Engineering Virtualized Services

Einar Broch Johnsen
University of Oslo, Norway

einarj@ifi.uio.no

IFIP WG2.2 Meeting
Lisbon, September 26, 2013

I=, NVISAGE

SEVENTH FRAMEWORK
PROGRAMME

http://www.envisage-project.eu

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013

0/24

einarj@ifi.uio.no
http://www.envisage-project.eu
http://cordis.europa.eu/fp7/home_en.html
http://www.envisage-project.eu

Berndnaut Smilde: Nimbus Il, 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 1/24

http://www.envisage-project.eu

Cloud Computing & Virtualization

Cloud Computing
» Execution environment with elastic resource provisioning, several
stakeholders, and a metered service at multiple granularities for a
specified level of quality of service (QoS)

» A host offers services to clients, including infrastructure and platform
functionalities and software services to virtualize resource deployment
4

Virtualization
» Virtualization provides an elastic amount of resources to
application-level services, e.g., by allocating a changing processing
capacity to a service depending on demand
» We say that application-level services are virtualized if they can adapt
to the elasticity of cloud computing

Goal: Model-based approach to evaluate and compare
resource-management strategies and SLA-compliance

v

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 2 /24

http://www.envisage-project.eu

Relative Costs to Fix Software Defects

Virtualized systems with dynamic infrastructure J
40x~120x 100x~120x
12
? ?
100
80 —
60 —
40 _—
15x
20 —
6.5
1x ,_><|

Design Implementation Testing Deployment Maintenance

The columns indicate the phase/stage of the software
development at which the defect is found and fixed.

(extending figure from IBM Systems Sciences Institute)

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 3 /24

http://www.envisage-project.eu

Virtualization & SLA

Negotiate

b % egat.pest) |

Service-
Deployment tevel
agreement
Can we make these pieces fit together? J

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 4 /24

http://www.envisage-project.eu

Why Deployment Modeling?

Questions
© How will the response time and cost of running my system change if |
double the number of servers?
@ How do fluctuations in client traffic influence the performance of my
system on a given deployment architecture?

© Can | better control the performance of my system by means of
application-specific load balancing?

Why ABS?
» Abstraction: Deployment decisions are expressed at the abstraction
level of the modeling language (avoid “model drift")

» Incrementality: deployment decisions can be added at any stage in
the model development

» Models reflect the execution and data flow of target programs

» Formal language specification with operational semantics

v

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 5/ 24

http://www.envisage-project.eu

Modeling Virtualized Services in ABS

Models as Abstract Executable Designs

» Models follow the execution flow of distributed OO systems,
but abstract from implementation details using ADTs

v

Functional layer: user-defined types and functions, pattern matching

v

Imperative layer: objects communicate by asynchronous method calls

v

Flexible synchronization: blocking or suspending activities

v

Java-like syntax: intuitive to the programmer

Separation of Concerns: Cost and Capacity
» The cost depends on the program/model

» The capacity depends on the deployment

Deployment Scenarios Capture Virtualized Architectures

Express how artefacts are deployed at (virtualized)
locations with given resource capacities

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 6 /24

http://www.envisage-project.eu

Deployment Components with Parametric Resources

lock
Clac Deployment

Component

'(@) \ telcomp B D

Resources

sms()

smscomp D D D -
i
*EI

» Example: Processing resources

» Parametric bound on abstract processing capacity

» Resources reflect the execution capacity of
the deployment component in a time interval

» Resources abstract from the number and speed of
the (physical) processors available to the component

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 7 /24

http://www.envisage-project.eu

Deployment Configuration and Resource Reallocation

getsession()

- request(cost) \ oomooss
o - M
Agent
\‘\\.
success? —

request(cost)

SUcoess?

Let components and resources be first-class citizens in Real-Time ABS

data Resource = InfCPU | CPU(Int capacity) ;

interface DC {
Int total();
Int load(Int n);
Int transfer(DC target, Int amount);

Johnsen, Owe, Schlatte, Tapia Tarifa. Dynamic Resource Reallocation Between Deployment

Components. Proc. ICFEM 2010, LNCS 6447, Springer 2010
Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 8 /24

http://www.envisage-project.eu

Example: Phone Services - Abstract Behavioral Model

Telephone Service J

interface TelephoneService {
Unit call(Int calltime);

class TelephoneServer implements TelephoneService {
Int callcount = 0;
Unit call(Int calltime){
while (calltime > 0) { [Cost: 1] calltime = calltime — 1;
await duration(1, 1); }
callcount = callcount + 1;

SMS Service J

interface SMSService {
Unit sendSMS();

class SMSServer implements SMSService {
Int smscount = 0;

Unit sendSMS() {'[Cost: 1] smscount = smscount + 1;}

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 9 /24

http://www.envisage-project.eu

Example: The New Year's Eve Client Behavior

@@@@
07
ol ygarqty P

Alternate Huge number of f Alternate
smsandcall . smspertimeinterval @ smsand call

| | time >
50 Midnight Window 70

class NYEclient(Int frequency, TelephoneService ts,SMSService smss){
Time created=now(); Bool call=false;
Unit normalBehavior(){ ...
Unit midnightWindow(){ ... } // Switch at appropriate time...

