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Some interesting subclasses of hybrid automata

subclass derivatives conditions bounded unbounded
reachability | reachability
timed automata z=1 T~cC decidable decidable
initialized z € [e1, 2] x ~ [c1, c2] decidable decidable
rectangular automata reset by derivative change
linear hybrid automatal & =-¢ Z ~ Glinear(Z) decidable undecidable
linear hybrid automata Il & = fiinear(Z) = ~ Glinear(¥) | undecidable | undecidable
general hybrid automata & = f(&) z ~ g(%) undecidable | undecidable

[Henzinger et al., 1998]
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m Hybrid systems are often safety-critical

m Methods for their reachability analysis are needed
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What is the challenge?

m Hybrid systems are often safety-critical
m Methods for their reachability analysis are needed
m The reachability problem is undecidable for all but some simple
subclasses
m Analysis of discrete systems has a long tradition
m Hybrid systems bring new challenges:
represent state sets
methods to analyze the continuous behavior
extensions to cover the discrete behavior
m The problems are as expected:

efficiency in computation time
memory consumption
precision
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Some tools

Uppaal [Behrmann et al., 2004]

HyTech [Henzinger et al., 1997]

PHAVer [Frehse, 2005]

SpaceEx [Frehse et al., 2011]

d/dt [Asarin et al., 2002]

Ellipsoidal toolbox [Kurzhanski et al., 2006]
MATISSE [Girard et al., 2007]

Multi-Parametric Toolbox [Kvasnica et al., 2004]
Flow* [Chen et al., 2012]
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The two most popular techniques for reachability analysis

Given: hybrid automaton + set of unsafe states

Abstraction Iterative forward/backward search
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Timed automata

[Baier and Katoen, Principles of Model Checking]
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Timed automata

timed automaton E=TcTL PTCTL
abstraction l :t l transformation
Kripke structure Ecre YCTL

53 54 55 56 57 58 59 60

2 454647 48 49 50 51 52
32 36 40
31 33 35 37 39 41 43 44
34 38 42

1 232425262728 2930

10 14 18
9 1 13 15 17 19 21 22
12 16 20

0 T 12 3 4 5 6 78

[Baier and Katoen, Principles of Model Checking]
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m More efficient approach: difference bound matrices

[Baier and Katoen, Principles of Model Checking]
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Initialized rectangular automata

[Henzinger et al., 1998]
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Initialized rectangular automata

Decidability proof by transformation:

Initialized rectangular automaton

!
Initialized singular automaton
1
Initialized stopwatch automaton
1

Timed automaton
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Initialized rectangular automata

Decidability proof by transformation:

Initialized rectangular automaton

!
Initialized singular automaton
1
Initialized stopwatch automaton
1

Timed automaton

Not used in practice.

[Henzinger et al., 1998]
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Minkowski sum

3
o 2 =
1Q

o 1 2 3 = 0 1 2 3 =

PoQ={p+q|pePandqecQ}
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Most well-known state set representations

Geometric objects:

m hyperrectangles [Moore et al., 2009]
oriented rectangular hulls [Stursberg et al., 2003]
convex polyhedra [Ziegler, 1995] [Chen at el, 2011]
orthogonal polyhedra [Bournez et al., 1999]
template polyhedra [Sankaranarayanan et al., 2008]
ellipsoids [Kurzhanski et al., 2000]
m zonotopes [Girard, 2005])

Other symbolic representations:

m support functions [Le Guernic et al., 2009]
m Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]
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The choice of the representation

The representation is crucial for
m the representation size,
m efficiency and

m accuracy.
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Example: Polytopes

m Halfspace: set of points satisfying [ -z < z
m Polyhedron: an intersection of finitely many halfspaces
m Polytope: a bounded polyhedron

representation union | intersection | Minkowski sum
V-representation by vertices | easy hard easy
‘H-representation by facets hard easy hard
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Linear hybrid automata I: Time evolution

Ry(P) = (P & cone(Q)) N Inv(¢)

9 €2
P >
|
0 T1 T1
T
cone(Q)
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AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 18 / 32



Linear hybrid automata |: Classical representation of

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 19 / 32



Linear hybrid automata |: Classical representation of Ry(P)

m Compute the vertices of Ry(P) = (P @ cone(Q)) N Inv({).

