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Two elusive concepts

Confidentiality (aka Secrecy)

Sensitive information is never leaked to unintended parties. Often pursued via
encryption. Protection of "high-entropy’ secrets:

@ PIN's, passwords, keys, credit card numbers
@ memory content

Personal information about individuals is never disclosed. Often pursued via
anonymization and aggregation of data. Protection of

@ participation of an individual in a database
@ value of an individual's sensitive (e.g. medical) attribute
@ individual's purchase preferences

M. Boreale (DiSIA - Universita di Firenze) An introduction to Quantitative Information |



Attacker

Despite a variety of concrete contexts and situations, the underlying paradigm is
conceptually simple. We presuppose an attacker that gets to know certain
observable information and, from this, tries her/his best to learn the secret.

0 S
© | I

o Attacker’s task: infer the secret given the observable information.

@ Our tasks:

@ quantify the attacker’'s chances of success / necessary effort

@ devise tools and methods to make chances as small as possible / effort as
large as possible.

M. Boreale (DiSIA - Universita di Firenze) An introduction to Quantitative Information |



Attacker

Despite a variety of concrete contexts and situations, the underlying paradigm is
conceptually simple. We presuppose an attacker that gets to know certain
observable information and, from this, tries her/his best to learn the secret.
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o Attacker’s task: infer the secret given the observable information.

@ Our tasks:

@ quantify the attacker’'s chances of success / necessary effort

@ devise tools and methods to make chances as small as possible / effort as
large as possible.

o Two models: Quantitative Information Leakage (QIF, confidentiality) and
Differential Privacy (DP, privacy).
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QIF: motivation and intuition

Let us consider a program/system operating taking as input a sensitive variable S
and producing a public (observable) output O, as a 'black-box'.

S 0,

-  —

Ideal situation: Noninterference (Goguen-Meseguer 1982). Value of O does not
depend on the secret S.

In practice, this is extremely hard to achieve, especially when the output O has to
have some utility.

Example: PIN-checker

L=input ()
if S=L then 0:=yes else 0:=no
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QIF: motivation and intuition

Let us consider a program/system operating taking as input a sensitive variable S
and producing a public (observable) output O, as a 'black-box'.

S 0,

-  —

Ideal situation: Noninterference (Goguen-Meseguer 1982). Value of O does not
depend on the secret S.

In practice, this is extremely hard to achieve, especially when the output O has to
have some utility.

Example: PIN-checker

L=input ()
if S=L then 0:=yes else 0:=no

Realistic approach: measure the quantity of information (in bits) the attacker
can learn about S by observing O. If this is very small - below a given threshold -
decree the system secure.
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A noisy channel model (e.g [Chatzikokolakis, Palamidessi 2008])

(Probabilistic) programs or systems viewed as noisy channels:
@ input S = sensitive information
@ output O = observables

Noisy: fixed a given input, one can obtain different outputs each with a certain
probability (probabilistic programs)

S

s p(o|]s) —=>
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A noisy channel model (e.g [Chatzikokolakis, Palamidessi 2008])

(Probabilistic) programs or systems viewed as noisy channels:
@ input S = sensitive information
@ output O = observables

Noisy: fixed a given input, one can obtain different outputs each with a certain
probability (probabilistic programs)

S

s p(o|]s) —=>

Formally:

Randomization mechanism

A randomization mechanism is a triple R = (S, O, p(:|-)), where:
© S is a finite set of secret inputs, representing the sensitive information
Q O is a finite set of observations, representing the observable information

© p(:|-) €[0,1]5%9 is a conditional probability matrix, where each row sums up
to 1.

Note: a matrix with only 0-1 entries defines an 1/O function f : § — O.
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Simple examples/1

PIN-checker. Assume 0 < S < 4, uniformly distributed. O = {yes,no}.

Program: Matrix:
\\ assume L=3 yes no
if S=L then 0 0 1
0:=yes 1 0 1
else Pl = 2 0 1
0:=no 3 1 0
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Simple examples/1

PIN-checker. Assume 0 < S < 4, uniformly distributed. O = {yes,no}.

Program: Matrix:
\\ assume L=3 yes no
if S=L then 0 0 1
0:=yes 1 0 1
else Pl = 2 0 1
0:=no 3 1 0

An interesting program (Smith '09). Assume 0 < S < 232, uniformly
distributed.

if S mod 8 = 0 then

0 :=8
else
0 :=1
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Simple examples/1

PIN-checker. Assume 0 < S < 4, uniformly distributed. O = {yes,no}.

