
Verification of Concurrent Programs

Decidability, Complexity, Reductions.

Ahmed Bouajjani

Paris Diderot University, Paris 7

IFIP WG 2.2 meeting

Lisbon, September 2013

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 1 / 10



Concurrency at different levels

Application level:

I Assumes:
atomicity, isolation, ... (+ sequential specification...)

Implementation of concurrent data structures, and system services
I Performances: overlaps between parallel actions, sharing, etc.
I Ensures:

(illusion of) atomicity, isolation ...
I Assumes:

Memory model (sequential consistency, causal delivery, etc.,
or weaker ...)

Infrastructures
I Performances: Relaxed memory models (reordering, lossyness, etc.)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 2 / 10



Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)

I Issues: Complexity (state-space explosion), Undecidability
(recursion+synchronization)

Concurrent Implementations
I Ensuring atomicity (+ specification):

linearizability (shared concurrent data structures),
serializability (transactions),
eventual/causal consistency (distributed data structures), etc.

I Correctness (w.r.t. a specification) over a relaxed memory model.
I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2,
[P]M1 = [P]M2?

I Issues: Complexity (huge number of action orders), undecidability
(some commutations allow to encode TM! – queues).

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 3 / 10



Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)
I Issues: Complexity (state-space explosion), Undecidability

(recursion+synchronization)

Concurrent Implementations
I Ensuring atomicity (+ specification):

linearizability (shared concurrent data structures),
serializability (transactions),
eventual/causal consistency (distributed data structures), etc.

I Correctness (w.r.t. a specification) over a relaxed memory model.
I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2,
[P]M1 = [P]M2?

I Issues: Complexity (huge number of action orders), undecidability
(some commutations allow to encode TM! – queues).

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 3 / 10



Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)
I Issues: Complexity (state-space explosion), Undecidability

(recursion+synchronization)

Concurrent Implementations
I Ensuring atomicity (+ specification):

linearizability (shared concurrent data structures),
serializability (transactions),
eventual/causal consistency (distributed data structures), etc.

I Correctness (w.r.t. a specification) over a relaxed memory model.
I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2,
[P]M1 = [P]M2?

I Issues: Complexity (huge number of action orders), undecidability
(some commutations allow to encode TM! – queues).

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 3 / 10



Questions

Limits of decidability?

Complexity?

Basic (conceptual/technical) tools?

General and efficient algorithmic approaches?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 4 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)

I Model for dynamic concurrent programs with (an arbitrary number of)
finite-state (anonymous) threads.

I State reachability is decidable (EXPSPACE-complete). Research on
efficient algorithms.

I Also useful when recursion (stacks) can be “eliminated” using
summarization.

(Lossy) FIFO-channel systems

I Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).

I State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.

I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)

I Model for dynamic concurrent programs with (an arbitrary number of)
finite-state (anonymous) threads.

I State reachability is decidable (EXPSPACE-complete). Research on
efficient algorithms.

I Also useful when recursion (stacks) can be “eliminated” using
summarization.

(Lossy) FIFO-channel systems

I Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).

I State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)

I Model for dynamic concurrent programs with (an arbitrary number of)
finite-state (anonymous) threads.

I State reachability is decidable (EXPSPACE-complete). Research on
efficient algorithms.

I Also useful when recursion (stacks) can be “eliminated” using
summarization.

(Lossy) FIFO-channel systems

I Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).

I State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on

efficient algorithms.

I Also useful when recursion (stacks) can be “eliminated” using
summarization.

(Lossy) FIFO-channel systems

I Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).

I State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on

efficient algorithms.
I Also useful when recursion (stacks) can be “eliminated” using

summarization.

(Lossy) FIFO-channel systems

I Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).

I State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on

efficient algorithms.
I Also useful when recursion (stacks) can be “eliminated” using

summarization.

(Lossy) FIFO-channel systems
I Model for message-passing programs, and for weak memory models (to

encode various kind of buffers, etc.).

I State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on

efficient algorithms.
I Also useful when recursion (stacks) can be “eliminated” using

summarization.

(Lossy) FIFO-channel systems
I Model for message-passing programs, and for weak memory models (to

encode various kind of buffers, etc.).
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5 / 10



Reductions to Basic Classes of Programs

Code-to-code translations to:
I Sequential programs
I Concurrent programs over SC

As general as possible, regardless from the decidability issue:

Independent from data types, dynamic creation of threads, etc.

Decidability and complexity are derived for particular cases

Finite data domains, etc.

Questions
I When is this possible?
I How?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 6 / 10



Reductions to Basic Classes of Programs

Code-to-code translations to:
I Sequential programs
I Concurrent programs over SC

As general as possible, regardless from the decidability issue:

Independent from data types, dynamic creation of threads, etc.

Decidability and complexity are derived for particular cases

Finite data domains, etc.

Questions
I When is this possible?
I How?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 6 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]

I Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:

I CBA is decidable but at least as hard as State Reachability in Petri
nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]

I Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:

I CBA is decidable but at least as hard as State Reachability in Petri
nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]
I Can be generalized to an arbitrary number of statically generated

threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:

I CBA is decidable but at least as hard as State Reachability in Petri
nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]
I Can be generalized to an arbitrary number of statically generated

threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:

I CBA is decidable but at least as hard as State Reachability in Petri
nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]
I Can be generalized to an arbitrary number of statically generated

threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:
I CBA is decidable but at least as hard as State Reachability in Petri

nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]
I Can be generalized to an arbitrary number of statically generated

threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:
I CBA is decidable but at least as hard as State Reachability in Petri

nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Concurrent Programs: Sequentialization

Context-Bounding [Qadeer, Rehof, 05]

Sequentialization under Context-bounding
I Bounded interface ⇒ Use an “Assume-Guarantee approach” to analyze

sequentially each thread. [Lal, Reps, 08]
I Can be generalized to an arbitrary number of statically generated

threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

What about dynamic creation:
I CBA is decidable but at least as hard as State Reachability in Petri

nets. [Atig, B., Qadeer, 09].
⇒ Sequentialization can not be done precisely for CBA.

