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Abstract. We show that the problem of checking if an infinite tree gen-
erated by a higher-order grammar of level 2 (hyperalgebraic) satisfies
a given µ-calculus formula (or, equivalently, if it is accepted by an al-
ternating parity automaton) is decidable, actually 2-Exptime-complete.
Consequently, the monadic second-order theory of any hyperalgebraic
tree is decidable, so that the safety restriction can be removed from
our previous decidability result. The last result has been independently
obtained by Aehlig, de Miranda and Ong. Our proof goes via a char-
acterization of possibly unsafe second-order grammars by a new variant
of higher-order pushdown automata, which we call panic automata. In
addition to the standard pop1 and pop2 operations, these automata have
an option of a destructive move called panic. The model-checking prob-
lem is then reduced to the problem of deciding the winner in a parity
game over a suitable 2nd order pushdown system.

1 Introduction

Context-free tree grammars constitute the basic level in an infinite hierarchy of
higher-order grammars introduced by W. Damm [8] (built on the earlier ideas
of [11]). Courcelle [6] proved decidability of the monadic second-order (MSO)
theory of any tree generated by an algebraic (context-free) tree grammar. Later
Knapik et al [13, 14] attempted to extend this decidability result to all levels of
the Damm hierarchy. This has been achieved partially, namely with an additional
syntactic restriction imposed on the grammars, called safety: the MSO theory
of any tree generated by a safe grammar of level n is decidable.

Higher-order grammars can be seen as program schemes, where functions
can take higher-order arguments. The tree generated by such a grammar de-
scribes completely the semantics of the program scheme. Thus decidability of
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Abstract

We prove that the modal mu-calculus model-checking
problem for (ranked and ordered) node-labelled trees that
are generated by order- recursion schemes (whether safe
or not, and whether homogeneously typed or not) is -
EXPTIME complete, for every . It follows that the
monadic second-order theories of these trees are decidable.

There are three major ingredients. The first is a certain
transference principle from the tree generated by the scheme
– the value tree – to an auxiliary computation tree, which is
itself a tree generated by a related order-0 recursion scheme
(equivalently, a regular tree). Using innocent game seman-
tics in the sense of Hyland and Ong, we establish a strong
correspondence between paths in the value tree and traver-
sals in the computation tree. This allows us to prove that a
given alternating parity tree automaton (APT) has an (ac-
cepting) run-tree over the value tree iff it has an (accept-
ing) traversal-tree over the computation tree. The second
ingredient is the simulation of an (accepting) traversal-tree
by a certain set of annotated paths over the computation
tree; we introduce traversal-simulating APT as a recognis-
ing device for the latter. Finally, for the complexity result,
we prove that traversal-simulating APT enjoy a succinct-
ness property: for deciding acceptance, it is enough to con-
sider run-trees that have a reduced branching factor. The
desired bound is then obtained by analysing the complexity
of solving an associated (finite) acceptance parity game.

1. Introduction

What classes of finitely-presentable infinite-state sys-
tems have decidable monadic second-order (MSO) theo-
ries? This is a basic problem in Computer-Aided Verifica-
tion that is important to practice because standard temporal
logics such as LTL, CTL and CTL are embeddable in MSO
logic. One of the best known examples of such a class are
the regular trees as studied by Rabin in 1969. A notable
advance occurred some fifteen years later, when Muller and
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Shupp [13] proved that the configuration graphs of push-
down systems have decidable MSO theories. In the 90’s,
as finite-state technologies matured, researchers embraced
the challenges of software verification. A highlight from
this period was Caucal’s result [5] that prefix-recognizable
graphs have decidable MSO theories. In 2002 a flurry of
discoveries significantly extended and unified earlier devel-
opments. In a FOSSACS’02 paper [11], Knapik, Niwiński
and Urzyczyn studied the infinite hierarchy of term-trees
generated by higher-order recursion schemes that are ho-
mogeneously typed and satisfy a syntactic constraint called
safety. They showed that for every , trees generated
by order- safe schemes are exactly those that are accepted
by order- pushdown automata; further they have decid-
able MSO theories. Later in the year at MFCS’02 [6], Cau-
cal introduced a tree hierarchy and a graph hierarchy that
are defined by mutual recursion, using a pair of powerful
transformations that preserve decidability of MSO theories.
Caucal’s tree hierarchy coincides with the hierarchy of trees
generated by higher-order pushdown automata.

Knapik et al. [11] have asked if the safety assumption is
really necessary for their MSO decidability result. A partial
answer has recently been obtained by Aehlig, de Miranda
and Ong; they showed at TLCA’05 [2] that all trees up to or-
der 2, whether safe or not, have decidable MSO theories. In-
dependently, Knapik, Niwiński, Urzyczyn and Walukiewicz
obtained a sharper result: they proved at ICALP’05 [12] that
the modal mu-calculus model-checking problem for trees
generated by order- recursion schemes (whether safe or
not) is -EXPTIME complete. In this paper we give a com-
plete answer to the question:

Theorem 1. The modal mu-calculus model-checking prob-
lem for trees generated by order- recursion schemes
(whether safe or not, and whether homogeneously typed or
not) is -EXPTIME complete, for every . Thus these
trees have decidable MSO theories.

Our approach is to transfer the algorithmic analysis from
the tree generated by a recursion scheme, which we call
value tree, to an auxiliary computation tree, which is it-
self a tree generated by a related order-0 recursion scheme
(equivalently, a regular tree). The computation tree recov-
ers useful intensional information about the computational
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Abstract
We propose a new verification method for temporal properties of
higher-order functional programs, which takes advantage of Ong’s
recent result on the decidability of the model-checking problem
for higher-order recursion schemes (HORS’s). A program is trans-
formed to an HORS that generates a tree representing all the possi-
ble event sequences of the program, and then the HORS is model-
checked. Unlike most of the previous methods for verification of
higher-order programs, our verification method is sound and com-
plete. Moreover, this new verification framework allows a smooth
integration of abstract model checking techniques into verification
of higher-order programs. We also present a type-based verification
algorithm for HORS’s. The algorithm can deal with only a frag-
ment of the properties expressed by modal µ-calculus, but the al-
gorithm and its correctness proof are (arguably) much simpler than
those of Ong’s game-semantics-based algorithm. Moreover, while
the HORS model checking problem is n-EXPTIME in general, our
algorithm is linear in the size of HORS, under the assumption that
the sizes of types and specifications are bounded by a constant.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
With the increasing importance of software reliability, program ver-
ification techniques have been studied extensively. There are still
limitations in the current verification technology, however. Soft-
ware model checking [3–5] has been mainly applied to impera-
tive programming languages, and applications to programming lan-
guages with more dynamic control, such as higher-order languages
with dynamic allocation of resources (such as heap memory), have
been limited. For higher-order programs, type systems have been
recognized as effective techniques for program verification. How-
ever, they either require explicit type annotations (as in dependent
type systems), or suffer from many false alarms.
In this paper, we propose a novel verification technique for tem-

poral properties of higher-order programs. We consider the prob-
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lem of resource usage verification [19] for higher-order functional
languages with dynamic resource creation and access primitives.
The goal of the verification is to check that each dynamically cre-
ated resource is accessed in a proper manner (like “an opened file is
eventually closed, and it is not read or written after being closed”).
Assertion-based model-checking problems (like “X > 0 holds at
program point p”) can also be recasted as the resource verification
problem, by regarding an assertion failure as an access to a global
resource. (For example, “assert(b)” can be transformed into “if
b then skip else fail,” where fail is an action to the global
resource. Then the problem of checking lack of assertion failures
is reduced to the resource usage verification problem of checking
whether the fail action occurs.)
Our verification technique is built on the recent result on

model checking of higher-order recursion schemes (HORS’s, for
short) [29]. A higher-oder recursion scheme is a grammar for de-
scribing an infinite tree. HORS is a generalization of regular tree
grammars; they are described by HORS’s of order 0. Ong [29]
has recently shown the decidability of the problem of checking
whether the infinite tree generated by G satisfies ψ, given a modal
µ-calculus formula ψ and an HORS G.
The first main idea of this paper is to transform a higher-order

