On Properties of Higher-Order Languages

Naoki Kobayashi The University of Tokyo

Our Recent Research

(joint work with C. Broadbent, A. Igarashi, K. Matsuda, R. Sato, A. Shinohara, T. Terauchi, T. Tsukada, H. Unno, ...)

- Theory and Practice of Higher-Order Model Checking (model = higher-order grammar)
 - properties of higher-order grammars [LICS13]
 - higher-order model checking algorithms
 [JACM 13, FoSSaCS11,CSL13, ESOP13, APLAS13]
 - automated verification of higher-order programs [JACM 13, PLDI11,FLOPS12,PEPM13,POPL13]
 - data compression (generalization of grammar-based approach) [PEPM12]

Our Recent Research

- Theory and Practice of Higher-Order Model Checking (model = higher-order grammar)
 - properties of higher-order grammars [LICS13]
 - higher-order model checking algorithms [JACM 13, FoSSaCS11,CSL13, ESOP13, APLAS13]
 - automated verification of higher-order programs [JACM 13, PLDI11,FLOPS12,PEPM13,POPL13]
 - data compression (generalization of grammar-based approach) [PEPM12]

This Talk

- A survey on higher-order (formal) languages
 - what are higher-order languages?
 - solved/open problems
- Applications of $\lambda\text{-}calculus$ and types to studies of higher-order languages
 - Pumping lemma for higher-order recursion schemes (HORS) [K, LICS13]
 - Context-sensitiveness (ongoing work)

Outline

- Background
 - What are higher-order languages and what are they for?
 - Some variations
 - deterministic/non-deterministic, safe/unsafe, OI/IO, word/tree
- Solved/open problems
 - decision problems
 - language hierarchy
- · Applications of typed $\lambda\text{-calculus}$

Higher-Order Grammars [Maslov74, Wand75,...]

 Extension of CFG where non-terminals take parameters (cf. macro grammar)

Example of order-1 grammar
$$G_1$$

 $S \rightarrow A e$
 $A \times \rightarrow \times$
 $A \times \rightarrow a (A (b \times))$
 $S: o, A: o \rightarrow o$

S
$$\rightarrow$$
 A e \rightarrow a(A (b e)) \rightarrow a(b e)

$$L(G_1) = \{a^n b^n e \mid n \ge 0\}$$

Higher-Order Grammars

 Extension of CFG where non-terminals take parameters

Example of order-2 grammar G_2 $S \rightarrow A b$ $T f x \rightarrow f (f x)$ $A f \rightarrow f e$ $A f \rightarrow a (A (T f))$ $S: o, A: (o \rightarrow o) \rightarrow o, T: (o \rightarrow o) \rightarrow o \rightarrow o$

$$S \rightarrow A \ b \rightarrow a(A \ (T \ b)) \rightarrow^* a^n(A(T^n \ b)))$$

$$\rightarrow a^n(T^n \ b \ e) \rightarrow^* a^n(b^{2^n} e)$$

$$L(G_2) = \{a^n b^{2^n} e \mid n \ge 0\}$$

Why Higher-Order Languages?

- Semantics of programs
 ("recursive program schemes" [Park68, Nivat72,...])
- Natural extension of Chomsky hierarchy
 [Wand74, Damm82,..] (order-0 = regular,
 order-1 = context-free, order-2 = indexed)
- Verification of higher-order programs (higher-order grammars as natural models of functional programs [Knapik+02, Ong06, K09,...])
 - generalization of model checking approach to program verification (order-0 = finite state m.c., order-1 = pushdown m.c.)

Classification of model checking

	model	corresponding inclusion problem (*)	software model checkers
finite state m.c.	automata, regular languages	regular ⊆ regular	BLAST (for C)
pushdown m.c.	pushdown, context-free grammars	context-free ⊆ regular	SLAM (for C)
higher-order m.c. [Knapik+02] [Ong06]	higher-order pushdown, higher-order grammars	higher-order ⊆ regular	MoCHi (for ML) [K+ PLDI11]

(*) infinite words/trees may be considered

Outline

- Background
 - What are higher-order languages and for what?
 - Some variations
 - deterministic/non-deterministic, safe/unsafe
- Solved/open problems
 - decision problems
 - language hierarchy
- · Applications of typed $\lambda\text{-calculus}$

Deterministic vs Non-Deterministic Grammars

- Deterministic (aka higher-order recursion schemes):
 - exactly one rule for each non-terminal
 - generates a single (possibly infinite) tree (word, if the arities of terminal symbols are at most 1)
 - models of higher-order model checking [Knapik+ 02,Ong06]
- Non-deterministic:
 - an arbitrary number of rules for each non-terminal
 - generates a language of (usually finite) trees (words, if the arities of terminal symbols are at most 1)
 - further classification based on evaluation order (OI and IO [Damm82])

\$ safe ("derived types" [Damm82])