Program: Matrix:
\\ assume L=3 yes no
if S=L then 0 0 1
0:=yes 1 0 1
else Pl = 2 0 1
0:=no 3 1 0

An interesting program (Smith '09). Assume 0 < S < 232, uniformly
distributed.

if S mod 8 = 0 then

0 :=8
else
0 :=1
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Simple examples/2

Crowds, a probabilistic anonymity protocol (Reiter,
Rubin 1998).

0
A node is detected: is it the true sender or just o/
forwarder? o R
a forwarde B &
@) \ o)
o ©
./‘

With three honest nodes and one corrupted, we have
S = {nl, ny, n3}, O = {dl, d2, d3} and

S
d1 d2 d3
7 1 1
M 8§ 16 16
N 1 7 1
_ 2
p( | ) = 16 8 16
i 1 7
N3 16 16 8

Many more examples
@ in databases, queries may leak information about 'sensitive’ fields
o side-channel attacks against smart-cards: exploit correlation between secret

key and execution time, power consumption, ...
o ...
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Quantifying flow of information/1

Consider a randomization mechanism R.

o Adversary knows prior probability distribution ps(-) on S: this also
incorporates his own background knowledge.

@ Secret and observable information form then a pair of random variables
(S, 0), distributed according to ps.o(s,0) = ps(s) - p(o]s).

2 p(ofs) —5
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Quantifying flow of information/1

Consider a randomization mechanism R.

o Adversary knows prior probability distribution ps(-) on S: this also
incorporates his own background knowledge.

@ Secret and observable information form then a pair of random variables
(S, 0), distributed according to ps.o(s,0) = ps(s) - p(o]s).

2 p(ofs) —5

Assume we have an uncertainty measure H(-) for random variables.
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Quantifying flow of information/1

Consider a randomization mechanism R.

o Adversary knows prior probability distribution ps(-) on S: this also
incorporates his own background knowledge.

@ Secret and observable information form then a pair of random variables
(S, 0), distributed according to ps.o(s,0) = ps(s) - p(o]s).

2 p(ofs) —5

Assume we have an uncertainty measure H(-) for random variables.

Information flow = reduction in uncertainty

Information Flow = prior uncertainty - posterior uncertainty
def

' H(S) — H(S|0)
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Quantifying flow of information /2

Note:

e /(5;0) o H(S) — H(S|O0) is often named mutual information in Information
Theory.

o H(S|O) represents average posterior uncertainty. E.g. >~ p(0)H(S|O0 = o).

@ The flow is 0 precisely when S and O are independent: only in this case
H(S5|0) = H(S), hence /(S; O) = 0 (Non-Interference).

e If H(S) =~ 0, then I(S; 0) = 0.
Alas, there is little we can do if passwords are badly chosen!
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Quantifying flow of information - pictorially

Leaked
information

H(X]Y)

Uncertainty H(X) captures "height of wall”, in terms of chances of success of
guessing, or expected effort for learning, the secret X.

(courtesy of Boris Kopf)
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But what is "Uncertainty’ ?

Several proposals for H(-). First (obvious) attempt:

Shannon entropy (Shannon 1948)

def
Hsu(S) = =32, p(s)log p(s)
= Average n. of binary questions necessary to learn S
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But what is "Uncertainty’ ?

Several proposals for H(-). First (obvious) attempt:

Shannon entropy (Shannon 1948)

def
Hsu(S) = =3, p(s)logp(s)
= Average n. of binary questions necessary to learn S

PIN-checking example. Let S be a 5-digits PIN, chosen at random.
if S=L then 0O:=yes else 0:=no

@ Prior uncertainty: H(S) = log 10° ~ 16.6096 bits

@ Posterior uncertainty.
o H(S|O="yes') =0
o H(S|O =" no’) = log(10° — 1)
On average: H(S|O) = (105’1)|og(105 —1) ~ 16.6094

105

@ Information flow = H(S)-H(S|O) ~ 0.0002 bits
So my PIN is safe, after all...
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Does Shannon entropy properly reflect "how difficult’ is to

guess?

Assume 0 < S < 232 uniformly distributed.

if S mod 8 = 0 then

0 :=8
else
0 :=1

@ Prior uncertainty: H(S) = 32 bits

@ Posterior uncertainty.

o H(5|0 =y)=0for y #1, happens % of the times;
o H(5|0 =1) =32 —log g, happens £ of the times;

On average: H(S5|0) = & x (32— log &) ~ 28 — 0.169 bits
@ Information flow = H(S)-H(S|O) ~ 4.169 bits

M. Boreale (DiSIA - Universita di Firenze) An introduction to Quantitative Information |




Does Shannon entropy properly reflect "how difficult’ is to

guess?