}

{// Main block:
DC smscomp = new cog DeploymentComponent(”smscomp”, CPU(50));
DC telcomp = new cog DeploymentComponent(”telcomp”, CPU(50));
[DC : smscomp] SMSService sms = new cog SMSServer();
[DC : telcomp] TelephoneService tel = new cog TelephoneServer();
Client ¢ = new cog NYEbehavior(1,tel,sms); ... // Clients

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013

10 / 24

http://www.envisage-project.eu

Formal Semantics of Resource-Restricted Execution

» SOS style operational semantics
» Embed the ABS semantics in rules for annotations and time
» Let [e]’, — denote the “untimed” reduction system of ABS

Runtime syntax

cn = ¢e|obj| msg|fut|cmp|cn cn ten == cn cl(t) | {cn cl(t)}
Ob_/ H= o(a, P, q) msg = m(O,V, f7 d)
cmp = dc(n,u, k, h,Z) fut == f]|f(v)

Deployment components

» n = available resources

» u = used resources

» k = resources available in the next interval
» h = resource usage over time intervals

» Z = available resources over time intervals

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 11 /24

http://www.envisage-project.eu

Rules for Annotations

CPU = Gradual reduction J

» Annotations are reduced until the statement can be executed

» With lower capacity, the reduction may take several time intervals

(EMP-ANNOTATION)
o(a,{I'|[£] s}, q)
—o(a {/|s} q)

(Cosrtl) (CosT2)
a(thisDC) =dc an=Cost: e an’ a(thisDC) =dc an=Cost: e, an’
eli,, =¢c c<n—u [el:,=c c>n—u n#u
o(a, {/| [an’] s} q) cl(t) cn c=c— (n —u) an” =cCost: ¢ an’
— o(a',p',q’) cl(t) cn’ o(a,{l| [an] s}, q) dc(n,u, k, h,Z) cl(t) cn
o(a,{l| [an] s}, q) dc(n,u, k, h,Z) cl(t) cn — o(a, {/| [an"] s}, q)
—o(a',p',q") de(n,u+ c, k, h,Z) cl(t) cn’ dc(n, n, k, h,z) cl(t) cn

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 12 / 24

http://www.envisage-project.eu

Rules for Time Advance

Maximal progress J

» Time only advances when the execution is otherwise blocked
e The objects have run out or resources
e The objects are blocked (e.g., method replies)
e The objects are idle

(RUN-INSIDE-INTERVAL) (RUN-TO-NEW-INTERVAL)
cn cl(t) S oen’ cl(t) cn cl(t) Loen cl(t)
0<d< mte(en',t) [t| = [t+d] 0<d< mte(en',t) [t|=t+d
{cn cl(t)} {cn cl(t)}
—¢ {timeAdv(cn’,d) cl(t + d)} —¢ {timeAdv(rescRefill(cn’),d) cl(t + d)}

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 13 /24

http://www.envisage-project.eu

Example: Simulation Results

Without Load Balancing

100 SMS load —— 100 Telephony load ——

80 SMS available 80 Telephony available

60 60

40 40

20 20

0 0 ' '
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013

14 / 24

http://www.envisage-project.eu

Load Balancing in Deployment Scenarios

Load Balancing: resource reallocation, object mobility, job distribution
> dc.load(e): average load on dc during the last e time intervals
> dc.total(): currently allocated resources on dc

> dc.transfer(dc2, r): transfer r resources to dc2

Load Balancing in the Phone Services J
telcomp - -

e [=]

;

request()

call(n) sms()

smscomp =TI "

A
*| sms | | smsb |

Strategy: Reallocate 1/2xtotal resources upon request from partner

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 15 / 24

http://www.envisage-project.eu

Example: Simulation Results

Without Load Balancing

100 SMS load —— Telephony load ——
80 SMS available 80 Telephony available
60 60
40 40
20 20
0 0 1 |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time
With Load Balancing
100
80 80
60 60
40 40
20 20
0 0 1 I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 16 / 24

http://www.envisage-project.eu

Virtual Resource Management & Cloud Provisioning

» DCs can be used to model virtual machines

v

On the cloud, you pay almost exclusively for CPU resources

v

Abstract model of a cloud provider

v

Provides facilities for starting, and stopping virtual machines

v

Implements a price policy “accumulated cost”

interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC machine);
Unit releaseMachine(DC machine);
Int getAccumulatedCost();