functional program into an HORS that produces an infinite tree,
each of whose path (from the root) corresponds to a possible ac-
cess sequence to each resource. By the transformation, the problem
of checking a regular property of resource-wise access behaviors
of a functional program is reduced to that of checking the cor-
responding regular property of the infinite tree generated by the
HORS. The latter can be solved by Ong’s model checking algo-
rithm for HORS [29]. For programs having only resources and
functions as values, the transformation into HORS is achieved by
CPS conversion and λ-lifting, along with an additional trick to ex-
tract “resource-wise” access behavior. For programs with ordinary
values (such as integers), we can apply the technique of predicate
abstractions and counter-example-guided abstraction refinement.
The resulting verification framework is sketched in Figure 1. Given
a source program, we first apply CPS conversion and λ-lifting to get
a system of top-level function definitions (Step 1). We then apply
predicate abstractions to get a higher-order boolean program (Step
2). It is then converted to HORS (Steps 3 and 4), and the HORS is
model-checked (Step 5). If the model checking fails, a counterex-
ample is investigated, and the abstraction is refined (Steps 6 and
7).
The second main idea of this paper is to use types for model-

checking HORS, instead of Ong’s algorithm based on game se-
mantics. For a fragment of modal µ-calculus (for describing safety
properties, which are sufficient for the purpose of resource usage
verification), we develop an intersection type system that is sound
and complete, in the sense that an HORS is well-typed if and only if
the HORS satisfies the given property. Thus, a type inference algo-
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All subterms of t have purely linear kinds, so its linear order is 0. The
in�nite treeBT(t) generated starts as pictured on the left. Themaximal
branches of this in�nite tree have the form bncndne for all n 2 N,
which is not context-free. Thus, due to the correspondence between
order-1 higher-order recursion schemes and pushdown automata
(e.g. [Hague et al. 2008]), BT(t) cannot belong to BT1. However, it does
belong to BT2: it is generated by the order-2 HORS G = h�,N ,R, Si,
where � = {b :: o ! o ! o, c :: o ! o, d :: o ! o, e :: o},
N = {S :: o, F :: (o ! o) ! o,G :: o ! o,H :: (o ! o) ! o ! o},
and R contains the following rules:

S = FG F f = b(f e)(F (H f )) Gx = c(dx) H f x = c(f (dx))
Remark 12. As shown above, for schemes, a �xed linear order may turn out to be more expressive

than the corresponding standard order. This extra expressivity will turn out to have surprisingly
little cost in terms of complexity: we will still be able to show that (under certain constraints) the
corresponding model-checking problem is in n-EXPTIME, where n is the linear order. However,
there will be a price to pay in terms of the kind of properties that can be veri�ed, as captured by
the forthcoming de�nition of automata (De�nition 21).

3 AN ALTERNATIVE: LINEAR HIGHER-ORDER RECURSION SCHEMES
Higher-order model-checking can be expressed in terms of the �Y -calculus, or in terms of higher-
order recursion schemes [Salvati and Walukiewicz 2016]. The new framework described earlier
was introduced as a generalization of the �Y -calculus. Now, we show that it can also be presented
as a generalization of HORS, which we call linear higher-order recursion schemes (LHORS).

3.1 Definition of LHORS
Though based on terms of �̀Y , LHORS are super�cially di�erent: rather than having �xpoint
operators, they handle recursion through a list of mutually recursive function de�nitions. Whereas
the �̀Y -calculus comes from the tradition of the �-calculus, LHORS (like HORS) are inspired by
grammars [Damm 1977] and program schemes [Nivat 1972].

3.1.1 Definition. A term t 2 KT� |�(�) is called applicative if one can derive � | � `ap t :: �
using the kinding rules from Figure 3. An applicative term is necessarily .��� -normal. It does
not contain any �xpoints or abstractions, and only consists of pairing and applying (projections
of) variables from the contexts. We write App� |�(�) for the set of applicative terms t such that
� | � `ap t :: �. A linear HORS will associate to every non-terminal a term of the form

t = l1x1. . . . lnxn . t 0 2 KT� |_(�)
where t 0 2 App�,V� |V`

(o), li 2 {�, `} andVl = {xi | li = l}. We call such terms function de�nitions
of kind � in context �, and write Def�(�) for the corresponding set.

De�nition 13. A linear HORS (LHORS) is a 4-tuple G = h�,N ,R, Si where:
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o ! · · · ! o ! o

o & · · · & o ( o

o ( . . .( o ( o

(A1 !� A2)⇤ = A⇤
1 ! (A⇤

2 ! o) ! o

(A1 !� A2)⇤ = A⇤
1 ! (A⇤

2 ! o) ( o

Fix1 · · · xni = ei
S = F (ce)

F (x) = b(x , F (cx))
N = { S :: o,

F :: (o ( o) ( o,
G :: o ( o,
H :: (o ( o) ( o ( o }

are kinded simply by replacing the non-linear arrows with linear arrows in the HORS of Example
13; and, �nally:

S = F G
F f = b hf e, F (H f )i
Gx = c (dx)

H f x = c (f (dx))

T������ 2. Assume n � 1. The time complexity
of checking whether a LNAPTA A = h�,Q,� ,q0i
accepts the value tree of a LHORSG of linear ordern
(and bounded linear depth) is expn(O(pol�(|Q||G|))).
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Collapsible Pushdown Automata and Recursion Schemes A:5

erated by the scheme. We then use the traversal tree to design an equivalent CPDA
that computes paths in the traversal tree.

2. RECURSION SCHEMES

2.1. Types and terms

Types are generated by the grammar A ::= o | A → A. Every type A ≠ o can be written
uniquely as A1 → (A2 → · · · → (An → o) · · · ), for some n ≥ 1 which is called its arity;
the ground type o has arity 0. We follow the convention that arrows associate to the
right, and simply write A1 → A2 → · · · → An → o, which we sometimes abbreviate to
(A1, . . . , An, o). The order of a type measures the nesting depth on the left of →. We
define ord(o) = 0 and ord(A1 → A2) = max(ord(A1)+1, ord(A2)). Thus ord(A1 → . . . →
An → o) = 1 + max{ord(Ai) | 1 ≤ i ≤ n}. For example, ord(o → o → o → o) = 1 and
ord(((o → o) → o) → o) = 3.

Let Σ be a ranked alphabet i.e. each Σ-symbol f has an arity ar (f) ≥ 0 which deter-
mines its type o → · · · → o →︸ ︷︷ ︸

ar(f)

o. Further we assume that each symbol f ∈ Σ is assigned

a finite set Dir(f) = { 1, . . . , ar (f) } of directions, and we define Dir(Σ) =
⋃

f∈ΣDir(f).
Let D be a set of directions; a D-tree is just a prefix-closed subset of D∗, the free
monoid of D. A Σ-labelled ranked and ordered tree (or simply a Σ-labelled tree) is
a function t : Dom(t) −→ Σ such that Dom(t) is a Dir(Σ)-tree, and for every node
α ∈ Dom(t), the Σ-symbol t(α) has arity k if and only if α has exactly k children and the
set of its children is {α 1, . . . ,α k }. We write T ∞(Σ) for the set of (finite and infinite)
Σ-labelled trees.

Let Ξ be a set of typed symbols. Let f ∈ Ξ and A be a type, we write f : A to mean
that f has type A. The set of (applicative) terms of type A generated from Ξ,
written TA(Ξ), is defined by induction over the following rules. If f : A is an element
of Ξ then f ∈ TA(Ξ); if s ∈ TA→B(Ξ) and t ∈ TA(Ξ) then s t ∈ TB(Ξ). For simplicity we
write T (Ξ) to mean To(Ξ), the set of terms of ground type. Let t be a term, we write
t : A to mean that t is an term of type A. In case Ξ is a ranked alphabet (and so every
Ξ-symbol has an order-0 or order-1 type as determined by its arity) we identify terms
in T (Ξ) with the finite trees in T ∞(Ξ).

2.2. Recursion schemes

For each type A, we assume an infinite set VarA of variables of type A, such that VarA
and VarB are disjoint whenever A ≠ B; and we write Var for the union of VarA as A
ranges over types. We use letters x, y,ϕ,ψ,χ, ξ etc. to range over variables.