I Possible under Delay Bounding [Emmi, Qadeer, 11].

I General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 / 10



Serializability and Linearizability

Known results: Assume a fixed number of threads
I Serializability: PSPACE-complete [Alur et al. 96, Farzan et al. 08]
I Linearizability: in EXPSPACE [Alur et al. 96]

Arbitrary number of threads?
I Reductions to State Reachability:

(Conflict) Serializability and
Static Linearizability (i.e., when linearization points are fixed,
except for read-only methods).

PSPACE/EXSPACE-complete for fixed/unbounded number of
finite-state threads.

I Linearizability is undecidable in general.

[B., Enea, Emmi, Hamza, 13]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 8 / 10



Serializability and Linearizability

Known results: Assume a fixed number of threads
I Serializability: PSPACE-complete [Alur et al. 96, Farzan et al. 08]
I Linearizability: in EXPSPACE [Alur et al. 96]

Arbitrary number of threads?
I Reductions to State Reachability:

(Conflict) Serializability and
Static Linearizability (i.e., when linearization points are fixed,
except for read-only methods).

PSPACE/EXSPACE-complete for fixed/unbounded number of
finite-state threads.

I Linearizability is undecidable in general.

[B., Enea, Emmi, Hamza, 13]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 8 / 10



Weak Memory Models

State Reachability over a WMM:
I Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
I True for unbounded store buffers (and arbitrary number of threads).

I But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

I ⇒ Reduction to State Reachability in SC is not possible precisely.
I (Code-to-code) translation to State Reachability is possible under

“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

Robustness against TSO:

I State-robustness as hard as State Reachability in TSO.
I Trace-robustness is reducible to State Reachability in SC!

[B., Derevenetc, Meyer, 13]
I Code-to-code translation, for an arbitrary number of threads,

unbounded buffers, arbitrary data domain.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 / 10



Weak Memory Models

State Reachability over a WMM:
I Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
I True for unbounded store buffers (and arbitrary number of threads).
I But as hard as State Reachability in Lossy Fifo-Channel Systems

(non-primitive recursive)
I ⇒ Reduction to State Reachability in SC is not possible precisely.

I (Code-to-code) translation to State Reachability is possible under
“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

Robustness against TSO:

I State-robustness as hard as State Reachability in TSO.
I Trace-robustness is reducible to State Reachability in SC!

[B., Derevenetc, Meyer, 13]
I Code-to-code translation, for an arbitrary number of threads,

unbounded buffers, arbitrary data domain.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 / 10



Weak Memory Models

State Reachability over a WMM:
I Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
I True for unbounded store buffers (and arbitrary number of threads).
I But as hard as State Reachability in Lossy Fifo-Channel Systems

(non-primitive recursive)
I ⇒ Reduction to State Reachability in SC is not possible precisely.
I (Code-to-code) translation to State Reachability is possible under

“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

Robustness against TSO:

I State-robustness as hard as State Reachability in TSO.
I Trace-robustness is reducible to State Reachability in SC!

[B., Derevenetc, Meyer, 13]
I Code-to-code translation, for an arbitrary number of threads,

unbounded buffers, arbitrary data domain.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 / 10



Weak Memory Models

State Reachability over a WMM:
I Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
I True for unbounded store buffers (and arbitrary number of threads).
I But as hard as State Reachability in Lossy Fifo-Channel Systems

(non-primitive recursive)
I ⇒ Reduction to State Reachability in SC is not possible precisely.
I (Code-to-code) translation to State Reachability is possible under

“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

Robustness against TSO:
I State-robustness as hard as State Reachability in TSO.

I Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

I Code-to-code translation, for an arbitrary number of threads,
unbounded buffers, arbitrary data domain.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 / 10



Weak Memory Models

State Reachability over a WMM:
I Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
I True for unbounded store buffers (and arbitrary number of threads).
I But as hard as State Reachability in Lossy Fifo-Channel Systems

(non-primitive recursive)
I ⇒ Reduction to State Reachability in SC is not possible precisely.
I (Code-to-code) translation to State Reachability is possible under

“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

Robustness against TSO:
I State-robustness as hard as State Reachability in TSO.
I Trace-robustness is reducible to State Reachability in SC!

[B., Derevenetc, Meyer, 13]
I Code-to-code translation, for an arbitrary number of threads,

unbounded buffers, arbitrary data domain.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 / 10



Conclusion / questions

A lot remains to be understood concerning decidability frontiers,
complexity, and reducibility to problems such as state reachability in
basic models.

In particular: correctness criteria in the distributed case, weak
memory models, etc.

Generic reductions for general classes of programs and general
families of correctness criteria.

Sequentialization (What is pushdown representable ?) is related to the
notion of “bounded tree-width” [La Torre, Parlato, Madhusudan, 11].

We need a general framework for reasoning about order constraints
and their violations. (What is Petri net representable ?)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 10 / 10


