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Hybrid systems

Discrete systems:

Combined with dynamic (continuous) behavior:
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Modeling

Interdisciplinary research area:

Mathematics, Computer Science, Engineering Sciences

Modeling formalism depends on the formal methods to be applied
Engineering: Matlab/Simulink, hybrid SFCs
Computer Science: Logics,

Time model can be discrete or .
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Example hybrid automaton: Thermostat

Temperature x is regulated by a thermostat:
17◦≤ x ≤ 18◦  “heater on” 22◦≤ x ≤ 23◦  “heater off”
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ẋ = K(h− x)

x ≤ 23

`off

ẋ = −Kx

x ≥ 17

x = 20

x ≥ 22

x ≤ 18

Erika Ábrahám - Modeling and Analysis of Hybrid Systems 5 / 32



Example hybrid automaton: Thermostat

Temperature x is regulated by a thermostat:
17◦≤ x ≤ 18◦  “heater on” 22◦≤ x ≤ 23◦  “heater off”

t

on

off
t

x

20

18
17

22
23

`on
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Some interesting subclasses of hybrid automata

subclass derivatives conditions bounded unbounded

reachability reachability

timed automata ẋ = 1 x ∼ c decidable decidable

initialized ẋ ∈ [c1, c2] x ∼ [c1, c2] decidable decidable

rectangular automata reset by derivative change

linear hybrid automata I ẋ = c x ∼ glinear(~x) decidable undecidable

linear hybrid automata II ẋ = flinear(~x) x ∼ glinear(~x) undecidable undecidable

general hybrid automata ẋ = f(~x) x ∼ g(~x) undecidable undecidable

[Henzinger et al., 1998]
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What is the challenge?

Hybrid systems are often safety-critical
Methods for their reachability analysis are needed
The reachability problem is undecidable for all but some simple
subclasses

Analysis of discrete systems has a long tradition
Hybrid systems bring new challenges:

1 represent state sets
2 methods to analyze the continuous behavior
3 extensions to cover the discrete behavior

The problems are as expected:
1 efficiency in computation time
2 memory consumption
3 precision
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Some tools

Uppaal [Behrmann et al., 2004]
HyTech [Henzinger et al., 1997]
PHAVer [Frehse, 2005]
SpaceEx [Frehse et al., 2011]
d/dt [Asarin et al., 2002]
Ellipsoidal toolbox [Kurzhanski et al., 2006]
MATISSE [Girard et al., 2007]
Multi-Parametric Toolbox [Kvasnica et al., 2004]
Flow∗ [Chen et al., 2012]
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The two most popular techniques for reachability analysis

Given: hybrid automaton + set of unsafe states

Abstraction Iterative forward/backward search
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Timed automata

timed automaton |=TCTL ϕTCTL

Kripke structure |=CTL ϕCTL

abstraction transformation
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More efficient approach: difference bound matrices

[Baier and Katoen, Principles of Model Checking]
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Initialized rectangular automata

Decidability proof by transformation:

Initialized rectangular automaton
↓

Initialized singular automaton
↓

Initialized stopwatch automaton
↓

Timed automaton

Not used in practice.

[Henzinger et al., 1998]
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More general hybrid automata

Now it gets challenging... for non-constant derivatives even the
bounded reachability problem is undecidable.
Most methods over-approximate reachability.
Therefore, only safety can be proven.

We need an over-approximative state set representation and operations on
them like intersection, union, linear transformation and .
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Minkowski sum
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P ⊕Q = {p+ q | p ∈ P and q ∈ Q}
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Most well-known state set representations

Geometric objects:
hyperrectangles [Moore et al., 2009]
oriented rectangular hulls [Stursberg et al., 2003]
convex polyhedra [Ziegler, 1995] [Chen at el, 2011]
orthogonal polyhedra [Bournez et al., 1999]
template polyhedra [Sankaranarayanan et al., 2008]
ellipsoids [Kurzhanski et al., 2000]
zonotopes [Girard, 2005])

Other symbolic representations:
support functions [Le Guernic et al., 2009]
Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012]
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The choice of the representation

The representation is crucial for
the representation size,
efficiency and
accuracy.
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Example: Polytopes

Halfspace: set of points satisfying l · x ≤ z
Polyhedron: an intersection of finitely many halfspaces
Polytope: a bounded polyhedron

l1

l2

l3

l4

representation union intersection Minkowski sum
V-representation by vertices easy hard easy
H-representation by facets hard easy hard
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Linear hybrid automata I: Time evolution

x1
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0

P
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Q
cone(Q)
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x2