» Allows the client to interact with resource provisioning
on the cloud in an intuitive and fine-grained way

» Compare no. of clients, (missed) deadlines, and accumulated cost

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 17 / 24

http://www.envisage-project.eu

Case Study: Montage (1)

mPro1ect 7 mDiff mFlthane ImBackground

Montage: | QD cczco@zo @
Creating a S SR | y o f

mosaic from

. mProjExec‘,".’

a set of O\I

astronomical ",.mlmgtbl :mOverIaps B mBgModef)

mDiffExec

input images Ty TN e
J LI A
Re-project Background Background Final
Image modeling matching mosaic

» Fairly complex workflow: partly ordered, highly parallelizable tasks

» Montage system supports both grid and cloud deployment

» The costs of running Montage on different deployment scenarios on
the cloud have been studied in the GridSim simulation tool

» How would our results compare to results from the GridSim?

Johnsen, Schlatte, Tapia Tarifa. Modeling Resource-Aware Virtualized Applications for the

Cloud in Real-Time ABS. Proc. ICFEM 2012, LNCS 7635, Springer 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 18 / 24

http://www.envisage-project.eu

Case Study: Montage (2)

1400

1200
» Deployment scenarios range

1000 ,
/.A/‘_"L‘ ae=Constant from 1 to 128 machines

800
=L arge startup

CPU Cost

200

600 . » We got lower accumulated
400) f - N N Small startup
il & cost than the results from
|

GridSim

» Explanation: The GridSim
simulations did not shut
down idle servers

» Modified our model to keep
comConstant all created servers running

=®-large startup (“COI’\Sta nt”)
=O=Small startup

» Comparison with more
active resource management
strategies

Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 19 / 24

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (1)

The Fredhopper Access Server (FAS) is a distributed, concurrent OO
system providing search and merchandising services to e-Commerce
companies. The Replication Server is one part of FAS.

uve STAGING cLoup

» Very detailed model: consists of 5000 lines of ABS

» Up to 20 environments are typically required to handle large query
throughputs over a large number of product items

de Boer, Hahnle, Johnsen, Schlatte, Wong. Formal Modeling of Resource Management for

Cloud Architectures: An Industrial Case Study. Proc. ESOCC 2012, LNCS 7592, Springer 2012
E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 20 / 24

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (2)

Parameters derived from measurements on the Java implementation

Schedule Execution Time | Cost | Interval | Deadline
Search 34.0s 14 11 3
Business rules | 2.5s 1 11 2
Data 274.9s 110 11 11

100 QOO OO0 OO OHTH—O—O—- 0000000 3000

\ A
75 e 22500

15000 &
o

7500

u.llll |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Environments
Constant < [As-needed # [l Budget

QoS as percentage of successful sessions (left scale)
and accumulated cost (right scale)

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 21 /24

http://www.envisage-project.eu

Case Study: Fredhopper Replication Server (3)

How does the accumulated cost in our model
compare to the actual Java implementation?

70 30000

22500

@
~
o

15000

Running time [s]
©
8
Simulation cost

17.5 7500

0.||I|| .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Environments

B Model simulation cost [l Implementation running time

Measured execution time of the implementation (left scale)
Accumulated cost of the simulation for the as-needed policy (right scale)

The deviation roughly seems to correspond to the start-up time of JVM

E Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 22 /24

http://www.envisage-project.eu

Summary

> Need formal models and analysis Open Clients
methods for software which ranges Requests ——
over different deployment scenarios 2

» Express and compare interesting 100
non-functional system properties 0

8
#Clients

» Formal models seem fairly realistic

» Can be adapted to other resources: memory, bandwidth

Research Agenda
» Exploit the formal semantics to go beyond simulations
» SLA-aware Design by Contract: programming to interfaces

» Abstract executable models which integrate deployment, resource
management, scalability, and SLA

» Tool support for analyzing SLA compliance based on scalable methods

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 23 /24

http://www.envisage-project.eu

Envisage: Engineering Virtualized Services [www.envisage-project.eu]

Berndnaut Smilde: Nimbus Il, 2012

Einar Broch Johnsen (U. Oslo) Engineering Virtualized Services IFIP WG2.2, Sep. 26, 2013 24 / 24

www.envisage-project.eu
http://www.envisage-project.eu