A (deterministic) recursion scheme is a quadruple G = ⟨Σ,N ,R, S ⟩ where

— Σ is a ranked alphabet of terminals (including a distinguished symbol ⊥ : o)
— N is a finite set of typed non-terminals; we use upper-case letters F,H , etc. to

range over non-terminals
— S ∈ N is a distinguished start symbol of type o
— R is a finite set of rewrite rules, one for each non-terminal F : (A1, · · · , An, o), of

the form

F ξ1 · · · ξn → e

where each ξi is a variable of type Ai, and e is an term in T (Σ∪N ∪{ ξ1, · · · , ξn }). Note
that the expressions on either side of the arrow are terms of ground type.
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All subterms of t have purely linear kinds, so its linear order is 0. The
in�nite treeBT(t) generated starts as pictured on the left. Themaximal
branches of this in�nite tree have the form bncndne for all n 2 N,
which is not context-free. Thus, due to the correspondence between
order-1 higher-order recursion schemes and pushdown automata
(e.g. [Hague et al. 2008]), BT(t) cannot belong to BT1. However, it does
belong to BT2: it is generated by the order-2 HORS G = h�,N ,R, Si,
where � = {b :: o ! o ! o, c :: o ! o, d :: o ! o, e :: o},
N = {S :: o, F :: (o ! o) ! o,G :: o ! o,H :: (o ! o) ! o ! o},
and R contains the following rules:

S = FG F f = b(f e)(F (H f )) Gx = c(dx) H f x = c(f (dx))
Remark 12. As shown above, for schemes, a �xed linear order may turn out to be more expressive

than the corresponding standard order. This extra expressivity will turn out to have surprisingly
little cost in terms of complexity: we will still be able to show that (under certain constraints) the
corresponding model-checking problem is in n-EXPTIME, where n is the linear order. However,
there will be a price to pay in terms of the kind of properties that can be veri�ed, as captured by
the forthcoming de�nition of automata (De�nition 21).

3 AN ALTERNATIVE: LINEAR HIGHER-ORDER RECURSION SCHEMES
Higher-order model-checking can be expressed in terms of the �Y -calculus, or in terms of higher-
order recursion schemes [Salvati and Walukiewicz 2016]. The new framework described earlier
was introduced as a generalization of the �Y -calculus. Now, we show that it can also be presented
as a generalization of HORS, which we call linear higher-order recursion schemes (LHORS).

3.1 Definition of LHORS
Though based on terms of �̀Y , LHORS are super�cially di�erent: rather than having �xpoint
operators, they handle recursion through a list of mutually recursive function de�nitions. Whereas
the �̀Y -calculus comes from the tradition of the �-calculus, LHORS (like HORS) are inspired by
grammars [Damm 1977] and program schemes [Nivat 1972].

3.1.1 Definition. A term t 2 KT� |�(�) is called applicative if one can derive � | � `ap t :: �
using the kinding rules from Figure 3. An applicative term is necessarily .��� -normal. It does
not contain any �xpoints or abstractions, and only consists of pairing and applying (projections
of) variables from the contexts. We write App� |�(�) for the set of applicative terms t such that
� | � `ap t :: �. A linear HORS will associate to every non-terminal a term of the form

t = l1x1. . . . lnxn . t 0 2 KT� |_(�)
where t 0 2 App�,V� |V`

(o), li 2 {�, `} andVl = {xi | li = l}. We call such terms function de�nitions
of kind � in context �, and write Def�(�) for the corresponding set.

De�nition 13. A linear HORS (LHORS) is a 4-tuple G = h�,N ,R, Si where:
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N = { S :: o,
F :: (o ( o) ( o,
G :: o ( o,
H :: (o ( o) ( o ( o }

are kinded simply by replacing the non-linear arrows with linear arrows in the HORS of Example
13; and, �nally:

S = F G
F f = b hf e, F (H f )i
Gx = c (dx)

H f x = c (f (dx))
S = F G

F f = b (f e) (F (H f ))
Gx = c (dx)

H f x = c (f (dx))

T������ 2. Assume n � 1. The time complexity
of checking whether a LNAPTA A = h�,Q,� ,q0i
accepts the value tree of a LHORSG of linear ordern
(and bounded linear depth) is expn(O(pol�(|Q||G|))).
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Abstract. We show that the monadic second-order theory of an infinite
tree recognized by a higher-order pushdown automaton of any level is
decidable. We also show that trees recognized by pushdown automata
of level n coincide with trees generated by safe higher-order grammars
of level n. Our decidability result extends the result of Courcelle on
algebraic (pushdown of level 1) trees and our own result on trees of
level 2.

Introduction

The Rabin Tree Theorem, stating the decidability of the monadic second-order
(MSO) theory of the full n-ary tree (SnS), is among the most widely applied
decidability results. Rabin himself [15] inferred a number of decidability results
for various mathematical structures interpretable in SnS (e.g., countable linear
orders). Muller and Schupp [14] gave rise to the study of graphs definable in
SnS, by showing decidability of the MSO theory of any graph generated by
a pushdown automaton; this result was further extended by Courcelle [2] to
equational graphs, and by Caucal [1] to prefix–recognizable graphs.

However, a more sophisticated use of the Rabin Tree Theorem allows to go
beyond the structures directly interpretable in SnS. Indeed, Courcelle [2] es-
tablished the decidability of the MSO theory of any algebraic tree, i.e., a tree
generated by a context–free (algebraic) tree grammar. Such a tree can be also
presented as a computation tree of a pushdown automaton. The interest in this
kind of structures (and their theories) arose in recent years in the verification
community, in the context of verification of infinite state systems (see [13] and
references therein, and [18] particularly for the model-checking problem on push-
down trees).

Context-free grammars and pushdown automata can be viewed as the first
level of an infinite hierarchy of higher-order grammars and higher-order push-
down automata. These hierarchies, introduced in the early eighties by Engel-
friet [6], have been subsequently extensively studied, in particular by Damm [4],
? Partly supported by KBN Grant 7 T11C 027 20.

?? Partly supported by KBN Grant 7 T11C 028 20.

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 205–222, 2002.
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where

—γ † denotes the symbol γ with a link to the 0-stack sl+1,
—γ̂ denotes the symbol γ with a link to the (e − 1)-stack sl ; and we define

pushγ̂
1 ([t1 · · · tr+1]︸""""""""︷︷""""""""︸

t

) =

{
[t1 · · · tr pushγ̂

1 (tr+1)] if ord (t ) > 1,
[t1 · · · tr+1 γ̂] otherwise, i.e., ord (t ) = 1.

The higher-order pushj , where j ≥ 2, simply duplicates the top (j − 1)-stack of s , including all
the links. Precisely, let s = [s1 · · · sl+1] be a stack with 2 ≤ j ≤ ord (s ):

pushj ([s1 · · · sl+1]︸""""""""︷︷""""""""︸
s

) =

{
[s1 · · · sl+1 sl+1] if j = ord (s ),
[s1 · · · sl pushj (sl+1)] if j < ord (s ).

Note that in case j = ord (s ) above, the link structure of sl+1 is preserved by the copy that is pushed
on top by pushj .

Finally, there is an important operation called collapse . We say that the n-stack s0 is a prefix
of an n-stack s , written s0 ≤ s , just in case s0 can be obtained from s by a sequence of (possibly
higher-order) pop operations. Take an n-stack s where s0 ≤ s , for some n-stack s0, and top1 s has a
link to tope (s0). Then, collapse s is defined to be s0.

Example 3.1. When displaying n-stacks in examples, we use bent arrows to denote links; how-
ever, to avoid clutter, we shall omit 1-links (indeed by construction they can only point to the
symbol directly below), writing, for example, [[⊥][⊥α β]] instead of .

Take the 3-stack s = [[[⊥α]] [[⊥][⊥α]]]. We have

Then, push2 (θ ) and push3 (θ ) are, respectively,

We have collapse (push2 (θ )) = collapse (push3 (θ )) = collapse (θ ) = [[[⊥α]]].

3.2 A Formal Definition of CPDA Stack Operations
One way to give a formal semantics of the stack operations is to work with appropriate numeric
representations of the links. In Knapik et al. (2005), it has been shown how this can be done in
the order-2 case in the setting of panic automata. Here, we use a different encoding of stacks with
links that works for all orders. The presentation follows (Kartzow 2010).