0

R`(P ) = (P ⊕ cone(Q)) ∩ Inv(`)P ⊕ cone(Q)
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ẋ2

0

Q

cone(Q)

x1

x2

0

R`(P ) = (P ⊕ cone(Q)) ∩ Inv(`)

P ⊕ cone(Q)

Erika Ábrahám - Modeling and Analysis of Hybrid Systems 18 / 32



Linear hybrid automata I: Time evolution

x1

x2

0

P

ẋ1
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Linear hybrid automata I: Classical representation of R`(P )

Compute the vertices of R`(P ) = (P ⊕ cone(Q)) ∩ Inv(`).
Example:

x1

x2

0

P

ẋ1

ẋ2

0

Q

x1

x2

0

Used by HyTech and PHAVer.
Disadvantage: number of vertices might increase exponentially
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ẋ2

0

Q

x1

x2

0

Used by HyTech and PHAVer.

Disadvantage: number of vertices might increase exponentially

Erika Ábrahám - Modeling and Analysis of Hybrid Systems 19 / 32



Linear hybrid automata I: Classical representation of R`(P )

Compute the vertices of R`(P ) = (P ⊕ cone(Q)) ∩ Inv(`).
Example:

x1

x2

0

P

ẋ1

ẋ2

0

Q

x1

x2

0

Used by HyTech and PHAVer.
Disadvantage: number of vertices might increase exponentially

Erika Ábrahám - Modeling and Analysis of Hybrid Systems 19 / 32



Linear hybrid automata I: Discrete steps (jumps)

`
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`′

x1
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2

4

Computed via projection and Minkowski sum.
Need to handle exponentially many vertices
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Linear hybrid automata I: Our contribution

Theorem
If the state space, dynamics, initial set and unsafe set are all polytopes
then bounded reachability can be computed in polynomial time.
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Linear hybrid automata II: Time evolution

Scheme:

ẋ = Ax+Bu Ωn+1 = eAδΩn ⊕ V
R[iδ,(i+1)δ] Ωi⊆

Flowpipe over-approximation by a set of flowpipe segments

1 The first flowpipe segment:
2 The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V
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ẋ = Ax+Bu Ωn+1 = eAδΩn ⊕ V
R[iδ,(i+1)δ] Ωi⊆

Flowpipe over-approximation by a set of flowpipe segments
1 The first flowpipe segment:
2 The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Erika Ábrahám - Modeling and Analysis of Hybrid Systems 22 / 32



Linear hybrid automata II: Time evolution

Scheme:
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Linear hybrid automata II: Discrete steps (jumps)
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Linear hybrid automata II: The global picture
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Our contribution: Taylor model representation of state sets
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Example flowpipe computation using Taylor models
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Our tool: Flow*

Current features:

Deals with polynomial hybrid automata

Uses adaptive orders and step sizes in Taylor model integration

Includes several heuristics for flowpipe aggregation

Upcoming features:

Time-varying uncertainties in ODEs

Non-polynomial terms in ODEs, invariants and guards
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Fetch the tool

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/
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Our contribution: Geometric library

We develop an open-source C++ library supporting different
geometric state set representations and operations on them.
We use this library to implement novel reachability analysis algorithms
using

convex polyhedra [EUROCAST’11],
rectangles [RP’11] or
combining geometric objects with Taylor models [RTSS’12, NSV’12,
CAV’13].
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Other methods: Bounded model checking

Bounded model checking: counterexample search using SMT-solvers

Formalize safety by a LRA formula Prop
Counterexamples of length k correspond to solutions of

BMCk = Init(s0) ∧ Trans(s0, s1) ∧ . . . ∧ Trans(sk−1, sk) ∧ ¬Prop(sk)

Check BMCk, i = 0, 1, . . ., for satisfiability

Popular due to powerful solvers for LRA
(HySat/iSAT, Yices/Z3,...)
More general than reachability (path properties can be checked)
Can be extended for verification
Our contribution: SMT-RAT [Corzilius et al., 2012] library of theory
solvers

[Biere et al, 2003], [Ábrahám et al., 2005]
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Other methods: Simulation-based approaches
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Conclusion

A lot happened in the last two decades
There are several approaches and tools for hybrid automata with linear
ODEs
Some approaches are also available for non-linear ODEs
There is a need for further development in terms of efficiency,
scalability and expressivity
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