- The arguments of non-terminals are sorted in the decreasing order of their type-theoretic orders

order(o) = 0 order($\tau_1 \rightarrow \tau_2$)=max(order(τ_1)+1, order(τ_2))

\$ safe ("derived types" [Damm82])

- The arguments of non-terminals are sorted in the decreasing order of their type-theoretic orders

order(o) = 0 order($\tau_1 \rightarrow \tau_2$)=max(order(τ_1)+1, order(τ_2))

♦ safe

- The arguments of non-terminals are sorted in the decreasing order of type-theoretic orders

$$\checkmark ((0 \rightarrow 0) \rightarrow 0) \rightarrow (0 \rightarrow 0) \rightarrow (0 \rightarrow 0 \rightarrow 0) \rightarrow 0 \rightarrow 0$$

* $(0 \rightarrow 0) \rightarrow 0 \rightarrow (0 \rightarrow 0) \rightarrow 0$

- Arguments of the same order must be passed at the same time

Non-example: S -> F h a a. F z x y -> f (F (F z y) y (z x)) x. (S:o, F: (o→o)→o→o → o, f:o→o→o, h:o→o, a:o)

♦ safe

- The arguments of non-terminals are sorted in the decreasing order of type-theoretic orders

$$\checkmark ((0 \rightarrow 0) \rightarrow 0) \rightarrow (0 \rightarrow 0) \rightarrow (0 \rightarrow 0 \rightarrow 0) \rightarrow 0 \rightarrow 0$$

- Arguments of the same order must be passed at the same time
- Targets of earlier studies [Damm82, Knapik+02,...]
- Equivalent to higher-order pushdown automata [Maslov74,Knapik+02,...]

unsafe

- Without safety restriction
- Targets of recent studies [Ong06,K09,...]
- Equivalent to collapsible pushdown automata [Hague+08]

Outline

- Background
 - What are higher-order languages and for what?
 - Some variations
- Solved/open problems
 - decision problems
 - language hierarchy
- · Applications of typed $\lambda\text{-calculus}$

Some decision problems

- · Model Checking
 - Input: deterministic HO grammar (HORS) G regular (or MSO-definable) language R (of infinite trees)
 - Output: Tree(G) $\in \mathbb{R}$?
- · Language inclusion
 - Input: non-deterministic HO grammar G, regular language R (of finite words/trees)
 - Output: $L(G) \subseteq R$?
- Equivalence
 - Input: deterministic HO grammars (HORS) G_1 , G_2
 - Output: Tree(G_1) = Tree(G_2)?

Problem Status

	safe	unsafe
model checking	decidable [Knapik+02]	decidable [Ong06]
inclusion	decidable [Damm82?]	decidable
equivalence	open (for order ≥ 2)	open (for order ≥ 2)

Language hierarchies

- Language/tree classes
 - $LANG_n = \{L(G) \mid G: order-n n.d. word grammar\}$
 - TREE_n = {Tree(G) | G: order-n HORS}
- Some questions about language hierarchy
 - strictness of word language hierarchy
 LANG_n ≠ LANG_{n+1} for all n?
 - strictness of tree hierarchy

 $TREE_n \neq TREE_{n+1}$ for all n?

- context-sensitiveness

Is L(G) context-sensitive for all G?

- Is safety a genuine restriction?
 SafeLANG_n = UnsafeLANG_n? SafeTREE_n = UnsafeTREE_n?

Problem Status

	safe	unsafe
strictness of language hierarchy	yes [Engelfriet91]	open
strictness of tree hierarchy	yes [Damm82?]	yes [Kartzow&Parys12]
context sensitiveness	yes [Inaba&Maneth08]	open (for order ≥ 3)
safe trees = unsafe trees?	no [Parys 12]	
safe languages = unsafe languages?	open	

Outline

- Background
- Solved/open problems
- $\boldsymbol{\cdot}$ Our approach based on typed $\lambda\text{-calculus}$
 - motivation
 - pumping lemma
 - towards context-sensitiveness

Motivation

- Many results have been obtained through higher-order pushdown systems/transducers
 - -> non-intuitive, complex proofs
- Simpler, more direct reasoning about grammars seems possible through $\lambda\text{-}calculus$ and types

	safe	unsafe
strictness of language hierarchy	yes <mark>pushdown</mark> [Engelfriet91]	open
strictness of tree	yes	yes <mark>pushdown</mark>
hierarchy	[Damm82?]	[Kartzow&Parys12]
context	yes <mark>pushdown</mark>	open
sensitiveness	[Inaba&Maneth08]	(for order ≥ 3)

Motivation

- Many results have been obtained through higher-order pushdown systems/trandsducers
 - -> non-intuitive, complex proofs
- Simpler, more direct reasoning about grammars seems possible through λ -calculus and types
 - Demonstration through:
 - pumping lemma (for deterministic case) and application to strictness of tree hierarchy
 - context-sensitiveness (ongoing work, with only preliminary result)

Outline

- Background
- Solved/open problems
- · Applications of typed $\lambda\text{-calculus}$
 - motivation
 - pumping lemma for deterministic HO tree grammar (HORS)
 - background
 - \cdot statement of the lemma
 - proof sketch
 - towards context-sensitiveness

Pumping Lemmas

- State properties about "repeated structures" generated by grammars/automata
 - e.g. Pumping lemma for CFL:
 - "Any sufficiently long word s∈L can be decomposed to s = uvwxy (with vx≠ ε) and uvⁱwxⁱy ∈L for every i≥0"
- $\boldsymbol{\cdot}$ Used for separation of language classes

e.g. L = $\{a^nb^nc^n \mid n \ge 0\}$ is not a CFL.

