates a single (possibly infinite) tree

(word, if the arities of terminal symbols are at most 1)
– models of higher-order model checking

[Knapik+ 02,Ong06]

• Non-deterministic:
– an arbitrary number of rules for each non-terminal
– generates a language of (usually finite) trees

(words, if the arities of terminal symbols are at most 1)
– further classification based on evaluation order

(OI and IO [Damm82])

Safe vs Unsafe Grammar
 safe (“derived types” [Damm82])

– The arguments of non-terminals are sorted in the
decreasing order of their type-theoretic orders
 ((o→o)→o) → (o→o) → (o→o→o) → o → o

order-2 order-1 order-0

order(o) = 0
order(τ1 →τ2)=max(order(τ1)+1, order(τ2))

Safe vs Unsafe Grammar
 safe (“derived types” [Damm82])

– The arguments of non-terminals are sorted in the
decreasing order of their type-theoretic orders
 ((o→o)→o) → (o→o) → (o→o→o) → o → o

 (o → o) → o → (o → o) → o

order-2 order-1 order-0

order(o) = 0
order(τ1 →τ2)=max(order(τ1)+1, order(τ2))

order-1 order-0 order-1

Safe vs Unsafe Grammar
 safe

– The arguments of non-terminals are sorted in the
decreasing order of type-theoretic orders
 ((o→o)→o) → (o→o) → (o→o→o) → o → o
 (o → o) → o → (o → o) → o

– Arguments of the same order must be passed
at the same time

Non-example：
S -> F h a a. F z x y -> f (F (F z y) y (z x)) x.
(S:o, F: (o→o)→o→o → o, f:o→o→o, h:o→o, a:o)

Safe vs Unsafe Grammar
 safe

– The arguments of non-terminals are sorted
in the decreasing order of type-theoretic orders
 ((o→o)→o) → (o→o) → (o→o→o) → o → o
 (o → o) → o → (o → o) → o

– Arguments of the same order must be passed
at the same time

– Targets of earlier studies [Damm82, Knapik+02,...]
– Equivalent to higher-order pushdown automata

[Maslov74,Knapik+02,...]

 unsafe
– Without safety restriction
– Targets of recent studies [Ong06,K09,...]
– Equivalent to collapsible pushdown automata [Hague+08]

Outline
• Background

– What are higher-order languages and for
what?

– Some variations
• Solved/open problems

– decision problems
– language hierarchy

• Applications of typed λ-calculus

Some decision problems
• Model Checking

– Input: deterministic HO grammar (HORS) G
 regular (or MSO-definable) language R
 (of infinite trees)

– Output: Tree(G) ∈ R?
• Language inclusion

– Input: non-deterministic HO grammar G,
 regular language R (of finite words/trees)

– Output: L(G)⊆ R?
• Equivalence

– Input: deterministic HO grammars (HORS) G1, G2

– Output: Tree(G1) = Tree(G2)?

Problem Status

safe unsafe

model
checking

decidable
[Knapik+02]

decidable
[Ong06]

inclusion decidable
[Damm82?] decidable

equivalence open
(for order ≥ 2)

open
(for order ≥ 2)

Language hierarchies
• Language/tree classes

– LANGn = {L(G) | G: order-n n.d. word grammar}
– TREEn = {Tree(G) | G: order-n HORS}

• Some questions about language hierarchy
– strictness of word language hierarchy

 LANGn ≠ LANGn+1 for all n?
– strictness of tree hierarchy
 TREEn ≠ TREEn+1 for all n?
– context-sensitiveness

 Is L(G) context-sensitive for all G?
– Is safety a genuine restriction?
 SafeLANGn = UnsafeLANGn? SafeTREEn = UnsafeTREEn?