The idea is simple: take an order-n stack s and suppose that there is a link from (a particular
occurrence of) a symbol γ in s to some (e − 1)-stack s ′, and that s ′ is the kth element of the e-stack
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We consider recursion schemes (not assumed to be homogeneously typed, and hence not necessarily safe) and
use them as generators of (possibly infinite) ranked trees. A recursion scheme is essentially a finite typed
deterministic term rewriting system that generates, when one applies the rewriting rules ad infinitum, an
infinite tree, called its value tree. A fundamental question is to provide an equivalent description of the trees
generated by recursion schemes by a class of machines.

In this article, we answer this open question by introducing collapsible pushdown automata (CPDA), which
are an extension of deterministic (higher-order) pushdown automata. A CPDA generates a tree as follows.
One considers its transition graph, unfolds it, and contracts its silent transitions, which leads to an infinite
tree, which is finally node labelled thanks to a map from the set of control states of the CPDA to a ranked
alphabet.

Our contribution is to prove that these two models, higher-order recursion schemes and collapsible push-
down automata, are equi-expressive for generating infinite ranked trees. This is achieved by giving effective
transformations in both directions.

CCS Concepts: • Theory of computation → Lambda calculus; Automata over infinite objects; Gram-
mars and context-free languages; Program schemes;

Additional Key Words and Phrases: Higher-order recursion schemes, higher-order (collapsible) pushdown
automata
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knapik@univ--nc.nc

2 Institute of Informatics, Warsaw University
{niwinski, urzy}@mimuw.edu.pl

3 CNRS LaBRI, Université Bordeaux-1
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Abstract. We show that the problem of checking if an infinite tree gen-
erated by a higher-order grammar of level 2 (hyperalgebraic) satisfies
a given µ-calculus formula (or, equivalently, if it is accepted by an al-
ternating parity automaton) is decidable, actually 2-Exptime-complete.
Consequently, the monadic second-order theory of any hyperalgebraic
tree is decidable, so that the safety restriction can be removed from
our previous decidability result. The last result has been independently
obtained by Aehlig, de Miranda and Ong. Our proof goes via a char-
acterization of possibly unsafe second-order grammars by a new variant
of higher-order pushdown automata, which we call panic automata. In
addition to the standard pop1 and pop2 operations, these automata have
an option of a destructive move called panic. The model-checking prob-
lem is then reduced to the problem of deciding the winner in a parity
game over a suitable 2nd order pushdown system.

1 Introduction

Context-free tree grammars constitute the basic level in an infinite hierarchy of
higher-order grammars introduced by W. Damm [8] (built on the earlier ideas
of [11]). Courcelle [6] proved decidability of the monadic second-order (MSO)
theory of any tree generated by an algebraic (context-free) tree grammar. Later
Knapik et al [13, 14] attempted to extend this decidability result to all levels of
the Damm hierarchy. This has been achieved partially, namely with an additional
syntactic restriction imposed on the grammars, called safety: the MSO theory
of any tree generated by a safe grammar of level n is decidable.

Higher-order grammars can be seen as program schemes, where functions
can take higher-order arguments. The tree generated by such a grammar de-
scribes completely the semantics of the program scheme. Thus decidability of

⋆ Partly supported by KBN Grant 4 T11C 042 25.
⋆⋆ Partly supported by KBN Grant 3 T11C 002 27.

⋆ ⋆ ⋆ The 2nd and the 4th author were also supported by the EC Research Training
Network Games.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1450–1461, 2005.
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Abstract
We propose a new verification method for temporal properties of
higher-order functional programs, which takes advantage of Ong’s
recent result on the decidability of the model-checking problem
for higher-order recursion schemes (HORS’s). A program is trans-
formed to an HORS that generates a tree representing all the possi-
ble event sequences of the program, and then the HORS is model-
checked. Unlike most of the previous methods for verification of
higher-order programs, our verification method is sound and com-
plete. Moreover, this new verification framework allows a smooth
integration of abstract model checking techniques into verification
of higher-order programs. We also present a type-based verification
algorithm for HORS’s. The algorithm can deal with only a frag-
ment of the properties expressed by modal µ-calculus, but the al-
gorithm and its correctness proof are (arguably) much simpler than
those of Ong’s game-semantics-based algorithm. Moreover, while
the HORS model checking problem is n-EXPTIME in general, our
algorithm is linear in the size of HORS, under the assumption that
the sizes of types and specifications are bounded by a constant.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
With the increasing importance of software reliability, program ver-
ification techniques have been studied extensively. There are still
limitations in the current verification technology, however. Soft-
ware model checking [3–5] has been mainly applied to impera-
tive programming languages, and applications to programming lan-
guages with more dynamic control, such as higher-order languages
with dynamic allocation of resources (such as heap memory), have
been limited. For higher-order programs, type systems have been
recognized as effective techniques for program verification. How-
ever, they either require explicit type annotations (as in dependent
type systems), or suffer from many false alarms.

In this paper, we propose a novel verification technique for tem-
poral properties of higher-order programs. We consider the prob-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c⃝ 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

lem of resource usage verification [19] for higher-order functional
languages with dynamic resource creation and access primitives.
The goal of the verification is to check that each dynamically cre-
ated resource is accessed in a proper manner (like “an opened file is
eventually closed, and it is not read or written after being closed”).
Assertion-based model-checking problems (like “X > 0 holds at
program point p”) can also be recasted as the resource verification
problem, by regarding an assertion failure as an access to a global
resource. (For example, “assert(b)” can be transformed into “if
b then skip else fail,” where fail is an action to the global
resource. Then the problem of checking lack of assertion failures
is reduced to the resource usage verification problem of checking
whether the fail action occurs.)

Our verification technique is built on the recent result on
model checking of higher-order recursion schemes (HORS’s, for
short) [29]. A higher-oder recursion scheme is a grammar for de-
scribing an infinite tree. HORS is a generalization of regular tree
grammars; they are described by HORS’s of order 0. Ong [29]
has recently shown the decidability of the problem of checking
whether the infinite tree generated by G satisfies ψ, given a modal
µ-calculus formula ψ and an HORS G.

The first main idea of this paper is to transform a higher-order
functional program into an HORS that produces an infinite tree,
each of whose path (from the root) corresponds to a possible ac-
cess sequence to each resource. By the transformation, the problem
of checking a regular property of resource-wise access behaviors
of a functional program is reduced to that of checking the cor-
responding regular property of the infinite tree generated by the
HORS. The latter can be solved by Ong’s model checking algo-
rithm for HORS [29]. For programs having only resources and
functions as values, the transformation into HORS is achieved by
CPS conversion and λ-lifting, along with an additional trick to ex-
tract “resource-wise” access behavior. For programs with ordinary
values (such as integers), we can apply the technique of predicate
abstractions and counter-example-guided abstraction refinement.
The resulting verification framework is sketched in Figure 1. Given
a source program, we first apply CPS conversion and λ-lifting to get
a system of top-level function definitions (Step 1). We then apply
predicate abstractions to get a higher-order boolean program (Step
2). It is then converted to HORS (Steps 3 and 4), and the HORS is
model-checked (Step 5). If the model checking fails, a counterex-
ample is investigated, and the abstraction is refined (Steps 6 and
7).

The second main idea of this paper is to use types for model-
checking HORS, instead of Ong’s algorithm based on game se-
mantics. For a fragment of modal µ-calculus (for describing safety
properties, which are sufficient for the purpose of resource usage
verification), we develop an intersection type system that is sound
and complete, in the sense that an HORS is well-typed if and only if
the HORS satisfies the given property. Thus, a type inference algo-
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Linearity in Higher-Order Recursion Schemes
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Higher-order recursion schemes (HORS) have recently emerged as a promising foundation for higher-order
program veri�cation. We examine the impact of enriching HORS with linear types. To that end, we introduce
two frameworks that blend non-linear and linear types: a variant of the �Y -calculus and an extension of HORS,
called linear HORS (LHORS).

