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Two elusive concepts

Con�dentiality (aka Secrecy)

Sensitive information is never leaked to unintended parties. Often pursued via
encryption. Protection of 'high-entropy' secrets:

PIN's, passwords, keys, credit card numbers

memory content

...

Privacy

Personal information about individuals is never disclosed. Often pursued via
anonymization and aggregation of data. Protection of

participation of an individual in a database

value of an individual's sensitive (e.g. medical) attribute

individual's purchase preferences

...
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Attacker

Despite a variety of concrete contexts and situations, the underlying paradigm is
conceptually simple. We presuppose an attacker that gets to know certain
observable information and, from this, tries her/his best to learn the secret.

O S

Attacker's task: infer the secret given the observable information.

Our tasks:
1 quantify the attacker's chances of success / necessary e�ort
2 devise tools and methods to make chances as small as possible / e�ort as

large as possible.

Two models: Quantitative Information Leakage (QIF, con�dentiality) and
Di�erential Privacy (DP, privacy).
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QIF: motivation and intuition

Let us consider a program/system operating taking as input a sensitive variable S

and producing a public (observable) output O, as a 'black-box'.

S O

Ideal situation: Noninterference (Goguen-Meseguer 1982). Value of O does not
depend on the secret S .
In practice, this is extremely hard to achieve, especially when the output O has to
have some utility.

Example: PIN-checker

L=input()

if S=L then O:=yes else O:=no

Realistic approach: measure the quantity of information (in bits) the attacker
can learn about S by observing O. If this is very small - below a given threshold -
decree the system secure.
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A noisy channel model (e.g.[Chatzikokolakis, Palamidessi 2008])

(Probabilistic) programs or systems viewed as noisy channels:

input S = sensitive information

output O = observables

Noisy: �xed a given input, one can obtain di�erent outputs each with a certain
probability (probabilistic programs)

p(o|s)S O

Formally:

Randomization mechanism

A randomization mechanism is a triple R = (S,O, p(·|·)), where:
1 S is a �nite set of secret inputs, representing the sensitive information

2 O is a �nite set of observations, representing the observable information

3 p(·|·) ∈ [0, 1]S×O is a conditional probability matrix, where each row sums up
to 1.

Note: a matrix with only 0-1 entries de�nes an I/O function f : S → O.
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Simple examples/1

PIN-checker. Assume 0 ≤ S < 4, uniformly distributed. O = {yes, no}.
Program:

\\ assume L=3

if S=L then

O:=yes

else

O:=no

Matrix:

p(·|·) =


yes no

0 0 1
1 0 1
2 0 1
3 1 0



An interesting program (Smith '09). Assume 0 ≤ S < 232, uniformly
distributed.

if S mod 8 = 0 then

O := S

else

O := 1

The entire secret is leaked 1
8
of the times. Is it a big leak or not? We will see.
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Simple examples/2

Crowds, a probabilistic anonymity protocol (Reiter,
Rubin 1998).
A node is detected: is it the true sender or just
a forwarder?
With three honest nodes and one corrupted, we have
S = {n1, n2, n3}, O = {d1, d2, d3} and

p(·|·) =



d1 d2 d3

n1
7
8

1
16

1
16

n2
1
16

7
8

1
16

n3
1
16

1
16

7
8


Many more examples

in databases, queries may leak information about 'sensitive' �elds
side-channel attacks against smart-cards: exploit correlation between secret
key and execution time, power consumption,...
...
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Quantifying �ow of information/1

Consider a randomization mechanism R.

Adversary knows prior probability distribution pS(·) on S: this also
incorporates his own background knowledge.

Secret and observable information form then a pair of random variables
(S ,O), distributed according to pS,O(s, o) = pS(s) · p(o|s).

p(o|s)S O

Assume we have an uncertainty measure H(·) for random variables.

Information �ow = reduction in uncertainty

Information Flow = prior uncertainty - posterior uncertainty
def
= H(S)− H(S |O)
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Quantifying �ow of information/2

Note:

I (S ;O)
def
= H(S)−H(S |O) is often named mutual information in Information

Theory.

H(S |O) represents average posterior uncertainty. E.g.
∑

o p(o)H(S |O = o).

The �ow is 0 precisely when S and O are independent: only in this case
H(S |O) = H(S), hence I (S ;O) = 0 (Non-Interference).