Problem Status
safe unsafe

strictness of
language hierarchy

yes
[Engelfriet91] open

strictness of tree
hierarchy

yes
[Damm82?]

yes
[Kartzow&Parys12]

context
sensitiveness

yes
[Inaba&Maneth08]

open
(for order ≥ 3)

safe trees
= unsafe trees? no [Parys 12]

safe languages
= unsafe languages? open

Outline
• Background
• Solved/open problems
• Our approach based on typed λ-calculus

– motivation
– pumping lemma
– towards context-sensitiveness

Motivation

safe unsafe

strictness of
language hierarchy

yes
[Engelfriet91] open

strictness of tree
hierarchy

yes
[Damm82?]

yes
[Kartzow&Parys12]

context
sensitiveness

yes
[Inaba&Maneth08]

open
(for order ≥ 3)

- Many results have been obtained through higher-order
 pushdown systems/transducers
 -> non-intuitive, complex proofs

- Simpler, more direct reasoning about grammars
seems possible through λ-calculus and types

pushdown

pushdown

pushdown

Motivation
- Many results have been obtained through higher-order

 pushdown systems/trandsducers
 -> non-intuitive, complex proofs

- Simpler, more direct reasoning about grammars
seems possible through λ-calculus and types
- Demonstration through:

- pumping lemma (for deterministic case) and
application to strictness of tree hierarchy

- context-sensitiveness (ongoing work, with only
preliminary result)

Outline
• Background
• Solved/open problems
• Applications of typed λ-calculus

– motivation
– pumping lemma for deterministic HO tree
grammar (HORS)
• background
• statement of the lemma
• proof sketch

– towards context-sensitiveness

Pumping Lemmas
• State properties about “repeated structures”

generated by grammars/automata
e.g. Pumping lemma for CFL:
 “Any sufficiently long word s∈L can be decomposed to
 s = uvwxy (with vx≠ ε)
 and uviwxiy ∈L for every i≥0”

• Used for separation of language classes
 e.g. L = {anbncn | n≥0} is not a CFL.
 If L were CFL, then for sufficiently large n,
 anbncn = uvwxy and uviwxiy ∈L for every i≥0,
 but this is impossible.

Pumping lemmas
for “higher-order” grammars/PDA
• Pumping lemma for indexed languages [Hayashi 73]

• Pumping lemmas for HPDS/CPDS
[Parys 12; Kartzow&Parys 12]
– strictness of hierarchy of trees/graphs generated

by CPDS/HORS [Kartzow&Parys 12]

– separation between HPDS and CPDS
(or “safe” vs “unsafe” trees) [Parys 12]

Proofs are:
- complex (at least for non-experts on CPDS)
- indirect (for reasoning about HORS)
(cf. proof of pumping lemma for CFL)

Outline
• Background
• Solved/open problems
• Applications of typed λ-calculus

– motivation
– pumping lemma for deterministic HO tree
grammar (HORS)
• background
• statement of the lemma and application
• proof sketch

– towards context-sensitiveness

Higher-Order Recursion Scheme (HORS)
 Simply-typed, deterministic, higher-order

grammar for an infinite tree

Order-1 HORS
 S → A e
 A x → a x (A (b x))
S: o, A: o→ o

→A e

e A(b e)

→ a

 → ... →

e a

→ a

b A(b(b e))

e

e a
a

b
e

a
b
b
e

a
b
b
b
e

...
S

HORS as Labeled Transition System
[Carayol&Serre, LICS12]

 ε
S → A e
 ε
 → a e (A (b e))
 (a,2)
 → A (b e)

S → A e
A x→ a x (A(b x))

e a
a

b
e

a
b
b
e

a
b
b
b
e

...
The second
branch of
node a has
been chosen.

HORS as Labeled Transition System
[Carayol&Serre, LICS12]

 ε
S → A e
 ε
 → a e (A (b e))
 (a,2)
 → A (b e)
 ε
 → a (b e) (A (b (b e)))
 (a,1)
 → b e
 (b,1)
 → e

S → A e
A x→ a x (A(b x))

e a
a

b
e

a
b
b
e

a
b
b
b
e

...

Pumping Lemma
∀G: order-n HORS. ∃c,d.
 w
S → e and |w| > expn-1(c) imply:

 (i)

 (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm

 (iii) um≠um’ if |m-m’|≥d

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

expn(x) =

 x
 2
 ..
 2
2

Strictness of HORS Tree Hierarchy
TREEn = { Tree(G) | G: an order-n HORS}
Theorem [Kartzow&Parys 12] :
 TREE0 ⊆ TREE1 ⊆ ... ⊆ TREEn ⊆ TREEn+1 ⊆ ...

regular
trees

= TREE0

algebraic trees
= TREE1

...