First we prove that the two formalisms are equivalent and there exist polynomial-time translations between
them. Then, in order to support model-checking of (trees generated by) LHORS, we propose a re�ned version of
alternating parity tree automata, called LNAPTA, whose behaviour depends on information about linearity. We
show that the complexity of LNAPTA model-checking for LHORS depends on two type-theoretic parameters:
linear order and linear depth. The former is in general smaller than the standard notion of order and ignores
linear function spaces. In contrast, the latter measures the depth of linear clusters inside a type. Our main
result states that LNAPTA model-checking of LHORS of linear order n is n-EXPTIME-complete, when linear
depth is �xed. This generalizes and improves upon the classic result of Ong, which relies on the standard
notion of order.

To illustrate the signi�cance of the result, we consider two applications: the MSO model-checking problem
on variants of HORS with case distinction (RSFD and HORSC) on a �nite domain and a call-by-value resource
veri�cation problem. In both cases, decidability can be established by translation into HORS, but the implied
complexity bounds will be suboptimal due to increases in type order. In contrast, we show that the complexity
bounds derived by translations into LHORS and appealing to our result are optimal in that they match the
respective hardness results.

CCS Concepts: • Software and its engineering→Model checking; • Theory of computation→ Linear
logic;

Additional Key Words and Phrases: higher-order computation, recursion schemes, linear logic, model checking
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1 INTRODUCTION
Higher-order recursion schemes (HORS) are typed grammars that generate potentially in�nite
ranked trees. Their history can be tracked back to early research in semantics in the 1970s [Damm
1977; Nivat 1972], but recently they have become a successful foundation for program veri�cation,
in the functional paradigm [Kobayashi 2009] and beyond [Tsukada and Kobayashi 2010].
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are kinded simply by replacing the non-linear arrows with linear arrows in the HORS of Example
13; and, �nally:

S = F G
F f = b hf e, F (H f )i
Gx = c (dx)

H f x = c (f (dx))

T������ 2. Assume n � 1. The time complexity
of checking whether a LNAPTA A = h�,Q,� ,q0i
accepts the value tree of a LHORSG of linear ordern
(and bounded linear depth) is expn(O(pol�(|Q||G|))).
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Abstract
We introduce higher-order, multi-parameter, tree transducers
(HMTTs, for short), which are kinds of higher-order tree trans-
ducers that take input trees and output a (possibly infinite) tree.
We study the problem of checking whether the tree generated by
a given HMTT conforms to a given output specification, provided
that the input trees conform to input specifications (where both in-
put/output specifications are regular tree languages). HMTTs sub-
sume higher-order recursion schemes and ordinary tree transduc-
ers, so that their verification has a number of potential applications
to verification of functional programs using recursive data struc-
tures, including resource usage verification, string analysis, and ex-
act type-checking of XML-processing programs.

We propose a sound but incomplete verification algorithm for
the HMTT verification problem: the algorithm reduces the verifica-
tion problem to a model-checking problem for higher-order recur-
sion schemes extended with finite data domains, and then uses (an
extension of) Kobayashi’s algorithm for model-checking recursion
schemes. While the algorithm is incomplete (indeed, as we show in
the paper, the verification problem is undecidable in general), it is
sound and complete for a subclass of HMTTs called linear HMTTs.
We have applied our HMTT verification algorithm to various pro-
gram verification problems and obtained promising results.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
Kobayashi [20] has recently proposed a verification method for
higher-order functional programs based on Ong’s decidability re-
sult on model-checking recursion schemes [32]. A higher-order re-
cursion scheme (recursion scheme, for short) is a grammar for gen-
erating a (possibly infinite) tree. It is an extension of regular tree
grammars, where non-terminal symbols can take trees and higher-
order functions on trees as parameters. For example, the follow-
ing grammar G0 is an order-1 recursion scheme, where the non-
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to lists, requires prior specific permission and/or a fee.
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Figure 1. The tree generated by G0.

terminal F takes a tree as an argument.

S → F c F x → a x (F (bx))

Here, each non-terminal has exactly one rewrite rule. By infinitary
rewriting of the start symbol S:

S −→ F c −→ a c (F (b c)) −→ · · · ,

we obtain the infinite tree shown in Figure 1. Ong [32] has shown
that modal mu-calculus model-checking of recursion schemes
(“Given a recursion scheme G and a modal mu-calculus formula ϕ,
does the tree generated by G satisfy ϕ?”) is n-EXPTIME-complete
(where n is the order of the recursion scheme G). The idea of
Kobayashi’s verification method [20] is to translate a functional
program into a recursion scheme that generates a tree whose paths
represent all the possible event sequences of the program, so that
temporal properties of the functional program can be verified by
model-checking the recursion scheme. For example, consider the
following program that accesses a file (where * denotes a random
boolean value):

let x = open_in "foo" in
let rec f() = if * then close(x) else read(x); f()
in f()

It can be translated into the following recursion scheme G1:

S → F e F k → br (c k) (r (F k))

Here, r, c, br and e denote a read operation, a close opera-
tion, a non-deterministic branch, and program termination respec-
tively. The recursion scheme generates the tree shown in Figure 2,
which represents all the possible event (i.e. read, write, branch,
and termination) sequences of the program. Kobayashi [20] ap-
plied the verification method to resource usage verification [14]
(the problem of checking whether a program accesses resources
such as files in a valid manner), and showed that it is sound and
complete for the simply-typed λ-calculus extended with recur-
sion, resource creation/access primitives, and booleans. The com-
pleteness follows intuitively because recursion schemes are es-
sentially terms of the simply-typed λ-calculus with recursion and

495

A Traversal-based Algorithm for
Higher-Order Model Checking

Robin P. Neatherway
University of Oxford

robin.neatherway@cs.ox.ac.uk

C.-H. Luke Ong
University of Oxford

luke.ong@cs.ox.ac.uk

Steven J. Ramsay
University of Oxford

steven.ramsay@cs.ox.ac.uk

Abstract

Higher-order model checking—the model checking of trees gen-
erated by higher-order recursion schemes (HORS)—is a natural
generalisation of finite-state and pushdown model checking. Re-
cent work has shown that it can serve as a basis for software
model checking for functional languages such as ML and Haskell.
In this paper, we introduce higher-order recursion schemes with
cases (HORSC), which extend HORS with a definition-by-cases
construct (to express program branching based on data) and non-
determinism (to express abstractions of behaviours). This paper is
a study of the universal HORSC model checking problem for de-
terministic trivial automata: does the automaton accept every tree
in the tree language generated by the given HORSC? We first char-
acterise the model checking problem by an intersection type sys-
tem extended with a carefully restricted form of union types. We
then present an algorithm for deciding the model checking prob-
lem, which is based on the notion of traversals induced by the
fully abstract game semantics of these schemes, but presented as
a goal-directed construction of derivations in the intersection and
union type system. We view HORSC model checking as a suitable
backend engine for an approach to verifying functional programs.
We have implemented the algorithm in a tool called TRAVMC, and
demonstrated its effectiveness on a test suite of programs, including
abstract models of functional programs obtained via an abstraction-
refinement procedure from pattern-matching recursion schemes.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Verification

Keywords Model-checking, Higher-order Programs

1. Introduction

Over the past decade, model checking and its allied methods
have been applied to program verification with great effect. For
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first-order, imperative programs, highly optimised finite-state and
pushdown model checkers (such as SLAM [2] and BLAST [3])
have been successfully applied to bug-finding, property check-
ing and test case generation. Building on theoretical results on
the model checking of higher-order recursion schemes (HORS)
[6, 16], Kobayashi [8] has sparked a growing interest in the de-
velopment of an analogous model checking framework for higher-
order, functional programs.

A HORS is a kind of higher-order grammar, which can be viewed as
a mechanism for generating a possibly-infinite, ranked tree. HORS
model checking is concerned with the problem of deciding whether
the tree generated by a given HORS satisfies a given property and,
when the property is expressed by a formula of the modal mu-
calculus (equivalently, an alternating parity tree automaton), then
the problem is known to be decidable [16]. Since they can equally
well be viewed as a closed, ground-type term of the simply-typed
lambda calculus with recursion and uninterpreted first-order con-
stants, HORS are a natural home for models of higher-order com-
putation. Indeed, HORS model checking is a smooth generalisation
of finite-state and pushdown model checking (finite-state programs
and pushdown systems/Boolean programs are captured by order-0
and order-1 HORS respectively).