If H(S) ≈ 0, then I (S ;O) ≈ 0.
Alas, there is little we can do if passwords are badly chosen!
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Quantifying �ow of information - pictorially

(courtesy of Boris Köpf)

Uncertainty H(X ) captures �height of wall�, in terms of chances of success of
guessing, or expected e�ort for learning, the secret X .
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But what is 'Uncertainty'?

Several proposals for H(·). First (obvious) attempt:

Shannon entropy (Shannon 1948)

HSh(S)
def
= −

∑
s p(s) log p(s)

= Average n. of binary questions necessary to learn S

PIN-checking example. Let S be a 5-digits PIN, chosen at random.

if S=L then O:=yes else O:=no

Prior uncertainty: H(S) = log 105 ≈ 16.6096 bits

Posterior uncertainty.

H(S |O =′ yes ′) = 0
H(S |O =′ no′) = log(105 − 1)

On average: H(S |O) = ( 105−1
105

) log(105 − 1) ≈ 16.6094

Information �ow = H(S)-H(S|O) ≈ 0.0002 bits

So my PIN is safe, after all...
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Does Shannon entropy properly re�ect 'how di�cult' is to
guess?

Assume 0 ≤ S < 232, uniformly distributed.

if S mod 8 = 0 then

O := S

else

O := 1

Prior uncertainty: H(S) = 32 bits

Posterior uncertainty.

H(S |O = y) = 0 for y 6= 1, happens 1
8
of the times;

H(S |O = 1) = 32− log 8
7
, happens 7

8
of the times;

On average: H(S |O) = 7
8
× (32− log 8

7
) ≈ 28− 0.169 bits

Information �ow = H(S)-H(S|O) ≈ 4.169 bits

Suggests that ≈ 7/8 of the secret bits remain unleaked. However, adversary can
guess the whole 32 bits of the secret 1

8
of the times!
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A more operational notion

Min-entropy (Renyi 1961)

H∞(S)
def
= − logmaxs p(s)
= − log

(
chances of successfully guess S in one try

)

H∞(S |O)
def
= − log

( ∑
o

p(o)max
s

p(s|o)︸ ︷︷ ︸
=avg. a posteriori chances of success

)

Proposed by Smith in 2009 as an alternative to Shannon for QIF

Clear operational signi�cance:

Leakage = H(S)− H(S |O) = log
p(success a posteriori )

p(success a priori)

1 bit gained by attacker = success probability doubled!
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Some results/1

For a deterministic program and a uniform prior

Leakage = log(# distinct output values of the program )

(Smith 2009) In other words, leakage only depends on |Im(f )|, where f : S → O
(termination considered observable).

Example:
if S mod 8 = 0 then

O := S

else

O := 1

This leaks log 229 = 29 bits of min-entropy
(vs. ≈ 4 of Shannon) about S .

Proof: H(S |O) = − log
(∑

o:p(o)>o p(o)maxs p(s|o)
)

= − log
(∑

o:p(o)>o p(o)maxs
p(o|s)p(s)

p(o)

)
(Bayes)

= − log
(∑

o:p(o)>o maxs p(o|s)p(s)
)

= − log
(

1
|S|
∑

o:p(o)>o maxs p(o|s)
)

(uniform prior)

= − log
(

1
|S|
∑

o:p(o)>o 1
)

(determinism)

= − log
( |Im(f )|
|S|

)
H(S)− H(S |O) = − log 1

|S| + log
|Im(f )|
|S| = log

(
|S| |Im(f )|

|S|
)

= log |Im(f )|
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Some results/2

For a general probabilistic program and repeated observations;
conditional independence of O1, ...,On given S is typically assumed:

p(o1, ..., on|s) = Πjp(oj |s)

Leakage(n)
def
= I (S ;On). Under a uniform prior, as n→ +∞

Leakage(n)→ log(# distinct indistinguishability classes of the program)

((Boreale et al. 2011) for H∞; for generic uncertainty measures, (Boreale and Pampaloni

2013). Note: exact rate of convergence can be determined from the matrix.)
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What does that mean?

Indistinguishability

Given s, s ′ ∈ S, we let s ≡ s ′ i� for each o: p(o|s) = p(o|s ′).
This means rows s and s ′ in matrix p(·|·) are equal.

Intuition: with in�nitely many
observations, precisely the
indistinguishability class of the secret will
be learned by the attacker.

In the case of uniform prior distribution,
I (S ; [S ]≡) = logK , where K is the
number of classes.