If L were CFL, then for sufficiently large n,

 $a^{n}b^{n}c^{n} = uvwxy$ and $uv^{i}wx^{i}y \in L$ for every $i \ge 0$, but this is impossible.

Pumping lemmas for "higher-order" grammars/PDA

- Pumping lemma for indexed languages [Hayashi 73]
- Pumping lemmas for HPDS/CPDS [Parys 12; Kartzow&Parys 12]
 - strictness of hierarchy of trees/graphs generated by CPDS/HORS [Kartzow&Parys 12]
 - separation between HPDS and CPDS (or "safe" vs "unsafe" trees) [Parys 12]

Proofs are:

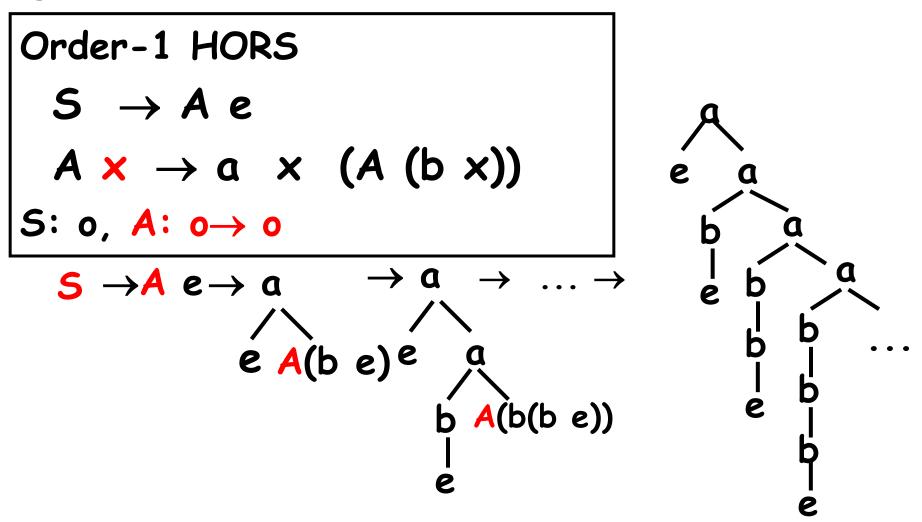
- complex (at least for non-experts on CPDS)
- indirect (for reasoning about HORS)
- (cf. proof of pumping lemma for CFL)

Outline

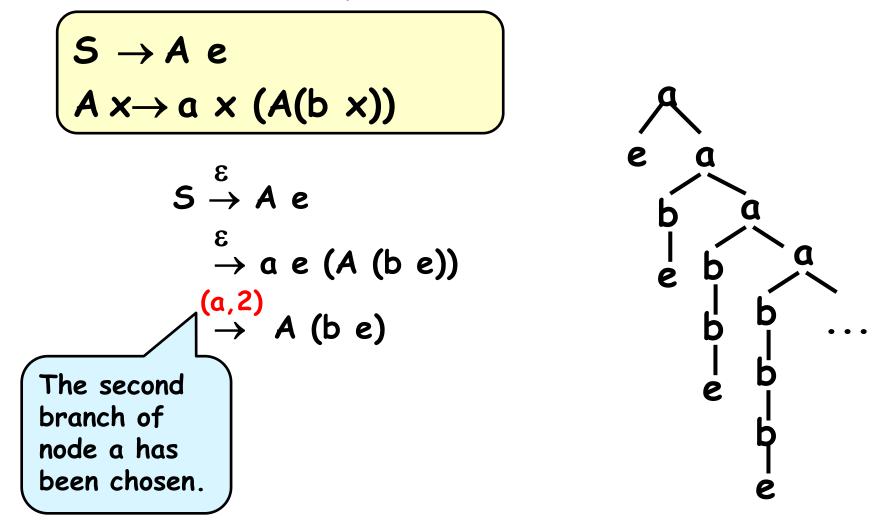
- Background
- Solved/open problems
- · Applications of typed $\lambda\text{-calculus}$
 - motivation
 - pumping lemma for deterministic HO tree grammar (HORS)
 - background
 - $\boldsymbol{\cdot}$ statement of the lemma and application
 - proof sketch
 - towards context-sensitiveness

Higher-Order Recursion Scheme (HORS)

