Modeling and Analysis of Hybrid Systems

Erika Ábrahám

RWTH Aachen University, Germany

IFIP WG 2.2 meeting Lisbon, September 2013

Hybrid systems

Hybrid systems

Discrete systems:

Hybrid systems

Discrete systems:

Combined with dynamic (continuous) behavior:

Contents

1 Modeling

2 Reachability analysis

3 Conclusion

Contents

1 Modeling

2 Reachability analysis

3 Conclusion

Modeling

Interdisciplinary research area:
Mathematics, Computer Science, Engineering Sciences

Modeling

Interdisciplinary research area:
Mathematics, Computer Science, Engineering Sciences

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied
■ Engineering: Matlab/Simulink, hybrid SFCs
■ Computer Science: Logics, hybrid automata

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied
■ Engineering: Matlab/Simulink, hybrid SFCs
■ Computer Science: Logics, hybrid automata

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied
■ Engineering: Matlab/Simulink, hybrid SFCs
■ Computer Science: Logics, hybrid automata

Time model can be discrete or continuous.

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied

- Engineering: Matlab/Simulink, hybrid SFCs

■ Computer Science: Logics, hybrid automata

Time model can be discrete or continuous.

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied
■ Engineering: Matlab/Simulink, hybrid SFCs
■ Computer Science: Logics, hybrid automata

Time model can be discrete or continuous.

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied

- Engineering: Matlab/Simulink, hybrid SFCs

■ Computer Science: Logics, hybrid automata

Time model can be discrete or continuous.

Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

■ Modeling formalism depends on the formal methods to be applied
■ Engineering: Matlab/Simulink, hybrid SFCs
■ Computer Science: Logics, hybrid automata

Time model can be discrete or continuous.

Example hybrid automaton: Thermostat

Example hybrid automaton: Thermostat

- Temperature x is regulated by a thermostat: $17^{\circ} \leq x \leq 18^{\circ} \rightsquigarrow$ "heater on" $22^{\circ} \leq x \leq 23^{\circ} \rightsquigarrow$ "heater off"

Example hybrid automaton: Thermostat

- Temperature x is regulated by a thermostat:
$17^{\circ} \leq x \leq 18^{\circ} \leadsto$ "heater on"
$22^{\circ} \leq x \leq 23^{\circ} \rightsquigarrow$ "heater off"

Example hybrid automaton: Thermostat

- Temperature x is regulated by a thermostat: $17^{\circ} \leq x \leq 18^{\circ} \rightsquigarrow$ "heater on" $22^{\circ} \leq x \leq 23^{\circ} \rightsquigarrow$ "heater off"

Some interesting subclasses of hybrid automata

subclass	derivatives	conditions	bounded	unbounded
			reachability	reachability
timed automata	$\dot{x}=1$	$x \sim c$	decidable	decidable
initialized	$\dot{x} \in\left[c_{1}, c_{2}\right]$	$x \sim\left[c_{1}, c_{2}\right]$	decidable	decidable
rectangular automata	reset by derivative change			
linear hybrid automata I	$\dot{x}=c$	$x \sim g_{\text {linear }}(\vec{x})$	decidable	undecidable
linear hybrid automata II	$\dot{x}=f$ linear (\vec{x})	$x \sim g_{\text {linear }}(\vec{x})$	undecidable	undecidable
general hybrid automata	$\dot{x}=f(\vec{x})$	$x \sim g(\vec{x})$	undecidable	undecidable

[Henzinger et al., 1998]

Contents

1 Modeling

2 Reachability analysis

3 Conclusion

What is the challenge?

■ Hybrid systems are often safety-critical

- Methods for their reachability analysis are needed
- The reachability problem is undecidable for all but some simple subclasses

What is the challenge?

■ Hybrid systems are often safety-critical

- Methods for their reachability analysis are needed
- The reachability problem is undecidable for all but some simple subclasses
- Analysis of discrete systems has a long tradition
- Hybrid systems bring new challenges:

1 represent state sets
2 methods to analyze the continuous behavior
3 extensions to cover the discrete behavior

What is the challenge?