Example:

if S mod 8 = rnd[0..7] then

O := S

else

O := 1

In this case, K = |S| = 232,
hence asymptotic leakage is 32
bits.
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Further research/1: Compositionality

Non-expansiveness for sequential and parallel composition (Köpf et al., Smith
et al. 2012), also in a process-algebraic setting (Boreale 2006):

Leakage(P1 ◦ P2) ≤ Leakage(P1) + Leakage(P2)

In the case of Shannon entropy:

Leakage = I (S ;O) = I (O; S) = H(O)− H(O|S)︸ ︷︷ ︸
=0, if P det.

= H(O)

Chain rule (provided φ depends only on O):

H(O) = H(φ) + H(O|φ)

Hence for if-then-else

Leakage(if b then c1 else c2) = H(b) + p(b)H(c1|b) + p(¬b)H(c2|¬b)

(provided �nal value of O determines initial value of b.)

Extensible to looping constructs, cf. Malacaria, POPL'07.
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Example (if-then-else)

Leakage(if b then c1 else c2) = H(b) + p(b)H(c1|b)
+ p(¬b)H(c2|¬b)

if S%8 =0 then

O := S

else

O := 1

Leakage = H(S% =0) + p(S%8 =0)H(O:=S|S%8 =0)
+ p(S%8 !=0)H(O:=1|S%8 !=0)

= H( 1
8
, 7
8

) + 1
8
× 29

+ 7
8
× 0

≈ 4.169

M. Boreale (DiSIA - Università di Firenze) An introduction to Quantitative Information Flow (QIF)
IFIP WG 2.2, FCT-UNL, Lisbon 23-27 September 2013 18

/ 24



Further research/2

Trace-based observations? Systems go through several states before producing a
result, if any. At each step, attacker detects a (noisy) observation of the current
state, like in Hidden Markov Models.
Observation = trace, hence set of observables is now O∗.
Much of the theory extends smoothly (Boreale et al. 2011).

S1

O1

S2

O2

S3

O3

· · ·

· · ·

Adaptive attackers? O = f (S , q), for query q ∈ Q. Attacker can repeatedly choose
and submit queries q, based on previous observations, hence play a strategy

σ : O∗ → Q. Complete observation is Oσ. Leakage is

H(S)− inf
σ
H(S |Oσ)

Optimal strategy computable via MDP-based algorithms. Non-adaptive, brute

force strategies are as e�cient as adaptive ones, up to a length expansion of ×|Q|.
(Boreale, Pampaloni 2013).
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Further research/3

Relation with privacy. Aim: protect information about any individual in a
DB, independently of attacker's prior knowledge. Ideally, even participation of
the individual in the DB should be hidden.

QIF may not be adequate, because it is an average measure

<2.20 ≥2.20

i1 0 1
i2 1 0
i3 1 0
i4 1 0
i5 1 0
...

...
...

i109 1 0


Individual i1 is the only one with height ≥ 2.20 m.
Yet (min-entropy): I (S ;O) = H(S)− H(S |O) = 1 bit, out of 30 bits.

Also, answers of the mechanism should not be deterministic. E.g. query gives
exact average height: attacker could make a query before and after insertion
of individual i , and learn i 's height.
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Di�erential Privacy: de�nitions

De�nition (Dwork 2006). Let ε > 0, assume S is a set of DB instances. A
randomization mechanism is ε-di�erentially private if for any two DB instances s
and s ′ which di�er by exactly one individual, for each o ∈ O:

2−ε ≤ p(o|s)

p(o|s ′) ≤ 2ε

Laplacian noise. Let Q : S → R be a query function. Let
∆ = maxs adj. s′ |Q(s)− Q(s ′)| be the sensitivity of Q (e.g., if Q is the counting query,
∆ = 1). The mechanism de�ned by

O = Q(S) + Y where Y ∼ 2
−|y| ε

∆

Z

is di�erentially private, whatever S .
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Conclusion

QIF: a model of con�dentiality based on simple information-theoretic
concepts

Very active research area in Theoretical Computer Science. Strong relations
with Di�erential Privacy and Data Base communities.

Challenges:
1 Incorporate QIF concepts and analysis in programming languages (type

systems, tools,....). Promising work by Köpf and Rybalchenko on automated
estimation of QIF; for DP, cf. McSherry's PINQ.

2 Real-world applications. Promising work on CPU caches and timing leaks in
RSA (cf. work by Köpf and Smith).
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