Modeling and Analysis of Hybrid Systems

Erika Ábrahám

RWTH Aachen University, Germany

IFIP WG 2.2 meeting Lisbon, September 2013

Hybrid systems

Discrete systems:

Hybrid systems

Combined with dynamic (continuous) behavior:

1 Modeling

2 Reachability analysis

3 Conclusion

WITHAACHEN Erika Ábrahám - Modeling and Analysis of Hybrid Systems

1 Modeling

2 Reachability analysis

3 Conclusion

WITHAACHEN Erika Ábrahám - Modeling and Analysis of Hybrid Systems

- Modeling formalism depends on the formal methods to be applied
- Engineering: Matlab/Simulink, hybrid SFCs
- Computer Science: Logics, hybrid automata

- Modeling formalism depends on the formal methods to be applied
 Engineering: Matlab/Simulink, hybrid SFCs
- Engineering. Matiab/Simulink, hybrid Si Cs
- Computer Science: Logics, hybrid automata

Mathematics, Computer Science, Engineering Sciences

- Modeling formalism depends on the formal methods to be applied
 Engineering: Matlab/Simulink, hybrid SFCs
- Computer Science: Logics, hybrid automata

Mathematics, Computer Science, Engineering Sciences

- Modeling formalism depends on the formal methods to be applied
 Engineering: Matlab/Simulink, hybrid SFCs
- Computer Science: Logics, hybrid automata

Mathematics, Computer Science, Engineering Sciences

- Modeling formalism depends on the formal methods to be applied
 Engineering: Matlab/Simulink, hybrid SFCs
- Computer Science: Logics, hybrid automata

Mathematics, Computer Science, Engineering Sciences

- Modeling formalism depends on the formal methods to be applied
 Engineering: Matlab/Simulink, hybrid SFCs
- Computer Science: Logics, hybrid automata

Mathematics, Computer Science, Engineering Sciences

- Modeling formalism depends on the formal methods to be applied
 Engineering: Matlab/Simulink, hybrid SFCs
- Computer Science: Logics, hybrid automata

Temperature x is regulated by a thermostat: $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on" $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"

• Temperature x is regulated by a thermostat: $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on" $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"

Temperature x is regulated by a thermostat: $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on" $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"

Some interesting subclasses of hybrid automata

subclass	derivatives	conditions	bounded	unbounded
			reachability	reachability
timed automata	$\dot{x} = 1$	$x \sim c$	decidable	decidable
initialized	$\dot{x} \in [c_1, c_2]$	$x \sim [c_1, c_2]$	decidable	decidable
rectangular automata	reset by deriva	tive change		
linear hybrid automata I	$\dot{x} = c$	$x \sim g_{\textit{linear}}(\vec{x})$	decidable	undecidable
linear hybrid automata II	$\dot{x} = f_{\textit{linear}}(\vec{x})$	$x \sim g_{\textit{linear}}(\vec{x})$	undecidable	undecidable
general hybrid automata	$\dot{x} = f(\vec{x})$	$x \sim g(\vec{x})$	undecidable	undecidable

1 Modeling

2 Reachability analysis

3 Conclusion

WITHAACHEN Erika Ábrahám - Modeling and Analysis of Hybrid Systems

What is the challenge?

- Hybrid systems are often safety-critical
- Methods for their reachability analysis are needed
- The reachability problem is undecidable for all but some simple subclasses

What is the challenge?

- Hybrid systems are often safety-critical
- Methods for their reachability analysis are needed
- The reachability problem is undecidable for all but some simple subclasses
- Analysis of discrete systems has a long tradition
- Hybrid systems bring new challenges:
 - 1 represent state sets
 - 2 methods to analyze the continuous behavior
 - 3 extensions to cover the discrete behavior

What is the challenge?

- Hybrid systems are often safety-critical
- Methods for their reachability analysis are needed
- The reachability problem is undecidable for all but some simple subclasses
- Analysis of discrete systems has a long tradition
- Hybrid systems bring new challenges:
 - 1 represent state sets
 - 2 methods to analyze the continuous behavior
 - 3 extensions to cover the discrete behavior
- The problems are as expected:
 - **1** efficiency in computation time
 - 2 memory consumption
 - 3 precision

- Uppaal [Behrmann et al., 2004]
- HyTech [Henzinger et al., 1997]
- PHAVer [Frehse, 2005]
- SpaceEx [Frehse et al., 2011]
- d/dt [Asarin et al., 2002]
- Ellipsoidal toolbox [Kurzhanski et al., 2006]
- MATISSE [Girard et al., 2007]
- Multi-Parametric Toolbox [Kvasnica et al., 2004]
- Flow* [Chen et al., 2012]

The two most popular techniques for reachability analysis

Given: hybrid automaton + set of unsafe states

Abstraction

Iterative forward/backward search

[Baier and Katoen, Principles of Model Checking]

Timed automata

[Baier and Katoen, Principles of Model Checking]

Timed automata

More efficient approach: difference bound matrices

[Baier and Katoen, Principles of Model Checking]

Decidability proof by transformation:

Initialized rectangular automaton \downarrow Initialized singular automaton \downarrow Initialized stopwatch automaton \downarrow Timed automaton

Decidability proof by transformation:

Initialized rectangular automaton \downarrow Initialized singular automaton \downarrow Initialized stopwatch automaton \downarrow Timed automaton

Not used in practice.