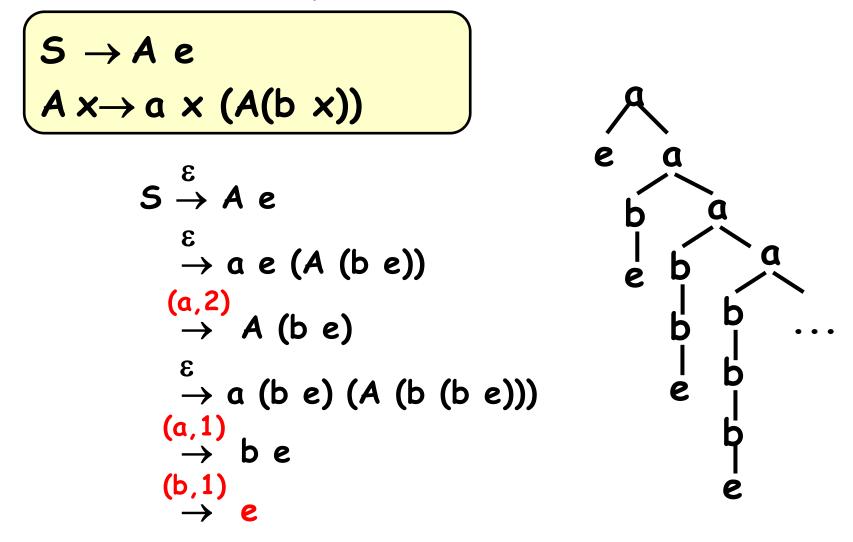
Simply-typed, deterministic, higher-order grammar for an infinite tree



HORS as Labeled Transition System [Carayol&Serre, LICS12]



HORS as Labeled Transition System [Carayol&Serre, LICS12]

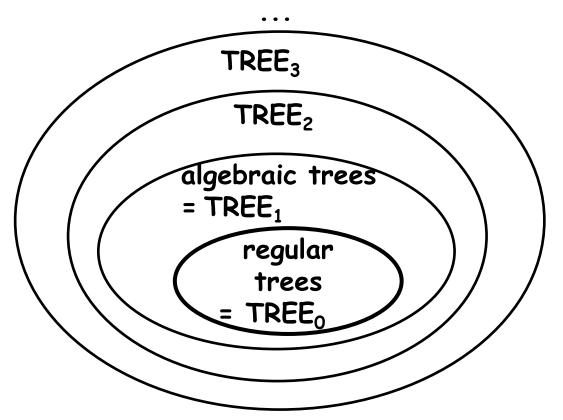


Pumping Lemma $\forall G: order-n HORS. \exists c,d.$ $S \xrightarrow{w} e$ and $|w| > exp_{n-1}(c)$ imply: **(i)** $S \xrightarrow{W_1} F \underset{v_1}{s_1} \xrightarrow{W_2} F \underset{v_2}{s_2} \xrightarrow{W_3} F \underset{v_3}{s_3} \xrightarrow{W_4} \cdots$ (ii) $|u_m| \le \exp_{n-1}((m+1)c^2)$ for $u_m = w_1 \dots w_m v_m$ (iii) $u_m \neq u_{m'}$ if $|m-m'| \ge d$

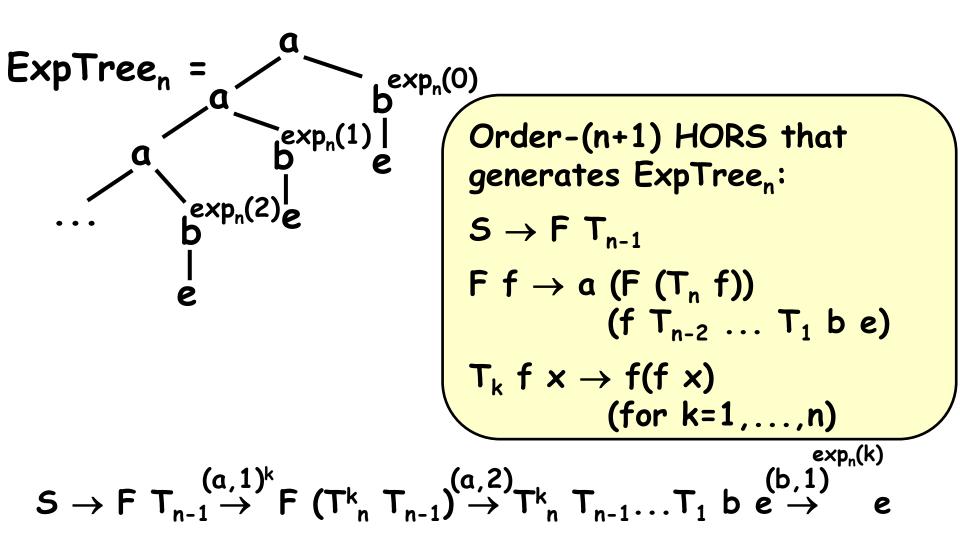
$$\left(exp_{n}(x) = \frac{n}{2} \frac{2}{2} \frac{2}{2} \right)$$