HORS model checking is, inherently, an extremely complex prob-
lem. Ong [16] has shown that the modal mu-calculus model
checking problem for order-n recursion schemes is n-EXPTIME
(i.e. tower of exponentials of height n) complete. Even for the
purposes of safety verification (model checking against properties
expressible as deterministic trivial tree automata (DTT)), the prob-
lem is (n� 1)-EXPTIME complete [11], which is still formidably
complex. Hence, the feasibility of HORS model checking as a veri-
fication technology is predicated upon the ability to design decision
procedures that hit the worst-case complexity only in pathological
cases.

That such algorithms are possible was demonstrated by Kobayashi’s
hybrid algorithm, presented in [7], which solves the safety verifi-
cation problem. In an attempt to avoid the hyper-exponential bot-
tleneck, the algorithm closely analyses the actual behaviour of the
HORS as it is evaluated, generating the ranked tree. The hybrid
algorithm builds a graph to record the trace of this computational
behaviour and from the graph derives guesses at proofs which wit-
ness the satisfaction of the property. The algorithm is implemented
in the TRECS tool [9], which has been shown to perform remark-
ably well in a variety of applications.

However, whilst HORS allow for the expression of higher-order
behaviour very naturally, they lack two important features which,
we believe, are highly desirable in a convenient abstract model of
functional programs. The first is a case analysis construct, with
which one can express program branching based on data; the sec-
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Abstract. This paper studies the complexity of the reachability problem
(a typical and practically important instance of the model-checking prob-
lem) for simply-typed call-by-value programs with recursion, Boolean val-
ues, and non-deterministic branch, and proves the following results. (1)
The reachability problem for order-3 programs is nonelementary. Thus,
unlike in the call-by-name case, the order of the input program does not
serve as a good measure of the complexity. (2) Instead, the depth of types
is an appropriate measure: the reachability problem for depth-n programs
is n-EXPTIME complete. In particular, the previous upper bound given
by the CPS translation is not tight. The algorithm used to prove the up-
per bound result is based on a novel intersection type system, which we
believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs is to use
higher-order model checking [7,8,15], which is a decision problem about the trees
generated by higher-order recursion schemes. Various verification problems such
as the reachability problem and the resource usage verification [5] are reducible
to the higher-order model checking [8].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. This is
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. In fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
to a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has a bad effect: the order of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call-
by-name programs is (n− 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase
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As applications of the new result, we �rst revisit two other formalisms used in higher-order
model-checking: recursive schemes over �nite data domains (RSFD) [Kobayashi et al. 2010] and
higher-order recursion schemes with cases (HORSC) [Neatherway et al. 2012]. In both cases, we show
how one can translate the associated terms into LHORS in such a way that the linear order will
be una�ected by the translation, even though the standard type-theoretic order would. The linear
depth will grow during the translation, but only by a constant. This makes it possible to extend
Ong’s result for order-n HORS [Ong 2006] (i.e. n-EXPTIME-completeness of MSO model-checking)
to RSFD and HORSC simply by translation.
Finally, we investigate a call-by-value framework. Here the associated reachability problem

was shown to be n-EXPTIME-complete for programs of depth-n in Tsukada and Kobayashi [2014].
We consider the more general resource usage veri�cation problem and also show its n-EXPTIME-
completeness. In contrast to Tsukada and Kobayashi [2014], our result is obtained through a linear
variant of a CPS transformation, which maps call-by-value programs of depth n to call-by-name
�̀Y -terms of linear order n. CPS translations are known to cause an increase in type order, but in
our case linear order does not increase. As the linear depth of the types involved turns out to be
constant (equal to 2), our result for LHORS implies the desired complexity.

To sum up, we present a new unifying framework, founded on linear types. The addition of
linearity is shown to have far-reaching consequences:

(1) our results subsume the original ones on HORS for non-linear types,
(2) they provide much more accurate complexity-theoretic bounds than any earlier work,
(3) many existing results can be uni�ed and extended simply by translating into the framework.

Consequently, we believe our framework to be highly suitable as a metalanguage for future work
in higher-order veri�cation.

2 THE �̀Y -CALCULUS
We start o� by introducing the �̀Y -calculus, which is a simply-typed �-calculus extended with a
�xpoint combinator (in the spirit of the �Y -calculus [Statman 2004]) and re�ned with a linear-non-
linear type system (in the style of [Barber and Plotkin 1996]). We refer to its types as kinds to avoid
collision with the intersection type system to come.

2.1 Kinds and terms
2.1.1 Kinds and their measures. The kinds include a ground kind o (the kind of trees), two arrow

constructors! (standard non-linear arrow) and( (linear arrow [Girard 1987]), and products &.
Furthermore, we de�ne the kinds as having the following restricted shape.

De�nition 1. Kinds are generated by either of � or � in the following grammar.

�,� , . . . ::= o | � ( � | � ! �

�,�, �, . . . ::= � | &i 2I�i

with I any �nite set – we write � &� for the binary case.

We refer to kinds generated by � as functional kinds, and those generated by � as product kinds.
Note that any functional kind can be regarded as a (singleton) product kind, so �,�, �, . . . really
range over arbitrary kinds. Abusing notation, we sometimes identify a functional kind � and the
unary product &{?}�. This allows us to write expressions such as &i 2I�i  � , where is either
( or ! (it is then understood that I is singleton if =!).
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�,x :: � | � `ap x :: � � | �,x :: &i 2I�i `ap �i x :: �i

� | � `ap ti :: �i (i 2 I )
� | � `ap hti | i 2 I i :: &i 2I�i

� | �1 `ap t :: � ( � � | �2 `ap u :: �
� | �1,�2 `ap t u :: �

� | � `ap t :: �1 ! �2 � | _ `ap u :: �1

� | � `ap t u :: �2

Fig. 3. Applicative terms

b

c b

d c2 b

e d2 c3 b

e d3 c4 . . .

e . . .

All subterms of t have purely linear kinds, so its linear order is 0. The
in�nite treeBT(t) generated starts as pictured on the left. Themaximal
branches of this in�nite tree have the form bncndne for all n 2 N,
which is not context-free. Thus, due to the correspondence between
order-1 higher-order recursion schemes and pushdown automata
(e.g. [Hague et al. 2008]), BT(t) cannot belong to BT1. However, it does
belong to BT2: it is generated by the order-2 HORS G = h�,N ,R, Si,
where � = {b :: o ! o ! o, c :: o ! o, d :: o ! o, e :: o},
N = {S :: o, F :: (o ! o) ! o,G :: o ! o,H :: (o ! o) ! o ! o},
and R contains the following rules:

S = FG F f = b(f e)(F (H f )) Gx = c(dx) H f x = c(f (dx))
Remark 12. As shown above, for schemes, a �xed linear order may turn out to be more expressive

than the corresponding standard order. This extra expressivity will turn out to have surprisingly
little cost in terms of complexity: we will still be able to show that (under certain constraints) the
corresponding model-checking problem is in n-EXPTIME, where n is the linear order. However,
there will be a price to pay in terms of the kind of properties that can be veri�ed, as captured by
the forthcoming de�nition of automata (De�nition 21).

3 AN ALTERNATIVE: LINEAR HIGHER-ORDER RECURSION SCHEMES
Higher-order model-checking can be expressed in terms of the �Y -calculus, or in terms of higher-
order recursion schemes [Salvati and Walukiewicz 2016]. The new framework described earlier
was introduced as a generalization of the �Y -calculus. Now, we show that it can also be presented
as a generalization of HORS, which we call linear higher-order recursion schemes (LHORS).

3.1 Definition of LHORS
Though based on terms of �̀Y , LHORS are super�cially di�erent: rather than having �xpoint
operators, they handle recursion through a list of mutually recursive function de�nitions. Whereas
the �̀Y -calculus comes from the tradition of the �-calculus, LHORS (like HORS) are inspired by
grammars [Damm 1977] and program schemes [Nivat 1972].

3.1.1 Definition. A term t 2 KT� |�(�) is called applicative if one can derive � | � `ap t :: �
using the kinding rules from Figure 3. An applicative term is necessarily .��� -normal. It does
not contain any �xpoints or abstractions, and only consists of pairing and applying (projections
of) variables from the contexts. We write App� |�(�) for the set of applicative terms t such that
� | � `ap t :: �. A linear HORS will associate to every non-terminal a term of the form

t = l1x1. . . . lnxn . t 0 2 KT� |_(�)
where t 0 2 App�,V� |V`

(o), li 2 {�, `} andVl = {xi | li = l}. We call such terms function de�nitions
of kind � in context �, and write Def�(�) for the corresponding set.