- Now it gets challenging... for non-constant derivatives even the bounded reachability problem is undecidable.
- Most methods over-approximate reachability.
- Therefore, only safety can be proven.

- Now it gets challenging... for non-constant derivatives even the bounded reachability problem is undecidable.
- Most methods over-approximate reachability.
- Therefore, only safety can be proven.

We need an over-approximative state set representation and operations on them like intersection, union, linear transformation and Minkowski sum.

- Now it gets challenging... for non-constant derivatives even the bounded reachability problem is undecidable.
- Most methods over-approximate reachability.
- Therefore, only safety can be proven.

We need an over-approximative state set representation and operations on them like intersection, union, linear transformation and Minkowski sum.

Geometric objects:

- hyperrectangles [Moore et al., 2009]
- oriented rectangular hulls [Stursberg et al., 2003]
- convex polyhedra [Ziegler, 1995] [Chen at el, 2011]
- orthogonal polyhedra [Bournez et al., 1999]
- template polyhedra [Sankaranarayanan et al., 2008]
- ellipsoids [Kurzhanski et al., 2000]
- zonotopes [Girard, 2005])
- Other symbolic representations:
 - support functions [Le Guernic et al., 2009]
 - Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]

The representation is crucial for

- the representation size,
- efficiency and
- accuracy.

 \blacksquare Halfspace: set of points satisfying $l\cdot x \leq z$

Halfspace: set of points satisfying $l \cdot x \leq z$

- **Halfspace**: set of points satisfying $l \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces

- **Halfspace**: set of points satisfying $l \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces

- **Halfspace**: set of points satisfying $l \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

- **Halfspace**: set of points satisfying $l \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

- **Halfspace**: set of points satisfying $l \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

- **Halfspace**: set of points satisfying $l \cdot x \leq z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

representation	union	intersection	Minkowski sum
\mathcal{V} -representation by vertices	easy	hard	easy
\mathcal{H} -representation by facets	hard	easy	hard

• Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.

■ Compute the vertices of R_ℓ(P) = (P ⊕ cone(Q)) ∩ Inv(ℓ).
■ Example:

■ Compute the vertices of R_ℓ(P) = (P ⊕ cone(Q)) ∩ Inv(ℓ).
■ Example:

Used by HyTech and PHAVer.

■ Compute the vertices of R_ℓ(P) = (P ⊕ cone(Q)) ∩ Inv(ℓ).
 ■ Example:

- Used by HyTech and PHAVer.
- Disadvantage: number of vertices might increase exponentially

Computed via projection and Minkowski sum.

- Computed via projection and Minkowski sum.
- Need to handle exponentially many vertices

Theorem

If the state space, dynamics, initial set and unsafe set are all polytopes then bounded reachability can be computed in polynomial time.

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Flowpipe over-approximation by a set of flowpipe segments

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Flowpipe over-approximation by a set of flowpipe segments
 The first flowpipe segment:

 V_0

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V} \\ \mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Flowpipe over-approximation by a set of flowpipe segments
The first flowpipe segment:
The remaining ones:

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Flowpipe over-approximation by a set of flowpipe segments
The first flowpipe segment:
The remaining ones:

Scheme:

$$\dot{x} = Ax + Bu \qquad \qquad \Omega_{n+1} = e^{A\delta}\Omega_n \oplus \mathcal{V}$$
$$\mathcal{R}_{[i\delta,(i+1)\delta]} \subseteq \qquad \Omega_i$$

δ

 $2\delta t$

Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Scheme:

$$\begin{aligned} \dot{x} &= Ax + Bu \\ \mathcal{R}_{[i\delta,(i+1)\delta]} &\subseteq & \Omega_i \end{aligned}$$

Flowpipe over-approximation by a set of flowpipe segments
The first flowpipe segment:
The remaining ones:

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Our contribution: Taylor model representation of state sets

Example flowpipe computation using Taylor models

Current features:

- Deals with polynomial hybrid automata
- Uses adaptive orders and step sizes in Taylor model integration
- Includes several heuristics for flowpipe aggregation

Upcoming features:

- Time-varying uncertainties in ODEs
- Non-polynomial terms in ODEs, invariants and guards

Fetch the tool

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

Flow*: Taylor Model-Based Analyzer for Hybrid Systems

What is Flow*?