■ Hybrid systems are often safety-critical

- Methods for their reachability analysis are needed
- The reachability problem is undecidable for all but some simple subclasses
- Analysis of discrete systems has a long tradition

■ Hybrid systems bring new challenges:
1 represent state sets
2 methods to analyze the continuous behavior
3 extensions to cover the discrete behavior

- The problems are as expected:

1 efficiency in computation time
2 memory consumption
3 precision

Some tools

■ Uppaal [Behrmann et al., 2004]
■ HyTech [Henzinger et al., 1997]
■ PHAVer [Frehse, 2005]
■ SpaceEx [Frehse et al., 2011]
■ d/dt [Asarin et al., 2002]
■ Ellipsoidal toolbox [Kurzhanski et al., 2006]
■ MATISSE [Girard et al., 2007]
■ Multi-Parametric Toolbox [Kvasnica et al., 2004]
■ Flow* [Chen et al., 2012]

The two most popular techniques for reachability analysis

Given: hybrid automaton + set of unsafe states

Abstraction
Iterative forward/backward search

Timed automata

[Baier and Katoen, Principles of Model Checking]

Timed automata

$\varphi_{\text {TCTL }}$
\downarrow transformation
$\varphi_{C T L}$
[Baier and Katoen, Principles of Model Checking]

Timed automata

$$
\begin{array}{cc}
\text { timed automaton } & \models T C T L \\
\text { abstraction } \downarrow & \mathfrak{\downarrow} \\
\text { Kripke structure } & \models C T L
\end{array}
$$

$\varphi_{\text {TCTL }}$
\downarrow transformation
$\varphi_{C T L}$

■ More efficient approach: difference bound matrices
[Baier and Katoen, Principles of Model Checking]

Initialized rectangular automata

[Henzinger et al., 1998]

Initialized rectangular automata

Decidability proof by transformation:

Initialized rectangular automaton
\downarrow
Initialized singular automaton
\downarrow
Initialized stopwatch automaton
\downarrow
Timed automaton
[Henzinger et al., 1998]

Initialized rectangular automata

Decidability proof by transformation:

Initialized rectangular automaton
\downarrow
Initialized singular automaton
\downarrow
Initialized stopwatch automaton
\downarrow
Timed automaton

Not used in practice.
[Henzinger et al., 1998]

More general hybrid automata

More general hybrid automata

■ Now it gets challenging... for non-constant derivatives even the bounded reachability problem is undecidable.

- Most methods over-approximate reachability.
- Therefore, only safety can be proven.

More general hybrid automata

■ Now it gets challenging... for non-constant derivatives even the bounded reachability problem is undecidable.

- Most methods over-approximate reachability.
- Therefore, only safety can be proven.

We need an over-approximative state set representation and operations on them like intersection, union, linear transformation and Minkowski sum.

More general hybrid automata

■ Now it gets challenging... for non-constant derivatives even the bounded reachability problem is undecidable.

- Most methods over-approximate reachability.
- Therefore, only safety can be proven.

We need an over-approximative state set representation and operations on them like intersection, union, linear transformation and Minkowski sum.

Minkowski sum

$$
\begin{aligned}
& \begin{array}{r}
x_{2} \uparrow \\
3 \\
2 \\
2 \\
1 \\
\hline
\end{array} \\
& P \oplus Q=\{p+q \mid p \in P \text { and } q \in Q\}
\end{aligned}
$$

Most well-known state set representations

Geometric objects:

■ hyperrectangles [Moore et al., 2009]
■ oriented rectangular hulls [Stursberg et al., 2003]
■ convex polyhedra [Ziegler, 1995] [Chen at el, 2011]

- orthogonal polyhedra [Bournez et al., 1999]

■ template polyhedra [Sankaranarayanan et al., 2008]
■ ellipsoids [Kurzhanski et al., 2000]
■ zonotopes [Girard, 2005])
Other symbolic representations:
■ support functions [Le Guernic et al., 2009]
■ Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]

The choice of the representation

The representation is crucial for

- the representation size,
- efficiency and
- accuracy.