TREE3

TREE2

Witness of TREEn ⊆ TREEn+1

a
a

...

b
e b

e

expn(0)

expn(1) a

b
expn(2)

e

Order-(n+1) HORS that
generates ExpTreen:
S → F Tn-1

F f → a (F (Tn f))
 (f Tn-2 ... T1 b e)
Tk f x → f(f x)
 (for k=1,...,n)

 (a,1)k (a,2) (b,1)
S → F Tn-1 → F (Tk

n Tn-1) → Tk
n Tn-1...T1 b e → e

expn(k)

ExpTreen =

ExpTreen ∉ TREEn
a

a

...

b

e b

e

expn(0)

expn(1) a

b
expn(2)

e

Suppose ExpTreen ∈ TREEn.
∃ u1, u1+d, u1+2d,...
(i)
(ii) |u1+kd| ≤ expn-1((kd+2)c2)
(iii) u1+kd ≠ u1+jd if k ≠ j.

S

u1+kd
 e

 w
S → e and |w| > expn-1(c) imply:

 (i)

 (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm

 (iii) um≠um’ if |m-m’|≥d

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

ExpTreen ∉ TREEn
a

a

...

b

e b

e

expn(0)

expn(1) a

b
expn(2)

e

Suppose ExpTreen ∈ TREEn.
∃ u1, u1+d, u1+2d,...
(i)
(ii) |u1+kd| ≤ expn-1((kd+2)c2)
(iii) u1+kd ≠ u1+jd if k ≠ j.

expn-1((kd+2)c2)
 ≥ max(|u1|, |u1+d|,..., |u1+kd|)
 ≥ the length of (k+1)-th shortest path
 = k+2+expn(k)
Contradiction for large k

S

u1+kd
 e

Strictness of HORS Tree Hierarchy
TREEn = { Tree(G) | G: an order-n HORS}
Theorem [Kartzow&Parys 12] :
 TREE0 ⊆ TREE1 ⊆ ... ⊆ TREEn ⊆ TREEn+1 ⊆ ...

regular
trees

= order-0

algebraic trees
=order-1

order-2

...

order-3

Outline
• Background
• Solved/open problems
• Applications of typed λ-calculus

– motivation
– pumping lemma for deterministic HO tree
grammar (HORS)
• background
• statement of the lemma and application
• proof sketch

– towards context-sensitiveness

How to prove pumping lemma?
∀G: order-n HORS. ∃c,d.
 w
S → e and |w| > expn-1(c) imply:

 (i)

 (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm

 (iii) um≠um’ if |m-m’|≥d

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

expn(x) =

 x
 2
 ..
 2
2

Pumping Lemma for CFL
 “Any sufficiently long word s∈L can be decomposed to
 s = uvwxy (with vx≠ ε)
 and uviwxiy ∈L for every i≥0”

Proof.
The derivation of s must contain repeated occurrences
of a non-terminal F:
 S →* uFy →* uvFxy →* uvwxy (=s).
By repeating the part F →* vFx,
 S →* uFy →* uvFxy →* uvvFxxy →* uviFxiy→* uviwxiy

Pumping for HORS?
• Sufficiently long transition sequence must

contain repeated occurrences of non-terminal
in the head position?

Yes!

• Can the part “F s1→ F s2” be pumped??
Not necessarily:
 For G = {S → F(F e), F x →x},
 S → F(F e) → F e → e
 but the part “F(F e) → F e” cannot be repeated!

S F s1
u w F s2

v e

Conditions for Pumping F s1→ F s2?

• F should be obtained by unfolding F
F(F e) → F e where F x →x
 F e →(a,1) F (c e) where F x →a (F (c x))
Sufficient?
No.
For G={S→F I, F f→f(F K), I x→x, K x→e},
 S →F I →I(F K) → F K,
but F K
because I and K have different behaviors!
(I uses the argument but K ignores it)

→K(F K) →* F ... →e

Conditions for Pumping F s1→ F s2?