Flow* is a tool which computes *Taylor model flowpipes* for a given continuous or hybrid systems. The current version of Flow* is able to handle hybrid systems with

· continuous dynamics defined by polynomial ordinary differential equations (ODEs),

- · mode invariants and jump guards defined by conjunctions of polynomial constraints,
- · jump resets defined by polynomial mappings.

What are flowpipes?

There are various definitions on flourpipes. Here, a flowpipe means an over-approximation of the reachable states in a time interval (or step).

Why Taylor models?

A Taylor model is the set defined by a polynomial (over an interval domain) bloated by an interval. The flow of a continuous system can be tightly enclosed by Taylor models. With proper interval-based techniques, we may construct Taylor model flowpies for non-linear hybrid systems.

How to use Flow*?

Source code

The source code is released under the GNU General Public License (GPL). We are happy to release the code under a license that is more (or less) permissive upon request. source code

Some case studies on Flow* is available now. link

Publications

- Xin Chen, Erika Abraham and Sriram Sankaranarayanan. Flow*: An Analyzer for Non-Linear Hybrid Systems. Computer Aided Verification (CAV), 2013.
- Xin Chen, Erika Abraham and Sriram Sankaranarayanan. Taylor Model Flowpipe Construction for Non-linear Hybrid Systems. IEEE Real-Time Systems Symposium (RTSS), 2012.
- Yan Zhang, Xin Chen, Erika Abraham and Sriram Sankaranarayanan. Empirical Taylor Model Flowpipe Construction for Analog Circuits (Abstract). Frontiers of Analog Computation Workshop, 2025; (differential be posted soon).

Pannla

Constructing Flowpipes for Continuous and Hybrid Systems: Case-Studies.

Introduction

We present a set of benchmarks of continuous and hybrid systems as long as their running results on the tool Flow⁺. These studies are intended to benchmark the performance of Flow⁺ tool and serve as a basis of comparison with other tools.

All these studies are run on the following computational platform.

CPU: Intel Core i7-860 Processor (2.80 GHz) Memory: 4096 MB System: Ubuntu 12.04 LTS

Continuous-Time Case Studies (A) Brusselator The Bruselator overmis a "chemical oscillator" (see here for more detaile)

The dynamics of a Brusselator are given by

 $\left\{ \begin{array}{ll} \dot{x} &=& A+x^2\cdot y-B\cdot x-x\\ \dot{y} &=& B\cdot x-x^2\cdot y \end{array} \right.$

wherein $A \rightarrow 1$ and $B \rightarrow 1_5$ in our tests. We let Flow⁴ compute the Taylor model flowpipes for the time horizon [0,1g]. We first choose the initial set x in [0,9,4] and y in [0,0,4], Flow⁴ costs 7 seconds to generate the flowpipes shown in the figure below. (model file)

Our contribution: Geometric library

- We develop an open-source C++ library supporting different geometric state set representations and operations on them.
- We use this library to implement novel reachability analysis algorithms using
 - convex polyhedra [EUROCAST'11],
 - rectangles [RP'11] or
 - combining geometric objects with Taylor models [RTSS'12, NSV'12, CAV'13].

Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers

- Formalize safety by a LRA formula Prop
- Counterexamples of length k correspond to solutions of

 $BMC_k = Init(s_0) \land Trans(s_0, s_1) \land \ldots \land Trans(s_{k-1}, s_k) \land \neg Prop(s_k)$

• Check BMC_k , $i = 0, 1, \ldots$, for satisfiability

Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers

- Formalize safety by a LRA formula Prop
- Counterexamples of length k correspond to solutions of

 $BMC_k = Init(s_0) \land Trans(s_0, s_1) \land \ldots \land Trans(s_{k-1}, s_k) \land \neg Prop(s_k)$

- Check BMC_k , i = 0, 1, ..., for satisfiability
- Popular due to powerful solvers for LRA (HySat/iSAT, Yices/Z3,...)
- More general than reachability (path properties can be checked)
- Can be extended for verification
- Our contribution: SMT-RAT [Corzilius et al., 2012] library of theory solvers

[Biere et al, 2003], [Ábrahám et al., 2005]

Other methods: Simulation-based approaches

Other methods: Simulation-based approaches

- A lot happened in the last two decades
- There are several approaches and tools for hybrid automata with linear ODEs
- Some approaches are also available for non-linear ODEs
- There is a need for further development in terms of efficiency, scalability and expressivity