Example: Polytopes

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$
■ Polyhedron: an intersection of finitely many halfspaces

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$
■ Polyhedron: an intersection of finitely many halfspaces

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$

- Polyhedron: an intersection of finitely many halfspaces

■ Polytope: a bounded polyhedron

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$
■ Polyhedron: an intersection of finitely many halfspaces
■ Polytope: a bounded polyhedron

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$

- Polyhedron: an intersection of finitely many halfspaces

■ Polytope: a bounded polyhedron

Example: Polytopes

■ Halfspace: set of points satisfying $l \cdot x \leq z$

- Polyhedron: an intersection of finitely many halfspaces

■ Polytope: a bounded polyhedron

representation	union	intersection	Minkowski sum
\mathcal{V}-representation by vertices	easy	hard	easy
\mathcal{H}-representation by facets	hard	easy	hard

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Time evolution

Linear hybrid automata I: Classical representation of $R_{\ell}(P)$

Linear hybrid automata I: Classical representation of $R_{\ell}(P)$

■ Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.

Linear hybrid automata I: Classical representation of $R_{\ell}(P)$

■ Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.

- Example:

Linear hybrid automata I: Classical representation of $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

■ Used by HyTech and PHAVer.

Linear hybrid automata I: Classical representation of $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

■ Used by HyTech and PHAVer.

- Disadvantage: number of vertices might increase exponentially

Linear hybrid automata I: Discrete steps (jumps)

Linear hybrid automata I: Discrete steps (jumps)

Linear hybrid automata I: Discrete steps (jumps)

ℓ

ℓ^{\prime}

Linear hybrid automata I: Discrete steps (jumps)

ℓ

ℓ^{\prime}

Linear hybrid automata I: Discrete steps (jumps)

Linear hybrid automata I: Discrete steps (jumps)

ℓ

ℓ^{\prime}

Linear hybrid automata I: Discrete steps (jumps)

■ Computed via projection and Minkowski sum.

Linear hybrid automata I: Discrete steps (jumps)

■ Computed via projection and Minkowski sum.
■ Need to handle exponentially many vertices

Linear hybrid automata I: Our contribution

TheoremIf the state space, dynamics, initial set and unsafe set are all polytopesthen bounded reachability can be computed in polynomial time.

Linear hybrid automata II: Time evolution

Linear hybrid automata II: Time evolution

Linear hybrid automata II: Time evolution

Linear hybrid automata II: Time evolution

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{crr}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{crr}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{crr}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

■ Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:

Linear hybrid automata II: Time evolution

- Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Linear hybrid automata II: Time evolution

- Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Linear hybrid automata II: Time evolution

- Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Linear hybrid automata II: Time evolution

- Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Linear hybrid automata II: Time evolution

- Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Linear hybrid automata II: Time evolution

- Scheme:

$$
\begin{array}{ccc}
\dot{x}=A x+B u & & \Omega_{n+1}=e^{A \delta} \Omega_{n} \oplus \mathcal{V} \\
\mathcal{R}_{[i \delta,(i+1) \delta]} & \subseteq & \Omega_{i}
\end{array}
$$

■ Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

Linear hybrid automata II: Discrete steps (jumps)

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Linear hybrid automata II: The global picture

Our contribution: Taylor model representation of state sets

Example flowpipe computation using Taylor models

Our tool: Flow*

Current features:

- Deals with polynomial hybrid automata
- Uses adaptive orders and step sizes in Taylor model integration
- Includes several heuristics for flowpipe aggregation

Upcoming features:

- Time-varying uncertainties in ODEs

■ Non-polynomial terms in ODEs, invariants and guards

Fetch the tool

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

Flow*: Taylor Model-Based Analyzer for
 Hybrid Systems

What is Flow*?

Flow" is a tool which computes Taydor model flouppipes for a given continuous or hybrid systems. The eurrent version of Flow" is able to handle hytrid sytems with

- continuous dynamies defined by polpnomial ordinary differential equations (ODEs),
- mode invariants and jump gaards defined by conjunctions of polynonaial constraints,
- jamp resets defined by polynonial mappings.

What are flowpipes?

There are varions definitions on foumpes. Here, a flowpipe means an over-approximation of the reachable states in a time interval (or step).

Why Taylor models?

A Taylor model is the set defined by a polynomial (over an interval domain) bloated by an interval. The flow of a continuoas system ean be tightly enclosed by Taylor models. With proper interval-based techniques, we may construet Taylor nodel flowpipes for non-linear hybrid systems.