• F should be obtained by unfolding F
 F(F e) → F e where F x →x
F e →(a,1) F (c e) where F x →a (F (c x))

• s2 should have the same type as s1
For G={S→F I, F f→f(F K), I x→x, K x→e},
 S →F I →I(F K) → F K,
but I: r→r and K: T→r

Use an argument Ignore an argument

Types Examples Non-examples

Intersection Types for
 Expressing Reduction Behavior

 τ (types) ::=
 r (terms that reduce to e)

 (τ1∧ ... ∧τk) →τ (functions that use an argument
 as a value of types τ1,... ,τk and
 return a value of type τ)

r → r λx.x, λx.a x e λx.e

T → r λx.e, λx.a x e λx.x

(r → r) → r λf.f e, λf.f(f e) λf.e

(inaccurate) Key Lemma

 If
 (i) F s1→* F s2
 (ii) F comes from F
 (iii) F and F have the same type τ,
 then
 (1) F s2→* F s3 for some s3
 (2) F comes from F
 (3) F has type τ

Proof Sketch of Pumping Lemma

 w
S → e and |w| > expn-1(c) imply:

 (i)

 (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm

 (iii) um≠um’ if |m-m’|≥d

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

1. A sufficiently long transition sequence is of the form
 (for a sufficiently large k > #types):

S F t1

u1 u2 F t2
u3 F tk

uk ... e
uk+1

2. Assign an intersection type to each F.

τ1 τ2 τk

3. Pick i and j such that τi = τj and
 “pump” the part F ti

ui+1...uj
 F tj

Proof Sketch

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

1. A sufficiently long transition sequence is of the form
 (for a sufficiently large k > #types):

S F t1

u1 u2 F t2
u3 F tk

uk ... e
uk+1

2. Assign an intersection type to each F.

τ1 τ2 τk

3. Pick i and j such that τi = τj and
 “pump” the part F ti

ui+1...uj
 F tj

and obtain:

Proof Sketch

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

...
3. Pick i and j such that τi = τj and
 “pump” the part F ti

ui+1...uj
 F tj

and obtain:

4. To obtain the bound |w1...wmvm | ≤ expn-1((m+1)c2),
 simulate S

w1...wmvm

e

by: t
w1...wmvm

e

for a λ-term t (obtained by unfolding S).
|w1...wmvm | is bounded by the size of
β-normal form of t [Beckmann 01]

Pumping Lemma for HORS: summary

• The same reasoning as for context-free
languages is possible, with a help of types
– A sufficiently long transition sequence must contain

repeated occurrences of the same non-terminal

– The part where the same non-terminal is used as
the same type can be pumped

– The length of pumped words can be bounded
by using the standard result on the size of
β-normal form of simply typed λ-terms

Pumping Lemma for
Word Language Grammar?

 w
S → e and |w| > expn-1(c) imply:

 (i)

 (ii) |um| ≤ expn-1((m+1)c2) for um=w1...wmvm

 (iii) um≠um’ if |m-m’|≥d

S F s1
w1

v1

w2 F s2
w3 F s3

e
v2

e
v3

e

w4 ...

 A further twist is required

Outline
• Background
• Solved/open problems
• Applications of typed λ-calculus

– motivation
– pumping lemma
– towards context-sensitiveness of unsafe languages

(ongoing work with Kazuhiro Inaba and Takeshi Tsukada)

Chomsky hierarchy and HO languages

regular
= order-0

recursively enumerable

context-free
=order-1

order-2
order-3

order-4

...

Chomsky hierarchy and HO languages

regular
= order-0

recursively enumerable

context-free
=order-1

order-2
order-3

order-4

...
context-sensitive
(=LSPACE)

Theorem [Inaba&Maneth 08]
Safe order-n word languages are
context-sensitive for every n
(The proof goes through decomposition of
higher-order transducers.)

Context-sensitiveness of
Context-free languages

 Eliminate ε-generating rules

The normalized grammar has only
 monotonically increasing production sequences
 (S → t1 → t2 → ... →w implies |S|≤|t1|≤|t2|≤... ≤|w|)
⇒ membership is NLINSPACE

S -> aAb
A -> ε A -> aAb

S -> aAb S -> ab
A -> ε A -> aAb A -> ab

Context-sensitiveness of
Order-1 tree grammar?