Strictness of HORS Tree Hierarchy TREE_n = { Tree(G) | G: an order-n HORS} Theorem [Kartzow&Parys 12] :

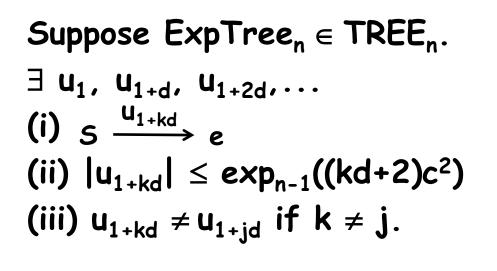
 $\mathsf{TREE}_0 \varsubsetneq \mathsf{TREE}_1 \varsubsetneq \ldots \varsubsetneq \mathsf{TREE}_n \varsubsetneq \mathsf{TREE}_{n+1} \varsubsetneq \ldots$

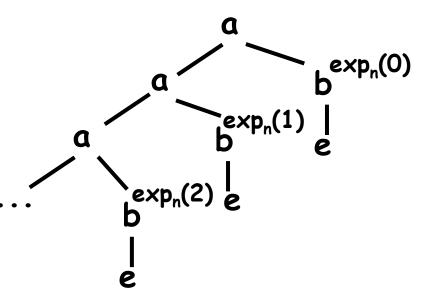


Witness of $TREE_n \subsetneq TREE_{n+1}$



$ExpTree_n \notin TREE_n$



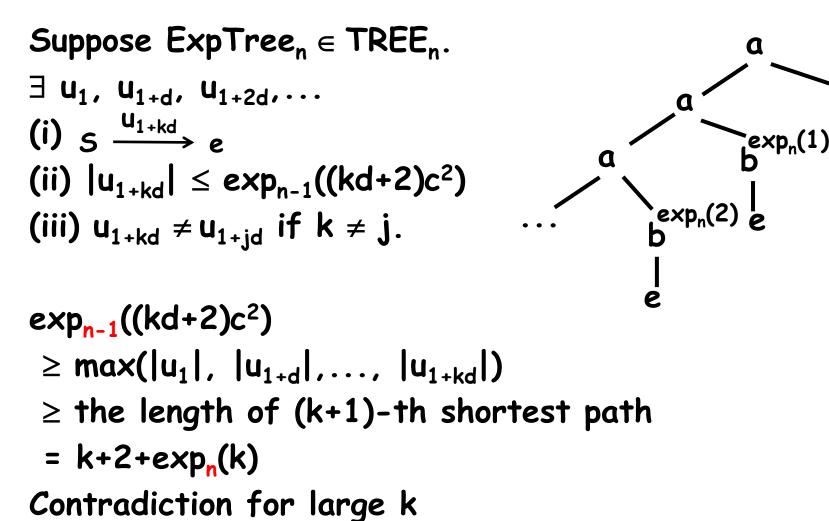


$$\begin{array}{c|c} S \stackrel{w}{\rightarrow} e \text{ and } |w| > exp_{n-1}(c) \text{ imply:} \\ (i) S \stackrel{w_1}{\longrightarrow} F s_1 \stackrel{w_2}{\longrightarrow} F s_2 \stackrel{w_3}{\longrightarrow} F s_3 \stackrel{w_4}{\longrightarrow} \cdots \\ & \downarrow v_1 & \downarrow v_2 & \downarrow v_3 \\ e & e & e \end{array}$$

$$(ii) |u_m| \le exp_{n-1}((m+1)c^2) \text{ for } u_m = w_1 \dots w_m v_m$$

$$(iii) |u_m \neq u_{m'} \text{ if } |m-m'| \ge d$$

$ExpTree_n \notin TREE_n$



Strictness of HORS Tree Hierarchy $TREE_n = \{ Tree(G) \mid G: an order-n HORS \}$ Theorem [Kartzow&Parys 12] : $TREE_0 \subsetneq TREE_1 \subsetneq \ldots \subsetneq TREE_n \subsetneq TREE_{n+1} \subsetneq \ldots$ order-3 order-2 algebraic trees =order-1 regular trees = order-0

Outline

- Background
- Solved/open problems
- · Applications of typed $\lambda\text{-calculus}$
 - motivation
 - pumping lemma for deterministic HO tree grammar (HORS)
 - background
 - $\boldsymbol{\cdot}$ statement of the lemma and application
 - proof sketch
 - towards context-sensitiveness

How to prove pumping lemma? $\forall G: order-n HORS. \exists c, d.$ $S \xrightarrow{w} e$ and $|w| > exp_{n-1}(c)$ imply: (i) $S \xrightarrow{W_1} F \underset{v_1}{s_1} \xrightarrow{W_2} F \underset{v_2}{s_2} \xrightarrow{W_3} F \underset{v_3}{s_3} \xrightarrow{W_4} \cdots$

(ii) $|u_m| \le \exp_{n-1}((m+1)c^2)$ for $u_m = w_1 \dots w_m v_m$ (iii) $u_m \ne u_{m'}$ if $|m-m'| \ge d$

$$\left(exp_{n}(x) = \frac{n}{2} \frac{2}{2} \frac{2}{2} \right)$$

Pumping Lemma for CFL

"Any sufficiently long word s∈L can be decomposed to s = uvwxy (with vx≠ ε) and uvⁱwxⁱy ∈L for every i≥0"

Proof.

