
BEHAVIORAL SEPARATION
TYPES AT WORK

Luís Caires
(with João C. Seco, Filipe Militão, Luís Lourenço)

Universidade Nova de Lisboa
CITI@DI

IFIP meeting 2013 Lisboa

Tuesday, December 17, 13

BEHAVIORAL TYPES

Several kinds of behavioral types

io-types

session types

usage types

contract types

...

Behavioral Separation Types: “The Type Discipline of
Behavioral Separation”(Caires & Seco) POPL 2013

Behavioral Separation: a general principle for disciplining
interference in HO imperative concurrent programs

Goal: “true” type safety for modern mainstream programming
Tuesday, December 17, 13

PROGRAMMING LANGUAGE

e, f ::= x (Variable)
| �x.e (Abstraction)
| e1e2 (Application)
| let x = e1 in e2 (Definition)
| var a in e (Heap variable decl)
| a := v (Assignment)
| a (Dereference)
| [l1 = e1, . . .] (Tupling)
| e.l (Selection)
| l(e) (Variant)
| case e of li(xi) ! ei (Conditional)
| rec(X)e (Recursion)
| X (Recursion variable)
| fork e (New thread)
| wait e (Wait)
| sync(a)e (Synchronized block)

Tuesday, December 17, 13

KEY IDEAS

traditionally, types seen as state/structural properties

we move to types as usage behaviors/protocols

Take stock on separation logics and behavioral types

focus: separation of usage protocols for (stateful) values

"structural" operators (basic usages) + "sequential" separation
(traces) + "parallel" separation (aliasing / sharing)

“global” type assertions (talk about many values at once)

parallel and sequential frame principles (enable local
reasoning both in the space and in the time dimensions)

Tuesday, December 17, 13

BEHAVIORAL SEPARATION TYPES

T, U ::= 0 (stop) | T |!V (function)
| T ;U (sequential) | T |U (parallel)
| T NU (intersection) | l:T (qualification)
| �l2I l:Tl (sum) | !T (shared)
| �T (isolated) | ⌧(T) (thread)
| rec(X)T (recursion) | X (recursion var)

Tuesday, December 17, 13

KEY ALGEBRAIC STRUCTURE

symmetric monoidal closed

concurrent Kleene algebra

monoidal co-monads

(T, (�N�), (� |�), (� ;�), 0)

(T, 0, (� |�), |!)

�(�)

!(�)

isolated

shared

Tuesday, December 17, 13

SEQUENTIAL AND PARALLEL TYPES

U ;(V ;T) <:> (U ;V) ;T U ; 0 <:> U 0 ;U <:> U

U |(V |T) <:> (U |V) |T U |V <:> V |U U | 0 <:> U

(A ;C) | (B ;D) <: (A |B) ; (C |D)

Tuesday, December 17, 13

SHARED TYPE

!U <: U

!U <: !!U

0 <: !0

!U | !V <: !(U | V)

!U <: 0

!U <: !U | !U

Tuesday, December 17, 13

ISOLATED TYPE

0 <: �0
�U | �V <: �(U |V)

�U <: U

�U <: ��U
�U <: 0

!�U <: �!U
(�U |V) ;T <: �U |(V ;T)

Tuesday, December 17, 13

serialization derivable from the exchange law

isolation and the postponing law

pure types (behave as “usual” types)

let . Then and and

include “usual” basic types, such as nat, bool, etc.

 (embedding into pure types)

REMARKS

(�U) ;V <: (�U) |V

U |V <: V ;U

T <:> T |TT = !�U T <:> �T T <:> !T

⌘ : X ! !�X

(�U) ;T <: T ;(�U)

Tuesday, December 17, 13

BEHAVIORAL SEPARATION TYPES

T, U ::= 0 (stop) | T |!V (function)
| T ;U (sequential) | T |U (parallel)
| T NU (intersection) | l:T (qualification)
| �l2I l:Tl (sum) | !T (shared)
| �T (isolated) | ⌧(T) (thread)
| rec(X)T (recursion) | X (recursion var)

Tuesday, December 17, 13

