Verification of Concurrent Programs

Decidability, Complexity, Reductions.

Ahmed Bouajjani

Paris Diderot University, Paris 7

IFIP WG 2.2 meeting
Lisbon, September 2013

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs



Concurrency at different levels

@ Application level:

» Assumes:
atomicity, isolation, ... (+ sequential specification...)

@ Implementation of concurrent data structures, and system services
» Performances: overlaps between parallel actions, sharing, etc.
» Ensures:
(illusion of) atomicity, isolation ...
> Assumes:
Memory model (sequential consistency, causal delivery, etc.,
or weaker ...)

@ Infrastructures
» Performances: Relaxed memory models (reordering, lossyness, etc.)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013

2/10



Issues at different levels

@ Applications
» Correctness: Program (model) satisfies Specification (of some service)

@ Concurrent Implementations
» Ensuring atomicity (+ specification):
linearizability (shared concurrent data structures),

serializability (transactions),
eventual/causal consistency (distributed data structures), etc.

» Correctness (w.r.t. a specification) over a relaxed memory model.
» Robustness against a memory model:

Given a program P and two memory models M; < M,
[P]Ml = [P]Mz?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 3/ 10



Issues at different levels

@ Applications
» Correctness: Program (model) satisfies Specification (of some service)
> Issues: Complexity (state-space explosion), Undecidability
(recursion+synchronization)
@ Concurrent Implementations
» Ensuring atomicity (+ specification):
linearizability (shared concurrent data structures),

serializability (transactions),
eventual/causal consistency (distributed data structures), etc.

» Correctness (w.r.t. a specification) over a relaxed memory model.
» Robustness against a memory model:

Given a program P and two memory models M; < M,
[P]Ml = [P]Mz?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 3/ 10



Issues at different levels

@ Applications
» Correctness: Program (model) satisfies Specification (of some service)
> Issues: Complexity (state-space explosion), Undecidability
(recursion+synchronization)
@ Concurrent Implementations
» Ensuring atomicity (+ specification):
linearizability (shared concurrent data structures),

serializability (transactions),
eventual/causal consistency (distributed data structures), etc.

» Correctness (w.r.t. a specification) over a relaxed memory model.
» Robustness against a memory model:
Given a program P and two memory models M; < M,
[P]Ml = [P]Mz?

» lIssues: Complexity (huge number of action orders), undecidability
(some commutations allow to encode TM! — queues).

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 3/ 10



Questions

Limits of decidability?
Complexity?

Basic (conceptual/technical) tools?

General and efficient algorithmic approaches?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 4/10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

@ Unbounded Petri nets (= Vector Addition Systems)

@ (Lossy) FIFO-channel systems

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

» Model for sequential programs (with recursive procedures).
» State reachability is polynomial.

@ Unbounded Petri nets (= Vector Addition Systems)

@ (Lossy) FIFO-channel systems

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

» Model for sequential programs (with recursive procedures).
» State reachability is polynomial.
» Also useful when concurrent behaviors can be “sequentialized”.

@ Unbounded Petri nets (= Vector Addition Systems)

@ (Lossy) FIFO-channel systems

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

» Model for sequential programs (with recursive procedures).
» State reachability is polynomial.
» Also useful when concurrent behaviors can be “sequentialized”.

@ Unbounded Petri nets (= Vector Addition Systems)

» Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
» State reachability is decidable (EXPSPACE-complete). Research on

efficient algorithms.

@ (Lossy) FIFO-channel systems

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

» Model for sequential programs (with recursive procedures).
» State reachability is polynomial.
» Also useful when concurrent behaviors can be “sequentialized”.

@ Unbounded Petri nets (= Vector Addition Systems)
» Model for dynamic concurrent programs with (an arbitrary number of)
finite-state (anonymous) threads.
» State reachability is decidable (EXPSPACE-complete). Research on
efficient algorithms.
» Also useful when recursion (stacks) can be “eliminated” using
summarization.

@ (Lossy) FIFO-channel systems

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

» Model for sequential programs (with recursive procedures).
» State reachability is polynomial.
» Also useful when concurrent behaviors can be “sequentialized”.

@ Unbounded Petri nets (= Vector Addition Systems)
» Model for dynamic concurrent programs with (an arbitrary number of)
finite-state (anonymous) threads.
» State reachability is decidable (EXPSPACE-complete). Research on
efficient algorithms.
» Also useful when recursion (stacks) can be “eliminated” using
summarization.

@ (Lossy) FIFO-channel systems
» Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Models

@ Pushdown systems (= Recursive state machines)

» Model for sequential programs (with recursive procedures).
» State reachability is polynomial.
» Also useful when concurrent behaviors can be “sequentialized”.

@ Unbounded Petri nets (= Vector Addition Systems)
» Model for dynamic concurrent programs with (an arbitrary number of)
finite-state (anonymous) threads.
» State reachability is decidable (EXPSPACE-complete). Research on
efficient algorithms.
» Also useful when recursion (stacks) can be “eliminated” using
summarization.
@ (Lossy) FIFO-channel systems
» Model for message-passing programs, and for weak memory models (to
encode various kind of buffers, etc.).
» State reachability is decidable for the lossy model (using the theory of
WQO). Highly complex (non-primitive recursive), but ...

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 5/ 10



Reductions to Basic Classes of Programs

@ Code-to-code translations to:

» Sequential programs
» Concurrent programs over SC

@ As general as possible, regardless from the decidability issue:
Independent from data types, dynamic creation of threads, etc.