How to use Flow*?
A user manual can be found bere.

Source code

The source code is released ander the GNU General Public License (GPL). We are happy to relense the code under a license that is more (or less) permissive upon request. source code

Some case studies on Flow* is available now. lint

Publications

- Xin Chen, Erika Abraham and Sriram Sankaranarayanan. Flow*: An Analyzer for Non-Linear Hytwid Sytems. Compater Aided Verification (CAV), 202.
- Xin Chen, Erika Abraham and Sriram Sankaranarayanaa. Taylor Model Flowpipe Construction for Non-linear Hybrid Systems. IEEE Real-Time Systens Symposium (RTSS), 2012.
- Yan Zhang, Xin Chen, Erika Abraham and Sriram Sankaranarayanan. Empirical Taylor Model Flowpipe Construction for Analog Circuits (Abstruet). Frontiers of Analog Computation Workshop, 2013. (slides will be poted soon).

Dannla

Constructing Flowpipes for Continuous and Hybrid Systems: Case-Studies.

Introduction
We present a set of benchmarks of continuous and hybrid gystems as long as their running resaits on the tool Flow ${ }^{*}$. These studies are intended to benchmark the performance of Flow* tool and serve as a basis of comparison with other tools.

All these studles are run on the following computational platform.
CPU: Intel Core $17-860$ Processor (2.80 GHz)
Memory: 4096 MB
System: Ubuntu 12.04 LTS
Continuous-Time Case Studies
(A) Brusselator

The Brusselator system is a "chemical oscillator" (see here for more details).
The dynamics of a Brusselator are given by

wherein $\mathrm{A}=1$ and $\mathrm{B}=1.5$ in our tests. We let Flow* compute the Taylor model flowpipes for the time horizon [$\mathbf{0 , 4 5]}$. We first choose the initial set \mathbf{x} in $[\mathbf{0 . 9 , 1}]$ and \mathbf{y} in $[\mathbf{0}, \mathbf{0}, \mathbf{1}]$, Flow ${ }^{4}$ costs $\mathbf{7}$ seconds to generate the flowpipes shown in the figure below. (model file)

Our contribution: Geometric library

■ We develop an open-source C++ library supporting different geometric state set representations and operations on them.
■ We use this library to implement novel reachability analysis algorithms using

- convex polyhedra [EUROCAST'11],
- rectangles [RP'11] or
- combining geometric objects with Taylor models [RTSS'12, NSV'12, CAV'13].

Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers
■ Formalize safety by a LRA formula Prop
■ Counterexamples of length k correspond to solutions of

$$
B M C_{k}=\operatorname{Init}\left(s_{0}\right) \wedge \operatorname{Trans}\left(s_{0}, s_{1}\right) \wedge \ldots \wedge \operatorname{Trans}\left(s_{k-1}, s_{k}\right) \wedge \neg \operatorname{Prop}\left(s_{k}\right)
$$

■ Check $B M C_{k}, i=0,1, \ldots$, for satisfiability
[Biere et al, 2003], [Ábrahám et al., 2005]

Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers
■ Formalize safety by a LRA formula Prop

- Counterexamples of length k correspond to solutions of

$$
B M C_{k}=\operatorname{Init}\left(s_{0}\right) \wedge \operatorname{Trans}\left(s_{0}, s_{1}\right) \wedge \ldots \wedge \operatorname{Trans}\left(s_{k-1}, s_{k}\right) \wedge \neg \operatorname{Prop}\left(s_{k}\right)
$$

■ Check $B M C_{k}, i=0,1, \ldots$, for satisfiability

- Popular due to powerful solvers for LRA (HySat/iSAT, Yices/Z3,...)
- More general than reachability (path properties can be checked)
- Can be extended for verification

■ Our contribution: SMT-RAT [Corzilius et al., 2012] library of theory solvers
[Biere et al, 2003], [Ábrahám et al., 2005]

Other methods: Simulation-based approaches

Other methods: Simulation-based approaches

Conclusion

- A lot happened in the last two decades
- There are several approaches and tools for hybrid automata with linear ODEs

■ Some approaches are also available for non-linear ODEs

- There is a need for further development in terms of efficiency, scalability and expressivity