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 19 / 32



Linear hybrid automata |: Classical representation of Ry(P)

m Compute the vertices of Ry(P) = (P @ cone(Q)) N Inv({).

m Example:

€To 33'2 T

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 19 / 32



Linear hybrid automata |: Classical representation of Ry(P)

m Compute the vertices of Ry(P) = (P @ cone(Q)) N Inv({).

m Example:

€To 33'2 T

P
o

0 ]

,C'Cl 0 I

m Used by HyTech and PHAVer.
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Linear hybrid automata |: Classical representation of Ry(P)

m Compute the vertices of Ry(P) = (P @ cone(Q)) N Inv({).

m Example:

€To 33'2 T

P
o

0 ]

m Used by HyTech and PHAVer.

m Disadvantage: number of vertices might increase exponentially
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Linear hybrid automata I: Discrete steps (jumps)
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m Computed via projection and Minkowski sum.
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Linear hybrid automata I: Discrete steps (jumps)

m Computed via projection and Minkowski sum.

m Need to handle exponentially many vertices
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Linear hybrid automata I: Our contribution

If the state space, dynamics, initial set and unsafe set are all polytopes
then bounded reachability can be computed in polynomial time.
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Linear hybrid automata II: Time evolution
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Linear hybrid automata II: Time evolution
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Linear hybrid automata II: Discrete steps (jumps)
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Linear hybrid automata II: The global picture

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Linear hybrid automata II: The global picture

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Linear hybrid automata II: The global picture

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Linear hybrid automata II: The global picture

7
A4

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Linear hybrid automata II: The global picture

XY//
A4

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Linear hybrid automata II: The global picture

XY//
A4

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Linear hybrid automata II: The global picture

XY//
A4

AACHEN Erika Abraham - Modeling and Analysis of Hybrid Systems 24 / 32



Our contribution: Taylor model representation of state sets
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Example flowpipe computation using Taylor models
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Our tool: Flow*

Current features:

m Deals with polynomial hybrid automata
m Uses adaptive orders and step sizes in Taylor model integration

m Includes several heuristics for flowpipe aggregation

Upcoming features:
m Time-varying uncertainties in ODEs

m Non-polynomial terms in ODEs, invariants and guards
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Fetch the tool

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

Flow*: Taylor Model-Based Analyzer for Constructing Flowpipes for Continuous
Hybrid Systems and Hybrid Systems: Case-Studies.
What is Flow*? . 3 Introduction
systems The hybrid ing results on the
ool Flow™. Flow* ool and. abasis of

. i i i comparison with other tooks.

+ oodek p uarda efed " "

+ o e deind by pekmacial mbcriaga A
‘What are flowpipes? CPU:  Intel Core I7-860 Processor (2.80 GHz)

i ipes. Flere, i Memory: 4096 MB.
staes in a time interval (or step). System:  Ubuntu 12.04 LTS
XihiT:ﬁldur models? N Continuous-Time Case Studies
o  comtinsons e ca b gy econd by oo models Wih prper el b i, v (&) Brusselator
How to use Flow*? The dynamics of a Brasselator are given by
A coumnsl am b omnd b, S
— (82 g
code P - o
wherein A=1and B=1§ in our tests. We let Flow* compute the Taylor model flowpipes for the time hortzon

Some case studies on Flow” is available now. fnk [0,15). Weﬂ.-nn:ememm.ln xin[0.9,1] lndp: In [0,0.5], Flow® cosls 7 seconds 1o generale
Publications the flowpipes shown In the figure below. (model )

+ i Chen,Erka Abrabam s S Skararayasn. Flowe’: A Acalyae o Hoo: Lineas Fybeid

Sysema. Compater Aidd Verfcation OAY), 2018
+ X Chen, Erkn Abrabam sl —
T b ol P
2013, sfides ell be posted sooe) froemet

Pannla
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http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

Our contribution: Geometric library

m We develop an open-source C++ library supporting different
geometric state set representations and operations on them.
m We use this library to implement novel reachability analysis algorithms
using
m convex polyhedra [EUROCAST'11],
m rectangles [RP'11] or
m combining geometric objects with Taylor models [RTSS'12, NSV'12,
CAV'13].
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Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers

m Formalize safety by a LRA formula Prop

m Counterexamples of length % correspond to solutions of
BMCy, = Init(sg) A Trans(so, s1) A ... A Trans(sk—1, sk) A = Prop(sy,)

m Check BMC, i =0,1,..., for satisfiability

[Biere et al, 2003], [Abraham et al., 2005]



Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers

m Formalize safety by a LRA formula Prop

m Counterexamples of length % correspond to solutions of
BMCy, = Init(sg) A Trans(so, s1) A ... A Trans(sk—1, sk) A = Prop(sy,)

m Check BMC, i =0,1,..., for satisfiability

m Popular due to powerful solvers for LRA
(HySat/iSAT, Yices/Z3,...)
m More general than reachability (path properties can be checked)
m Can be extended for verification
m Our contribution: SMT-RAT [Corzilius et al., 2012] library of theory
solvers
[Biere et al, 2003], [Abraham et al., 2005]



methods: Simulation-based approaches
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Conclusion

m A lot happened in the last two decades

m There are several approaches and tools for hybrid automata with linear
ODEs

m Some approaches are also available for non-linear ODEs

m There is a need for further development in terms of efficiency,
scalability and expressivity
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