De�nition 13. A linear HORS (LHORS) is a 4-tuple G = h�,N ,R, Si where:
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�,x :: � | � ` x :: �
j 2 I

� | �,x :: &i 2I �i ` �j x :: � j

� | �1 ` t :: � ( � � | �2 ` u :: �
� | �1,�2 ` t u :: �

� | � ` t :: � ! � � | _ ` u :: �
� | � ` t u :: �

�,x :: � | � ` t :: �
� | � ` �x� . t :: � ! �

� | �,x :: � ` t :: �
� | � ` `x� . t :: � ( �

� | � ` ti :: �i (1  i  n)
� | � ` hti | 1  i  ni :: &1in�i

� | � ` t :: &1in�i

� | � ` �i t :: �i

�,x : � | _ ` t :: �
� | _ ` Yx� . t :: �

Fig. 1. Kinding rules for �̀Y

Our abstractions explicitly carry kinds: the language is à la Church. For notational convenience
we have two di�erent function abstractions: one for the linear arrow (`) and another for the non-
linear arrow (�). This is a super�cial distinction: as in this paper we will only consider well-kinded
terms, the information of whether an abstraction is linear or not is redundant with the kinds.

Now, we give the kinding rules for terms. The kinding judgements of �̀Y have the form � | � `
u :: �, where � = x1 :: �1, . . . ,xn :: �n is a non-linear context and � = �1 :: �1, . . . ,�p :: �p is
a linear context. The rules are given in Figure 1. The non-linear context may comprise variables of
product kinds – though these cannot be abstracted, they can be used to compute a �xpoint. Empty
contexts are denoted as _. In particular, note that �̀Y contains the standard �Y -calculus [Statman
2004] as a sub-language: any �Y -term � ` t : � can be kinded in �̀Y with � | _ ` t :: �.

From now on, all terms are implicitly kinded. We write KT� |�(�) for the set of terms � | � ` t :: �.
Every subterm of a kinded term t automatically comes with a kind, so we can say whether a subterm
u1 u2 of t is a linear application (if u1 has kind � ( �) or a non-linear one (if u1 has kind � ! � ).

Measures. The linear order of t 2 KT� |�(�), written ò(t), is the maximum of all ò(�), where �
ranges over the kinds of subterms of t . The local linear depth of t (written lld(t)) is de�ned to be

lld(�1 ( . . .( �n ( �)
where � = x1 :: �1, . . . ,xn :: �n . The linear depth d̀(t) of t is taken to be the maximum of all
lld(u), where u ranges over subterms of t . We also de�ne the size of t , written |t |, as follows.

|x | = 1 |t1 t2 | = |t1 | + |t2 | + 1
|�x� . t | = |� | + |t | + 1 |`x� . t | = |� | + |t | + 1
|�i t | = |t | + 1 |hti | i 2 I i | = 1 +

Õ
i 2I |ti |

|Yx� . t | = |� | + |t | + 1
Representing trees. In the �Y -calculus or Higher-Order Recursion Schemes, trees are usually

represented as normal terms of kind o, using variables of �rst-order kind. For instance, a variable
b : o ! · · · ! o|          {z          }

n

! o can be used to represent n-ary branching, i.e. tree nodes with n descendants.

Let � be a �nite set of such variables. Salvati and Walukiewicz [2016] have shown that Böhm trees
of �Y -terms of the form � ` u : o coincide with the trees generated by order-n recursion schemes,
where � is taken to be the set of terminal symbols of the scheme.

In �̀Y , there is more �exibility as to how branching may be kinded. The role of the �rst-order
kinds of �Y (or HORS) will be played by the more general notion of tree kinds, de�ned below, which
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� | � ` hti | 1  i  ni :: &1in�i

� | � ` t :: &1in�i

� | � ` �i t :: �i

�,x : � | _ ` t :: �
� | _ ` Yx� . t :: �

Fig. 1. Kinding rules for �̀Y

Our abstractions explicitly carry kinds: the language is à la Church. For notational convenience
we have two di�erent function abstractions: one for the linear arrow (`) and another for the non-
linear arrow (�). This is a super�cial distinction: as in this paper we will only consider well-kinded
terms, the information of whether an abstraction is linear or not is redundant with the kinds.

Now, we give the kinding rules for terms. The kinding judgements of �̀Y have the form � | � `
u :: �, where � = x1 :: �1, . . . ,xn :: �n is a non-linear context and � = �1 :: �1, . . . ,�p :: �p is
a linear context. The rules are given in Figure 1. The non-linear context may comprise variables of
product kinds – though these cannot be abstracted, they can be used to compute a �xpoint. Empty
contexts are denoted as _. In particular, note that �̀Y contains the standard �Y -calculus [Statman
2004] as a sub-language: any �Y -term � ` t : � can be kinded in �̀Y with � | _ ` t :: �.

From now on, all terms are implicitly kinded. We write KT� |�(�) for the set of terms � | � ` t :: �.
Every subterm of a kinded term t automatically comes with a kind, so we can say whether a subterm
u1 u2 of t is a linear application (if u1 has kind � ( �) or a non-linear one (if u1 has kind � ! � ).

Measures. The linear order of t 2 KT� |�(�), written ò(t), is the maximum of all ò(�), where �
ranges over the kinds of subterms of t . The local linear depth of t (written lld(t)) is de�ned to be

lld(�1 ( . . .( �n ( �)
where � = x1 :: �1, . . . ,xn :: �n . The linear depth d̀(t) of t is taken to be the maximum of all
lld(u), where u ranges over subterms of t . We also de�ne the size of t , written |t |, as follows.

|x | = 1 |t1 t2 | = |t1 | + |t2 | + 1
|�x� . t | = |� | + |t | + 1 |`x� . t | = |� | + |t | + 1
|�i t | = |t | + 1 |hti | i 2 I i | = 1 +

Õ
i 2I |ti |

|Yx� . t | = |� | + |t | + 1
Representing trees. In the �Y -calculus or Higher-Order Recursion Schemes, trees are usually

represented as normal terms of kind o, using variables of �rst-order kind. For instance, a variable
b : o ! · · · ! o|          {z          }

n

! o can be used to represent n-ary branching, i.e. tree nodes with n descendants.

Let � be a �nite set of such variables. Salvati and Walukiewicz [2016] have shown that Böhm trees
of �Y -terms of the form � ` u : o coincide with the trees generated by order-n recursion schemes,
where � is taken to be the set of terminal symbols of the scheme.

In �̀Y , there is more �exibility as to how branching may be kinded. The role of the �rst-order
kinds of �Y (or HORS) will be played by the more general notion of tree kinds, de�ned below, which
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As applications of the new result, we �rst revisit two other formalisms used in higher-order
model-checking: recursive schemes over �nite data domains (RSFD) [Kobayashi et al. 2010] and
higher-order recursion schemes with cases (HORSC) [Neatherway et al. 2012]. In both cases, we show
how one can translate the associated terms into LHORS in such a way that the linear order will
be una�ected by the translation, even though the standard type-theoretic order would. The linear
depth will grow during the translation, but only by a constant. This makes it possible to extend
Ong’s result for order-n HORS [Ong 2006] (i.e. n-EXPTIME-completeness of MSO model-checking)
to RSFD and HORSC simply by translation.
Finally, we investigate a call-by-value framework. Here the associated reachability problem

was shown to be n-EXPTIME-complete for programs of depth-n in Tsukada and Kobayashi [2014].
We consider the more general resource usage veri�cation problem and also show its n-EXPTIME-
completeness. In contrast to Tsukada and Kobayashi [2014], our result is obtained through a linear
variant of a CPS transformation, which maps call-by-value programs of depth n to call-by-name
�̀Y -terms of linear order n. CPS translations are known to cause an increase in type order, but in
our case linear order does not increase. As the linear depth of the types involved turns out to be
constant (equal to 2), our result for LHORS implies the desired complexity.

