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BEHAVIORAL TYPES

Several kinds of behavioral types

io-types

session types

usage types

contract types

...

Behavioral Separation Types: “The Type Discipline of 
Behavioral Separation”(Caires & Seco) POPL 2013

Behavioral Separation: a general principle for disciplining 
interference in HO imperative concurrent programs

Goal: “true” type safety for modern mainstream programming
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PROGRAMMING LANGUAGE

e, f ::= x (Variable)
| �x.e (Abstraction)
| e1e2 (Application)
| let x = e1 in e2 (Definition)
| var a in e (Heap variable decl)
| a := v (Assignment)
| a (Dereference)
| [l1 = e1, . . .] (Tupling)
| e.l (Selection)
| l(e) (Variant)
| case e of li(xi) ! ei (Conditional)
| rec(X)e (Recursion)
| X (Recursion variable)
| fork e (New thread)
| wait e (Wait)
| sync(a)e (Synchronized block)
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KEY IDEAS

traditionally, types seen as state/structural properties 

we move to types as usage behaviors/protocols

Take stock on separation logics and behavioral types

focus: separation of usage protocols for (stateful) values

"structural" operators (basic usages) + "sequential" separation 
(traces) + "parallel" separation (aliasing / sharing)

“global” type assertions (talk about many values at once)

parallel and sequential frame principles (enable local 
reasoning both in the space and in the time dimensions)
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BEHAVIORAL SEPARATION TYPES

T, U ::= 0 (stop) | T |!V (function)
| T ;U (sequential) | T |U (parallel)
| T NU (intersection) | l:T (qualification)
| �l2I l:Tl (sum) | !T (shared)
| �T (isolated) | ⌧(T ) (thread)
| rec(X)T (recursion) | X (recursion var)
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KEY ALGEBRAIC STRUCTURE

symmetric monoidal closed 

concurrent Kleene algebra

monoidal co-monads

(T, (�N�), (� |�), (� ;�), 0)

(T, 0, (� |�), |!)

�(�)

!(�)

isolated

shared
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SEQUENTIAL AND PARALLEL TYPES

U ;(V ;T ) <:> (U ;V ) ;T U ; 0 <:> U 0 ;U <:> U

U |(V |T ) <:> (U |V ) |T U |V <:> V |U U | 0 <:> U

(A ;C) | (B ;D) <: (A |B) ; (C |D)
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SHARED TYPE

!U <: U

!U <: !!U

0 <: !0

!U | !V <: !(U | V )

!U <: 0

!U <: !U | !U
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ISOLATED TYPE

0 <: �0
�U | �V <: �(U |V )

�U <: U

�U <: ��U
�U <: 0

!�U <: �!U
(�U |V ) ;T <: �U |(V ;T )
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serialization derivable from the exchange law

isolation and the postponing law

pure types (behave as “usual” types)

let              . Then                  and               and 

include “usual” basic types, such as nat, bool, etc.

              ( embedding into pure types                     )

REMARKS

(�U) ;V <: (�U) |V

U |V <: V ;U

T <:> T |TT = !�U T <:> �T T <:> !T

⌘ : X ! !�X

(�U) ;T <: T ;(�U)
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