Assume 0 < S < 232 uniformly distributed.

if S mod 8 = 0 then

0 :=8
else
0 :=1

@ Prior uncertainty: H(S) = 32 bits

@ Posterior uncertainty.

o H(5|0 =y)=0for y #1, happens % of the times;
o H(5|0 =1) =32 —log g, happens £ of the times;

On average: H(S5|0) = & x (32— log &) ~ 28 — 0.169 bits
@ Information flow = H(S)-H(S|O) ~ 4.169 bits

Suggests that ~ 7/8 of the secret bits remain unleaked. However, adversary can
guess the whole 32 bits of the secret % of the times!
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A more operational notion

Min-entropy (Renyi 1961)

Hx(S) ef — log maxs p(s)

= —log (chances of successfully guess S in one try)
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A more operational notion

Min-entropy (Renyi 1961)

Hx(S) L Jog maxs p(s)
= —log (chances of successfully guess S in one try)

Hw(S|0) < — log ( Zp max p(s|o) )

=avg. a posteriori chances of success

@ Proposed by Smith in 2009 as an alternative to Shannon for QIF

o Clear operational significance:

p(success a posteriori )
p(success a priori)

Leakage = H(S) — H(S|0) = log

1 bit gained by attacker = success probability doubled!
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Some results/1

For a deterministic program and a uniform prior

Leakage = log(# distinct output values of the program )

(Smith 2009) In other words, leakage only depends on |Im(f)|, where f : § — O
(termination considered observable).
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Some results/1

For a deterministic program and a uniform prior
Leakage = log(# distinct output values of the program )

(Smith 2009) In other words, leakage only depends on |Im(f)|, where f : § — O
(termination considered observable).

This leaks log 22° = 29 bits of min-entropy
Example:
if S mod 8 = 0 then (vs. = 4 of Shannon) about S.
0 :=8S
else
0 :=1
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Some results/1

For a deterministic program and a uniform prior
Leakage = log(# distinct output values of the program )

(Smith 2009) In other words, leakage only depends on |Im(f)|, where f : § — O
(termination considered observable).

This leaks log 22° = 29 bits of min-entropy

iE%‘a's"',’r!gji 8 = 0 then (vs. = 4 of Shannon) about S.
0:=38
else
0:=1
Proof: H(S|0) = —log (>, p(0)>0 P(0) maxs p(s|0))
= —10g (X,.p(0)>0 P(0) maxs %) (Bayes)
— —log (z,,;,,«,m maxs p(0]3)p(s)
= —log( |é| Zo p(0)>0 Maxs p(0]5)) (uniform prior)
= Iog( 1) (determinism)
= Iog(i
H(S)— H(5|0) = —log % + Iog ‘IT};P‘ = log (|5 10A)
= log|Im(f)|
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Some results/2

For a general probabilistic program and repeated observations;
conditional independence of Os, ..., O, given S is typically assumed:

p(ola ) O"|5) = I_I_Ip(o_l|5)
Leakage(n) def 1(S; O™). Under a uniform prior, as n — 400

Leakage(n) — log(# distinct indistinguishability classes of the program)

((Boreale et al. 2011) for Heo; for generic uncertainty measures, (Boreale and Pampaloni
2013). Note: exact rate of convergence can be determined from the matrix.)

M. Boreale (DiSIA - Universita di Firenze) An introduction to Quantitative Information |



What does that mean?

Indistinguishability

Given s,s" € S, we let s = s’ iff for each o: p(o|s) = p(o|s’).
This means rows s and s’ in matrix p(:|-) are equal.

Intuition: with infinitely many
observations, precisely the

indistinguishability class of the secret will

be learned by the attacker.

d o)
. .

el |°

In the case of uniform prior distribution,
1(S;[S]=) = log K, where K is the

number of classes.

Example:

if S mod 8 = rnd[0..7] then
0 :=58

else
0 :=1

In this case, K = |S| = 2%,
hence asymptotic leakage is 32
bits.
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Further research/1: Compositionality

o Non-expansiveness for sequential and parallel composition (Képf et al., Smith
et al. 2012), also in a process-algebraic setting (Boreale 2006):

Leakage(Py o P;) < Leakage(P1) + Leakage(P-)
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Further research/1: Compositionality

o Non-expansiveness for sequential and parallel composition (Képf et al., Smith
et al. 2012), also in a process-algebraic setting (Boreale 2006):

Leakage(Py o P;) < Leakage(P1) + Leakage(P-)
@ In the case of Shannon entropy:

o Leakage = /(S; 0) = 1(0;S) = H(O) — H(OI|S) = H(O)
——
=0, if P det.