What should be removed to ensure
 the monotonicity of production sequence?
– Redundant arguments

S → F e F x → e F x → F (a x)

S → F e → F (a e) →* F (an e) → e

S → F e F x → e F x → F (a x)

cf. type-based useless code elimination
 [Damiani&Prost 96, K 2000]

Context-sensitiveness of
Order-1 tree grammar?

What should be removed to ensure
 the monotonicity of production sequence?
– Redundant arguments

– Identity functions

S → F e F x → e F x → F (a x)

S → F e F x → x F x → F (F x)

S → F e → F (F e) → Fn e → F e → e

S → e | F e F x → x F x → F (F x) | F x

Context-sensitiveness of
Order-2 tree grammar?

What should be removed to ensure
 the monotonicity of production sequence?
– Redundant arguments
– Identity functions
– Permutators (+α)

S → F a F x → x c d F x → F (G x)
G x y z → x z y

S → F a → F (G a) →* F (G2n a) → (G2n a) c d
→ G2n-1 a d c → G2n-2 a c d→* a c d

S → F a F x → x c d F x → FG x
FG x → x d c FG x → F x G x y z → x z y

Open Problems
 (for proving context-sensitiveness)
What should be removed to ensure

the monotonicity of production sequence for
grammars of arbitrary orders?
– Removing hereditary permutators is necessary,

but not sufficient

 Is there a systematic transformation that
removes them?

A positive answer would imply context-sensitiveness
of (unsafe) higher-order languages

Summary
• A survey of properties of higher-order

languages
– Many problems have been solved for safe languages,

but open for unsafe ones

• λ-calculus and types seem to be a promising
approach to studies of unsafe languages
– simpler proof of strictness of tree hierarchy
– work is under way for proving context-sensitiveness

of HO languages
– “safety” is natural for HPDS,

but “unsafety” is more natural for λ-calculus

	On Properties of �Higher-Order Languages
	Our Recent Research�(joint work with C. Broadbent, A. Igarashi, K. Matsuda, R. Sato, A. Shinohara, T. Terauchi, T. Tsukada, H. Unno, ...)
	Our Recent Research
	This Talk
	Outline
	Higher-Order Grammars�[Maslov74,Wand75,...]
	Higher-Order Grammars
	Why Higher-Order Languages?
	Classification of model checking
	Outline
	Deterministic vs Non-Deterministic Grammars
	Safe vs Unsafe Grammar
	Safe vs Unsafe Grammar
	Safe vs Unsafe Grammar
	Safe vs Unsafe Grammar
	Outline
	Some decision problems
	Problem Status
	Language hierarchies
	Problem Status
	Outline
	Motivation
	Motivation
	Outline
	Pumping Lemmas
	Pumping lemmas �for “higher-order” grammars/PDA
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS as Labeled Transition System�[Carayol&Serre, LICS12]
	HORS as Labeled Transition System�[Carayol&Serre, LICS12]
	Pumping Lemma
	Strictness of HORS Tree Hierarchy
	Witness of TREEn TREEn+1
	ExpTreen TREEn
	ExpTreen TREEn
	Strictness of HORS Tree Hierarchy
	Outline
	How to prove pumping lemma?
	Pumping Lemma for CFL
	Pumping for HORS?
	Conditions for Pumping F s1 F s2?
	Conditions for Pumping F s1 F s2?
	Intersection Types for� Expressing Reduction Behavior
	(inaccurate) Key Lemma
	Proof Sketch of Pumping Lemma
	Proof Sketch
	Proof Sketch
	Pumping Lemma for HORS: summary
	Pumping Lemma for �Word Language Grammar?
	Outline
	Chomsky hierarchy and HO languages
	Chomsky hierarchy and HO languages
	Context-sensitiveness of Context-free languages
	Context-sensitiveness of Order-1 tree grammar?
	Context-sensitiveness of Order-1 tree grammar?
	Context-sensitiveness of Order-2 tree grammar?
	Context-sensitiveness of Order-2 tree grammar?
	Open Problems� (for proving context-sensitiveness)
	Summary

