
Engineering Virtualized Services

Einar Broch Johnsen

University of Oslo, Norway
einarj@ifi.uio.no

IFIP WG2.2 Meeting
Lisbon, September 26, 2013

http://www.envisage-project.eu

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 0 / 24

einarj@ifi.uio.no
http://www.envisage-project.eu
http://cordis.europa.eu/fp7/home_en.html
http://www.envisage-project.eu

Berndnaut Smilde: Nimbus II, 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 1 / 24

http://www.envisage-project.eu

Cloud Computing & Virtualization

Cloud Computing

I Execution environment with elastic resource provisioning, several
stakeholders, and a metered service at multiple granularities for a
specified level of quality of service (QoS)

I A host offers services to clients, including infrastructure and platform
functionalities and software services to virtualize resource deployment

Virtualization

I Virtualization provides an elastic amount of resources to
application-level services, e.g., by allocating a changing processing
capacity to a service depending on demand

I We say that application-level services are virtualized if they can adapt
to the elasticity of cloud computing

Goal: Model-based approach to evaluate and compare
resource-management strategies and SLA-compliance

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 2 / 24

http://www.envisage-project.eu

Relative Costs to Fix Software Defects

Virtualized systems with dynamic infrastructure

20

40

60

80

100

120

Design

1×
Implementation

6.5×
Testing

15×

Deployment

?

40×∼120×

Maintenance

?

100×∼120×

The columns indicate the phase/stage of the software
development at which the defect is found and fixed.

(extending figure from IBM Systems Sciences Institute)

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 3 / 24

http://www.envisage-project.eu

Virtualization & SLA

Can we make these pieces fit together?

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 4 / 24

http://www.envisage-project.eu

Why Deployment Modeling?

Questions

1 How will the response time and cost of running my system change if I
double the number of servers?

2 How do fluctuations in client traffic influence the performance of my
system on a given deployment architecture?

3 Can I better control the performance of my system by means of
application-specific load balancing?

Why ABS?

I Abstraction: Deployment decisions are expressed at the abstraction
level of the modeling language (avoid “model drift”)

I Incrementality: deployment decisions can be added at any stage in
the model development

I Models reflect the execution and data flow of target programs

I Formal language specification with operational semantics

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 5 / 24

http://www.envisage-project.eu

Modeling Virtualized Services in ABS

Models as Abstract Executable Designs

I Models follow the execution flow of distributed OO systems,
but abstract from implementation details using ADTs

I Functional layer: user-defined types and functions, pattern matching

I Imperative layer: objects communicate by asynchronous method calls

I Flexible synchronization: blocking or suspending activities

I Java-like syntax: intuitive to the programmer

Separation of Concerns: Cost and Capacity

I The cost depends on the program/model

I The capacity depends on the deployment

Deployment Scenarios Capture Virtualized Architectures

Express how artefacts are deployed at (virtualized)
locations with given resource capacities

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 6 / 24

http://www.envisage-project.eu

Deployment Components with Parametric Resources

Clock Deployment
Component Resources

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

I Example: Processing resources
I Parametric bound on abstract processing capacity
I Resources reflect the execution capacity of

the deployment component in a time interval
I Resources abstract from the number and speed of

the (physical) processors available to the component

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 7 / 24

http://www.envisage-project.eu

Deployment Configuration and Resource Reallocation

Client

Client

request(cost)

success?
request(cost)

success?

getsession()

Agent Sessions

Session

Let components and resources be first-class citizens in Real-Time ABS

data Resource = InfCPU | CPU(Int capacity) ;

interface DC {
Int total();
Int load(Int n);
Int transfer(DC target, Int amount);
}

Johnsen, Owe, Schlatte, Tapia Tarifa. Dynamic Resource Reallocation Between Deployment

Components. Proc. ICFEM 2010, LNCS 6447, Springer 2010

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 8 / 24

http://www.envisage-project.eu

Example: Phone Services - Abstract Behavioral Model

Telephone Service

interface TelephoneService {
Unit call(Int calltime);

}
class TelephoneServer implements TelephoneService {
Int callcount = 0;
Unit call(Int calltime){

while (calltime > 0) { [Cost: 1] calltime = calltime − 1;
await duration(1, 1); }

callcount = callcount + 1;
}
}

SMS Service

interface SMSService {
Unit sendSMS();