e Chain rule (provided ¢ depends only on O):

H(O) = H(¢) + H(O|¢)
e Hence for if-then-else
Leakage(if b then cl else c2) = H(b) + p(b)H(c1|b) + p(—b)H(c2|—b)

(provided final value of 0 determines initial value of b.)
o Extensible to looping constructs, cf. Malacaria, POPL'07.
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Example (if-then-else)

Leakage(if b then c1 else c¢2) = H(b) + p(b)H(cl|b)
+ p(—b)H(c2|-b)

if S%8 =0 then

0 :=8
else
0 :=1
Leakage = H(S% =0) + p(S%8 =0)H(D:=8|S%8 =0)
+ p(S%8 '=0)H(0:=1|S%8 !=0)
= HE.5)  + §x29
+ Ixo
~ 4.169
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Further research/2

@ Trace-based observations? Systems go through several states before producing a

result, if any. At each step, attacker detects a (noisy) observation of the current
state, like in Hidden Markov Models.

Observation = trace, hence set of observables is now O*.
Much of the theory extends smoothly (Boreale et al. 2011).

S1 So S3
01 02 O3
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Further research/2

@ Trace-based observations? Systems go through several states before producing a
result, if any. At each step, attacker detects a (noisy) observation of the current
state, like in Hidden Markov Models.

Observation = trace, hence set of observables is now O*.
Much of the theory extends smoothly (Boreale et al. 2011).

S1 So S3
01 02 O3

o Adaptive attackers? O = f(S, q), for query g € Q. Attacker can repeatedly choose
and submit queries g, based on previous observations, hence play a strategy
o : 0" — Q. Complete observation is O,. Leakage is

H(S) — inf H(S|0,)

Optimal strategy computable via MDP-based algorithms. Non-adaptive, brute
force strategies are as efficient as adaptive ones, up to a length expansion of x|Q].
(Boreale, Pampaloni 2013).
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Further research/3

@ Relation with privacy. Aim: protect information about any individual in a
DB, independently of attacker’s prior knowledge. ldeally, even participation of
the individual in the DB should be hidden.

o QIF may not be adequate, because it is an average measure
<2.20 >2.20

n [0 1 7
i 1 0
i 1 0
ia 1 0
is 1 0
o L 1 0

Individual iy is the o-nly one with height > 2.20 m.
Yet (min-entropy): /(S; O) = H(S) — H(S]O) =1 bit, out of 30 bits.
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Further research/3

@ Relation with privacy. Aim: protect information about any individual in a
DB, independently of attacker’s prior knowledge. ldeally, even participation of
the individual in the DB should be hidden.

o QIF may not be adequate, because it is an average measure
<2.20 >2.20

n [0 1 7
i 1 0
i 1 0
ia 1 0
is 1 0
o L 1 0

Individual iy is the o-nly one with height > 2.20 m.
Yet (min-entropy): /(S; O) = H(S) — H(S]O) =1 bit, out of 30 bits.

@ Also, answers of the mechanism should not be deterministic. E.g. query gives
exact average height: attacker could make a query before and after insertion
of individual 7, and learn i's height.
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Differential Privacy: definitions

Definition (Dwork 2006). Let € > 0, assume S is a set of DB instances. A
randomization mechanism is e-differentially private if for any two DB instances s
and s’ which differ by exactly one individual, for each o € O:

ye < PLols) _
p(ols’)
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Differential Privacy: definitions

Definition (Dwork 2006). Let € > 0, assume S is a set of DB instances. A
randomization mechanism is e-differentially private if for any two DB instances s
and s’ which differ by exactly one individual, for each o € O:

ye < PLols) _
p(ols’)

Laplacian noise. Let Q : S — R be a query function. Let
A = max, a4, s |Q(s) — Q(s")| be the sensitivity of Q (e.g., if Q is the counting query,

A =1). The mechanism defined by
O = Q(S) + Y where Y~2_‘;i ‘ l

is differentially private, whatever S.
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Conclusion

@ QIF: a model of confidentiality based on simple information-theoretic
concepts

@ Very active research area in Theoretical Computer Science. Strong relations
with Differential Privacy and Data Base communities.

o Challenges:
@ Incorporate QIF concepts and analysis in programming languages (type
systems, tools,....). Promising work by Képf and Rybalchenko on automated
estimation of QIF; for DP, cf. McSherry’s PINQ.

© Real-world applications. Promising work on CPU caches and timing leaks in
RSA (cf. work by Képf and Smith).
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