The derivation of s must contain repeated occurrences of a non-terminal F:

 $S \rightarrow uFy \rightarrow uVFxy \rightarrow uvvxy$ (=s).

By repeating the part $F \rightarrow * vFx$,

 $\mathsf{S} \to \mathsf{*} \mathsf{uFy} \to \mathsf{*} \mathsf{uvFxy} \to \mathsf{*} \mathsf{uvFxxy} \to \mathsf{*} \mathsf{uv}^{\mathsf{i}}\mathsf{Fx}^{\mathsf{i}}\mathsf{y} \to \mathsf{*} \mathsf{uv}^{\mathsf{i}}\mathsf{wx}^{\mathsf{i}}\mathsf{y}$

Pumping for HORS?

 Sufficiently long transition sequence must contain repeated occurrences of non-terminal in the head position?

$$S \xrightarrow{u} F S_1 \xrightarrow{w} F S_2 \xrightarrow{v} e$$

Yes!

• Can the part "F $s_1 \rightarrow$ F s_2 " be pumped?? Not necessarily:

For
$$G = \{S \rightarrow F(F e), F x \rightarrow x\},\$$

 $S \rightarrow F(F e) \rightarrow F e \rightarrow e$

but the part " $F(F e) \rightarrow F e$ " cannot be repeated!

Conditions for Pumping $F s_1 \rightarrow F s_2$?

F should be obtained by unfolding F
 ×F(F e) → F e where F x →x
 ✓ F e →^(a,1)F (c e) where F x →a (F (c x))
 Sufficient?

No.

For $G=\{S \rightarrow F I, F f \rightarrow f(F K), I x \rightarrow x, K x \rightarrow e\}$,

 $S \rightarrow F I \rightarrow I(F K) \rightarrow F K,$ but F K $\rightarrow K(F K) \rightarrow e \not \rightarrow^* F \dots$

because I and K have different behaviors! (I uses the argument but K ignores it)

Conditions for Pumping F $s_1 \rightarrow F s_2$?

 F should be obtained by unfolding F **×** $F(F e) \rightarrow F e$ where $F \times \rightarrow x$ $\checkmark F e \rightarrow^{(a,1)} F$ (c e) where $F \times \rightarrow a$ (F (c \times)) • s_2 should have the same type as s_1 For $G=\{S \rightarrow F I, F f \rightarrow f(F K), I x \rightarrow x, K x \rightarrow e\}$, $S \rightarrow F I \rightarrow I(F K) \rightarrow F K$ but I: $r \rightarrow r$ and K: $T \rightarrow r$ Use an argument

Ignore an argument

Intersection Types for **Expressing Reduction Behavior** τ (types) ::= r

(terms that reduce to e)

 $(\tau_1 \land \dots \land \tau_k) \rightarrow \tau$

(functions that use an argument as a value of types τ_1, \ldots, τ_k and return a value of type τ)

Types	Examples	Non-examples
r ightarrow r	λχ.χ, λχ.αχε	λ χ.e
$T \rightarrow r$	λχ.ε, λχ.α χ ε	λ χ.χ
$(r \rightarrow r) \rightarrow r$	$\lambda f.f e, \lambda f.f(f e)$	λf.e

(inaccurate) Key Lemma

(i) $F S_1 \rightarrow F S_2$ (ii) F comes from F (iii) F and F have the same type τ , then (1) $F s_2 \rightarrow F s_3$ for some s_3 (2) F comes from F (3) F has type τ

If

Proof Sketch of Pumping Lemma

1. A sufficiently long transition sequence is of the form (for a sufficiently large k > #types):

$$S \xrightarrow{u_1} F^{\tau_1} t_1 \xrightarrow{u_2} F^{\tau_2} t_2 \xrightarrow{u_3} \dots \xrightarrow{u_k} F^{\tau_k} t_k \xrightarrow{u_{k+1}} e$$

- 2. Assign an intersection type to each F.
- 3. Pick i and j such that $\tau_i = \tau_j$ and "pump" the part $F t_i \xrightarrow{u_{i+1} \dots u_j} F t_j$

$$\begin{array}{c} S \stackrel{w}{\rightarrow} e \text{ and } |w| > exp_{n-1}(c) \text{ imply:} \\ (i) S \stackrel{w_1}{\longrightarrow} F s_1 \stackrel{w_2}{\longrightarrow} F s_2 \stackrel{w_3}{\longrightarrow} F s_3 \stackrel{w_4}{\longrightarrow} \cdots \\ & \downarrow v_1 \qquad \qquad \downarrow v_2 \qquad \qquad \downarrow v_3 \\ e \qquad \qquad e \qquad e \qquad \qquad e \qquad e \qquad \qquad e \qquad \qquad e \qquad \qquad e \qquad \qquad e$$