}
class SMSServer implements SMSService {
Int smscount = 0;
Unit sendSMS() {[Cost: 1] smscount = smscount + 1;}
}

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 9 / 24

http://www.envisage-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

class NYEclient(Int frequency,TelephoneService ts,SMSService smss){
Time created=now(); Bool call=false;
Unit normalBehavior(){ ... }
Unit midnightWindow(){ ... } // Switch at appropriate time...
}
{// Main block:

DC smscomp = new cog DeploymentComponent(”smscomp”, CPU(50));
DC telcomp = new cog DeploymentComponent(”telcomp”, CPU(50));
[DC : smscomp] SMSService sms = new cog SMSServer();
[DC : telcomp] TelephoneService tel = new cog TelephoneServer();
Client c = new cog NYEbehavior(1,tel,sms); ... // Clients

}

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 10 / 24

http://www.envisage-project.eu

Formal Semantics of Resource-Restricted Execution

I SOS style operational semantics

I Embed the ABS semantics in rules for annotations and time

I Let [[e]]tσ, → denote the “untimed” reduction system of ABS

Runtime syntax

cn ::= ε | obj | msg | fut | cmp | cn cn tcn ::= cn cl(t) | {cn cl(t)}
obj ::= o(a, p, q) msg ::= m(o, v , f , d)

cmp ::= dc(n, u, k, h, z) fut ::= f | f (v)

Deployment components

I n = available resources

I u = used resources

I k = resources available in the next interval

I h̄ = resource usage over time intervals

I z̄ = available resources over time intervals

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 11 / 24

http://www.envisage-project.eu

Rules for Annotations

CPU = Gradual reduction

I Annotations are reduced until the statement can be executed

I With lower capacity, the reduction may take several time intervals

(Emp-Annotation)
o(a, {l | [ε] s}, q)
→ o(a, {l | s}, q)

(Cost1)
a(thisDC) = dc an = Cost: e, an′

[[e]]ta◦l = c c ≤ n − u
o(a, {l | [an′] s}, q) cl(t) cn
→ o(a′, p′, q′) cl(t) cn′

o(a, {l | [an] s}, q) dc(n, u, k, h, z) cl(t) cn

→ o(a′, p′, q′) dc(n, u + c, k, h, z) cl(t) cn′

(Cost2)
a(thisDC) = dc an = Cost: e′, an′

[[e′]]ta◦l = c c > n − u n 6= u
c ′ = c − (n − u) an′′ = Cost: c ′, an′

o(a, {l | [an] s}, q) dc(n, u, k, h, z) cl(t) cn
→ o(a, {l | [an′′] s}, q)
dc(n, n, k, h, z) cl(t) cn

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 12 / 24

http://www.envisage-project.eu

Rules for Time Advance

Maximal progress

I Time only advances when the execution is otherwise blocked
• The objects have run out or resources
• The objects are blocked (e.g., method replies)
• The objects are idle

(Run-Inside-Interval)

cn cl(t)
!→ cn′ cl(t)

0 < d ≤ mte(cn′, t) btc = bt + dc
{cn cl(t)}

→t {timeAdv(cn′, d) cl(t + d)}

(Run-To-New-Interval)

cn cl(t)
!→ cn′ cl(t)

0 < d ≤ mte(cn′, t) dte = t + d
{cn cl(t)}

→t {timeAdv(rescRefill(cn′), d) cl(t + d)}

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 13 / 24

http://www.envisage-project.eu

Example: Simulation Results

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 14 / 24

http://www.envisage-project.eu

Load Balancing in Deployment Scenarios

Load Balancing: resource reallocation, object mobility, job distribution

I dc.load(e): average load on dc during the last e time intervals

I dc.total(): currently allocated resources on dc

I dc.transfer(dc2, r): transfer r resources to dc2

Load Balancing in the Phone Services

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

telb

smsb

request()

Strategy: Reallocate 1/2×total resources upon request from partner
Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 15 / 24

http://www.envisage-project.eu

Example: Simulation Results

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 16 / 24

http://www.envisage-project.eu

Virtual Resource Management & Cloud Provisioning

I DCs can be used to model virtual machines

I On the cloud, you pay almost exclusively for CPU resources

I Abstract model of a cloud provider

I Provides facilities for starting, and stopping virtual machines

I Implements a price policy “accumulated cost”

interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC machine);
Unit releaseMachine(DC machine);
Int getAccumulatedCost();