@ Decidability and complexity are derived for particular cases

Finite data domains, etc.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 6 /10



Reductions to Basic Classes of Programs

Code-to-code translations to:

» Sequential programs
» Concurrent programs over SC

As general as possible, regardless from the decidability issue:
Independent from data types, dynamic creation of threads, etc.

@ Decidability and complexity are derived for particular cases
Finite data domains, etc.

Questions

» When is this possible?
» How?

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 6 /10



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

@ Sequentialization under Context-bounding

» Bounded interface = Use an “Assume-Guarantee approach” to analyze
sequentially each thread. [Lal, Reps, 08]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 /10



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

@ Sequentialization under Context-bounding
» Bounded interface = Use an “Assume-Guarantee approach” to analyze
sequentially each thread. [Lal, Reps, 08]
» Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 /10



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

@ Sequentialization under Context-bounding
» Bounded interface = Use an “Assume-Guarantee approach” to analyze
sequentially each thread. [Lal, Reps, 08]
» Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

@ What about dynamic creation:

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 /10



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

@ Sequentialization under Context-bounding
» Bounded interface = Use an “Assume-Guarantee approach” to analyze
sequentially each thread. [Lal, Reps, 08]
» Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

@ What about dynamic creation:
» CBA is decidable but at least as hard as State Reachability in Petri

nets. [Atig, B., Qadeer, 09].
= Sequentialization can not be done precisely for CBA.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 /10



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

@ Sequentialization under Context-bounding
» Bounded interface = Use an “Assume-Guarantee approach” to analyze
sequentially each thread. [Lal, Reps, 08]
» Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

@ What about dynamic creation:

» CBA is decidable but at least as hard as State Reachability in Petri
nets. [Atig, B., Qadeer, 09].
= Sequentialization can not be done precisely for CBA.

» Possible under Delay Bounding [Emmi, Qadeer, 11].

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 /10



Concurrent Programs: Sequentialization

o Context-Bounding [Qadeer, Rehof, 05]

@ Sequentialization under Context-bounding
» Bounded interface = Use an “Assume-Guarantee approach” to analyze
sequentially each thread. [Lal, Reps, 08]
» Can be generalized to an arbitrary number of statically generated
threads: fix-point calculation over the domain of interfaces. [La Torre,
Parlato, Madhusudan, 09]

@ What about dynamic creation:

» CBA is decidable but at least as hard as State Reachability in Petri
nets. [Atig, B., Qadeer, 09].
= Sequentialization can not be done precisely for CBA.

» Possible under Delay Bounding [Emmi, Qadeer, 11].

» General schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 7 /10



Serializability and Linearizability

@ Known results: Assume a fixed number of threads

» Serializability: PSPACE-complete [Alur et al. 96, Farzan et al. 08]
» Linearizability: in EXPSPACE [Alur et al. 96]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 8 /10



Serializability and Linearizability

@ Known results: Assume a fixed number of threads

» Serializability: PSPACE-complete [Alur et al. 96, Farzan et al. 08]
» Linearizability: in EXPSPACE [Alur et al. 96]

@ Arbitrary number of threads?
» Reductions to State Reachability:
(Conflict) Serializability and

Static Linearizability (i.e., when linearization points are fixed,
except for read-only methods).

PSPACE/EXSPACE-complete for fixed/unbounded number of
finite-state threads.

» Linearizability is undecidable in general.

[B., Enea, Emmi, Hamza, 13]

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 8 /10



Weak Memory Models

@ State Reachability over a WMM:

» Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
» True for unbounded store buffers (and arbitrary number of threads).

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 /10



Weak Memory Models

@ State Reachability over a WMM:
» Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
» True for unbounded store buffers (and arbitrary number of threads).
» But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)
» = Reduction to State Reachability in SC is not possible precisely.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 /10



Weak Memory Models

e State Reachability over a WMM:

Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
» True for unbounded store buffers (and arbitrary number of threads).

» But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

= Reduction to State Reachability in SC is not possible precisely.
(Code-to-code) translation to State Reachability is possible under
“Age-bounding” [Atig, B., Parlato, 12]

v

v

v

Each write action in a buffer must be executed
after at most K context switches.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 /10



Weak Memory Models

e State Reachability over a WMM:

Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
» True for unbounded store buffers (and arbitrary number of threads).

» But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

= Reduction to State Reachability in SC is not possible precisely.
(Code-to-code) translation to State Reachability is possible under
“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

v

v

v

@ Robustness against TSO:
» State-robustness as hard as State Reachability in TSO.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 /10



Weak Memory Models

e State Reachability over a WMM:

Decidable for TSO (and PSO ...) [Atig, B., Burckhardt, Musuvathi, 10]
» True for unbounded store buffers (and arbitrary number of threads).

» But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

= Reduction to State Reachability in SC is not possible precisely.
(Code-to-code) translation to State Reachability is possible under
“Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed
after at most K context switches.

v

v

v

@ Robustness against TSO:

» State-robustness as hard as State Reachability in TSO.

» Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

» Code-to-code translation, for an arbitrary number of threads,
unbounded buffers, arbitrary data domain.

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 9 /10



Conclusion / questions

A lot remains to be understood concerning decidability frontiers,
complexity, and reducibility to problems such as state reachability in
basic models.

@ In particular: correctness criteria in the distributed case, weak
memory models, etc.

@ Generic reductions for general classes of programs and general
families of correctness criteria.

@ Sequentialization (What is pushdown representable ?) is related to the
notion of “bounded tree-width” [La Torre, Parlato, Madhusudan, 11].

@ We need a general framework for reasoning about order constraints
and their violations. (What is Petri net representable 7)

A. Bouajjani (Univ. Paris Diderot, UP7) Verification of Concurrent Programs Lisbon, September 2013 10 / 10