Proof Sketch

 A sufficiently long transition sequence is of the form (for a sufficiently large k > #types):

$$S \xrightarrow{u_1} F^{\tau_1} t_1 \xrightarrow{u_2} F^{\tau_2} t_2 \xrightarrow{u_3} \dots \xrightarrow{u_k} F^{\tau_k} t_k \xrightarrow{u_{k+1}} e$$

- 2. Assign an intersection type to each F.
- 3. Pick i and j such that $\tau_i = \tau_j$ and "pump" the part $F t_i \xrightarrow{u_{i+1} \dots u_j} F t_j$ and obtain:

Proof Sketch

3. Pick i and j such that $\tau_i = \tau_i$ and "pump" the part $F_{i} \xrightarrow{u_{i+1} \ldots u_{j}} F_{i}$ and obtain: $S \xrightarrow{w_1} F s_1 \xrightarrow{w_2} F s_2 \xrightarrow{w_3} F s_3 \xrightarrow{w_4} \cdots$ $v_1 v_2 v_3$ 4. To obtain the bound $|w_1 \dots w_m v_m| \leq \exp_{n-1}((m+1)c^2)$, simulate $s \xrightarrow{w_1 \dots w_m v_m} e$

by:
$$t \xrightarrow{w_1 \dots w_m v_m} e$$

. . .

for a λ -term t (obtained by unfolding S). $|w_1...w_mv_m|$ is bounded by the size of β -normal form of t [Beckmann 01]

Pumping Lemma for HORS: summary

- The same reasoning as for context-free languages is possible, with a help of types
 - A sufficiently long transition sequence must contain repeated occurrences of the same non-terminal
 - The part where the same non-terminal is used as the same type can be pumped
 - The length of pumped words can be bounded by using the standard result on the size of β -normal form of simply typed λ -terms

Pumping Lemma for Word Language Grammar?

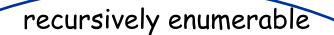
$$\begin{array}{c} & \overset{\textbf{W}}{\rightarrow} e \text{ and } |\textbf{w}| > exp_{n-1}(c) \text{ imply:} \\ (i) & \overset{\textbf{W}_{1}}{\longrightarrow} F s_{1} \xrightarrow{\textbf{W}_{2}} F s_{2} \xrightarrow{\textbf{W}_{3}} F s_{3} \xrightarrow{\textbf{W}_{4}} \cdots \\ & & \downarrow v_{1} & \downarrow v_{2} & \downarrow v_{3} \\ e & e & e \end{array}$$
$$\begin{array}{c} & \checkmark & (ii) |\textbf{u}_{m}| \leq exp_{n-1}((m+1)c^{2}) \text{ for } \textbf{u}_{m} = w_{1} \dots w_{m}v_{m} \\ & \checkmark & (iii) |\textbf{u}_{m}'| \leq exp_{n-1}((m+1)c^{2}) \text{ for } \textbf{u}_{m} = w_{1} \dots w_{m}v_{m} \end{array}$$

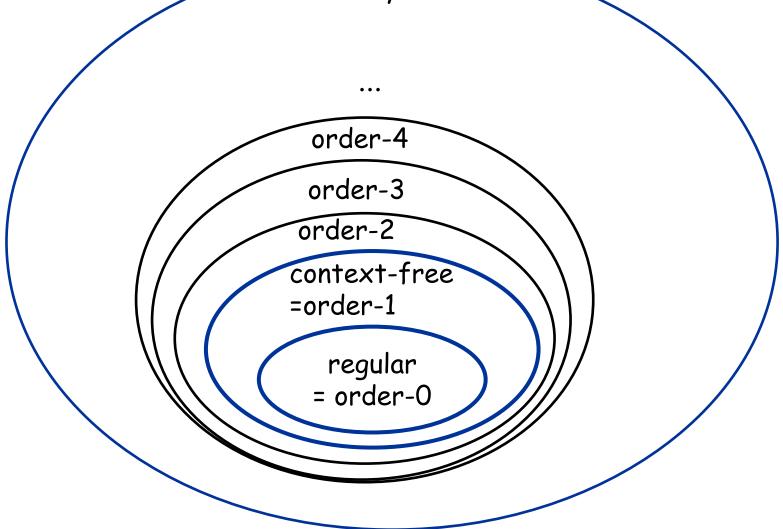
 \rightarrow A further twist is required