}

I Allows the client to interact with resource provisioning
on the cloud in an intuitive and fine-grained way

I Compare no. of clients, (missed) deadlines, and accumulated cost

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 17 / 24

http://www.envisage-project.eu

Case Study: Montage (1)

Montage:
Creating a

mosaic from
a set of

astronomical
input images

mProject

mProjExec

mImgtbl mOverlaps

mDiffExec

mDiff

mFitExec

mFitplane

mBgModel

mBackground

mBgExec

mAdd

Re-project
Image

Background
modeling

Background
matching

Final
mosaic

I Fairly complex workflow: partly ordered, highly parallelizable tasks
I Montage system supports both grid and cloud deployment
I The costs of running Montage on different deployment scenarios on

the cloud have been studied in the GridSim simulation tool
I How would our results compare to results from the GridSim?

Johnsen, Schlatte, Tapia Tarifa. Modeling Resource-Aware Virtualized Applications for the

Cloud in Real-Time ABS. Proc. ICFEM 2012, LNCS 7635, Springer 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 18 / 24

http://www.envisage-project.eu

Case Study: Montage (2)

I Deployment scenarios range
from 1 to 128 machines

I We got lower accumulated
cost than the results from
GridSim

I Explanation: The GridSim
simulations did not shut
down idle servers

I Modified our model to keep
all created servers running
(“constant”)

I Comparison with more
active resource management
strategies

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 19 / 24

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (1)

The Fredhopper Access Server (FAS) is a distributed, concurrent OO
system providing search and merchandising services to e-Commerce
companies. The Replication Server is one part of FAS.

Acceptor

Cloud

Provider

ClientJob

ClientJob

ClientJob

SyncClient

job(schedule)

SyncClient

SyncClient

...

...

LIVE STAGING

SyncServer create()

CLOUD

DC4

Connection

Thread

getConnection(schedule)

getConnection(schedule)

getConnection(schedule)

job(schedule)

job(schedule)

DC3

Connection

Thread

replication

DC2

Connection

Thread

replication

DC1

Connection

Thread

replication

I Very detailed model: consists of 5000 lines of ABS

I Up to 20 environments are typically required to handle large query
throughputs over a large number of product items

de Boer, Hähnle, Johnsen, Schlatte, Wong. Formal Modeling of Resource Management for

Cloud Architectures: An Industrial Case Study. Proc. ESOCC 2012, LNCS 7592, Springer 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 20 / 24

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (2)

Parameters derived from measurements on the Java implementation

Schedule Execution Time Cost Interval Deadline
Search 34.0s 14 11 3
Business rules 2.5s 1 11 2
Data 274.9s 110 11 11

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

7500

15000

22500

30000

Q
oS

Environments

C
os

t

Constant As-needed Budget

QoS as percentage of successful sessions (left scale)
and accumulated cost (right scale)

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 21 / 24

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (3)

How does the accumulated cost in our model
compare to the actual Java implementation?

0

17.5

35

52.5

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

7500

15000

22500

30000

Ru
nn

in
g

tim
e

[s
]

Environments

Si
m

ul
at

io
n

co
st

Model simulation cost Implementation running time

Measured execution time of the implementation (left scale)
Accumulated cost of the simulation for the as-needed policy (right scale)

The deviation roughly seems to correspond to the start-up time of JVM

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 22 / 24

http://www.envisage-project.eu

Summary

I Need formal models and analysis
methods for software which ranges
over different deployment scenarios

I Express and compare interesting
non-functional system properties

I Formal models seem fairly realistic

I Can be adapted to other resources: memory, bandwidth

Research Agenda

I Exploit the formal semantics to go beyond simulations

I SLA-aware Design by Contract: programming to interfaces

I Abstract executable models which integrate deployment, resource
management, scalability, and SLA

I Tool support for analyzing SLA compliance based on scalable methods

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 23 / 24

http://www.envisage-project.eu

Envisage: Engineering Virtualized Services [www.envisage-project.eu]

Berndnaut Smilde: Nimbus II, 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 24 / 24

www.envisage-project.eu
http://www.envisage-project.eu