Outline

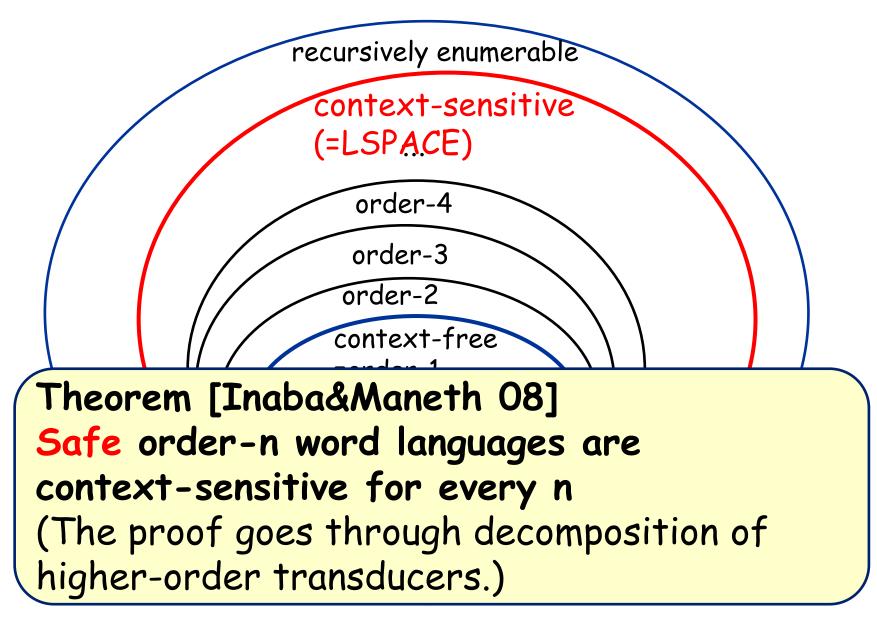
- Background
- Solved/open problems
- Applications of typed λ -calculus
 - motivation
 - pumping lemma
 - towards context-sensitiveness of unsafe languages (ongoing work with Kazuhiro Inaba and Takeshi Tsukada)

Chomsky hierarchy and HO languages



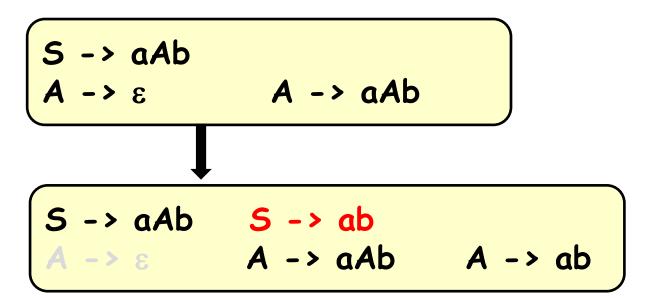


Chomsky hierarchy and HO languages



Context-sensitiveness of Context-free languages

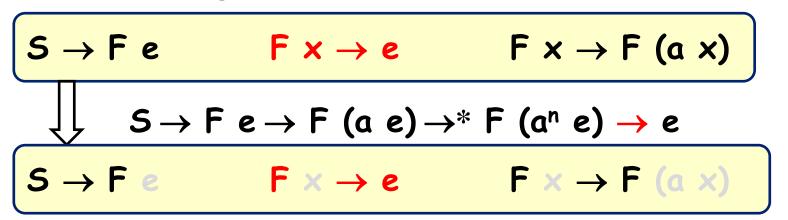
 \bullet Eliminate ϵ -generating rules



The normalized grammar has only monotonically increasing production sequences
(S → t₁ → t₂ → ... →w implies |S|≤|t₁|≤|t₂|≤... ≤|w|)
⇒ membership is NLINSPACE

Context-sensitiveness of Order-1 tree grammar?

- What should be removed to ensure the monotonicity of production sequence?
 - Redundant arguments



cf. type-based useless code elimination [Damiani&Prost 96, K 2000]

Context-sensitiveness of Order-1 tree grammar?

- What should be removed to ensure the monotonicity of production sequence?
 - Redundant arguments

 $\left[S \rightarrow F e \qquad F \times \rightarrow e \qquad F \times \rightarrow F (a \times) \right]$

- Identity functions

Context-sensitiveness of Order-2 tree grammar?

- What should be removed to ensure the monotonicity of production sequence?
 - Redundant arguments
 - Identity functions
 - Permutators (+ α)

Open Problems

(for proving context-sensitiveness)

- What should be removed to ensure the monotonicity of production sequence for grammars of arbitrary orders?
 - Removing hereditary permutators is necessary, but not sufficient
- Is there a systematic transformation that removes them?
- A positive answer would imply context-sensitiveness of (unsafe) higher-order languages

Summary

- A survey of properties of higher-order languages
 - Many problems have been solved for safe languages, but open for unsafe ones
- $\lambda\text{-}calculus$ and types seem to be a promising approach to studies of unsafe languages
 - simpler proof of strictness of tree hierarchy
 - work is under way for proving context-sensitiveness of HO languages
 - "safety" is natural for HPDS, but "unsafety" is more natural for λ -calculus