To sum up, we present a new unifying framework, founded on linear types. The addition of
linearity is shown to have far-reaching consequences:

(1) our results subsume the original ones on HORS for non-linear types,
(2) they provide much more accurate complexity-theoretic bounds than any earlier work,
(3) many existing results can be uni�ed and extended simply by translating into the framework.

Consequently, we believe our framework to be highly suitable as a metalanguage for future work
in higher-order veri�cation.

2 THE �̀Y -CALCULUS
We start o� by introducing the �̀Y -calculus, which is a simply-typed �-calculus extended with a
�xpoint combinator (in the spirit of the �Y -calculus [Statman 2004]) and re�ned with a linear-non-
linear type system (in the style of [Barber and Plotkin 1996]). We refer to its types as kinds to avoid
collision with the intersection type system to come.

2.1 Kinds and terms
2.1.1 Kinds and their measures. The kinds include a ground kind o (the kind of trees), two arrow

constructors! (standard non-linear arrow) and( (linear arrow [Girard 1987]), and products &.
Furthermore, we de�ne the kinds as having the following restricted shape.

De�nition 1. Kinds are generated by either of � or � in the following grammar.

�,� , . . . ::= o | � ( � | � ! �

�,�, �, . . . ::= � | &i 2I�i

with I any �nite set – we write � &� for the binary case.

We refer to kinds generated by � as functional kinds, and those generated by � as product kinds.
Note that any functional kind can be regarded as a (singleton) product kind, so �,�, �, . . . really
range over arbitrary kinds. Abusing notation, we sometimes identify a functional kind � and the
unary product &{?}�. This allows us to write expressions such as &i 2I�i  � , where is either
( or ! (it is then understood that I is singleton if =!).
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Our restriction on kinds amounts to forbidding products on the left of a non-linear arrow, and
on the right of any arrow. However, any non-restricted kind built from {o,(,!,&} is isomorphic
to a kind from De�nition 1 through the isomorphisms (of Intuitionistic Linear Logic [Girard 1987]):

� ! (&i 2I�i ) � &i 2I (� ! �i ) � ( (&i 2I�i ) � &i 2I (� ( �i )
(&i 2{1, ...,n }�i ) ! � � �1 ! · · · ! �n ! �

The �rst two equations hide a combinatorial explosion: converting a non-restricted kind to one in
De�nition 1 may cause an exponential blow-up. For some of our developments, it will be important
that we opt for the notion of kind in De�nition 1, with no such hidden complexity.

Measures. The size |� | and linear order ò(�) of a kind � are de�ned inductively:

|o | = 1 ò(o) = 0
|� ( � | = |� | + |� | + 1 ò(� ( �) = max( ò(�), ò(�))
|� ! � | = |� | + |� | + 1 ò(� ! � ) = max( ò(�) + 1, ò(� ))
| &i 2I �i | = 1 +

Õ
i 2I |�i | ò(&i 2I�i ) = maxi 2I ò(�i )

While the de�nition of size is straightforward, that of linear order deserves a comment. If we
ignore the clauses for( and &, we simply obtain the standard notion of order of a simple type,
see e.g. [Salvati and Walukiewicz 2016]. The order is extended to ( and & simply by ignoring the
constructors and taking the maximum of the linear order of their operands. This should be natural
to the reader familiar with linear logic [Girard 1987]: indeed, recall that the call-by-name Girard
translation interprets � ! � as !� ( � in linear logic. Hence, one can understand the de�nition of
linear order above as simply counting the maximal nesting of exponentials in the corresponding
linear logic formula. A key inspiration for this work is the idea that the main source of complexity
in the higher-order model-checking problem is the exponential, and not the arrow in itself.

While our main theorem will substantiate this claim, there will be a proviso because linear kinds,
to an extent, do impact complexity. Consequently, to arrive at our asymptotic bounds, we will need
to control the use of linear kinds by bounding the extent to which purely linear type constructors
can occur contiguously (without being separated by the left-hand side of a non-linear arrow, i.e. by
a !). For that purpose we introduce the notion of linear depth of a kind.

De�nition 2. The local linear depth lld(�) of a kind � is de�ned inductively as follows

lld(o) = 0 lld(� ( �) = max(lld(�), lld(�)) + 1
lld(&i 2I�i ) = maxi 2I lld(�i ) + 1 lld(� ! � ) = lld(� )

The linear depth of �, written d̀(�), is the maximum of lld(�), taken over all subkinds � of �.

Observe that purely non-linear kinds have linear depth 0. We shall see that, even though bounded
linear depth increases expressivity, this does not a�ect the asymptotic complexity of model-checking.
In particular, our translations of Sections 5 and 6 will yield kinds with bounded linear depth.

2.1.2 Kinded terms and their measures.

De�nition 3. Raw terms are de�ned as follows.

t ,u ::= x | �x� .u | `x� .u | t u | hui | 1  i  ni | �i | Yx� .u

After De�nition 1, we wrote that we will sometimes identify a functional kind � with the unary
product &{?}�. Accordingly, we will also identify a (non-product) term t and the unary tuple
ht | i 2 {?}i – this will enable more uniform notations later on.
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o ! · · · ! o ! o

o & · · · & o ( o

o ( . . .( o ( o

(A1 !� A2)⇤ = A⇤
1 ! (A⇤

2 ! o) ! o

(A1 !� A2)⇤ = A⇤
1 ! (A⇤

2 ! o) ( o

N = {S :: o, F :: (o ( o) ( o,G :: o ( o,H :: (o ( o) ( o ( o} are kinded simply by
replacing the non-linear arrows with linear arrows in the HORS of Example 13; and, �nally:

S = F G
F f = b hf e, F (H f )i
Gx = c (dx)

H f x = c (f (dx))

T������ 2. Assume n � 1. The time complexity
of checking whether a LNAPTA A = h�,Q,� ,q0i
accepts the value tree of a LHORSG of linear ordern
(and bounded linear depth) is expn(O(pol�(|Q||G|))).
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• RSFD

• HORSC

• CBV
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q 2 Q

q :: o
� :: � � :: �
� ( � :: � ( �

(�i :: �)i 2I � :: �

(
€
i 2I
⇤ci �i ) ! � :: � ! �
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Abstract
We introduce higher-order, multi-parameter, tree transducers
(HMTTs, for short), which are kinds of higher-order tree trans-
ducers that take input trees and output a (possibly infinite) tree.
We study the problem of checking whether the tree generated by
a given HMTT conforms to a given output specification, provided
that the input trees conform to input specifications (where both in-
put/output specifications are regular tree languages). HMTTs sub-
sume higher-order recursion schemes and ordinary tree transduc-
ers, so that their verification has a number of potential applications
to verification of functional programs using recursive data struc-
tures, including resource usage verification, string analysis, and ex-
act type-checking of XML-processing programs.

We propose a sound but incomplete verification algorithm for
the HMTT verification problem: the algorithm reduces the verifica-
tion problem to a model-checking problem for higher-order recur-
sion schemes extended with finite data domains, and then uses (an
extension of) Kobayashi’s algorithm for model-checking recursion
schemes. While the algorithm is incomplete (indeed, as we show in
the paper, the verification problem is undecidable in general), it is
sound and complete for a subclass of HMTTs called linear HMTTs.
We have applied our HMTT verification algorithm to various pro-
gram verification problems and obtained promising results.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
Kobayashi [20] has recently proposed a verification method for
higher-order functional programs based on Ong’s decidability re-
sult on model-checking recursion schemes [32]. A higher-order re-
cursion scheme (recursion scheme, for short) is a grammar for gen-
erating a (possibly infinite) tree. It is an extension of regular tree
grammars, where non-terminal symbols can take trees and higher-
order functions on trees as parameters. For example, the follow-
ing grammar G0 is an order-1 recursion scheme, where the non-
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Figure 1. The tree generated by G0.

terminal F takes a tree as an argument.

S → F c F x → a x (F (bx))

Here, each non-terminal has exactly one rewrite rule. By infinitary
rewriting of the start symbol S:

S −→ F c −→ a c (F (b c)) −→ · · · ,

we obtain the infinite tree shown in Figure 1. Ong [32] has shown
that modal mu-calculus model-checking of recursion schemes
(“Given a recursion scheme G and a modal mu-calculus formula ϕ,
does the tree generated by G satisfy ϕ?”) is n-EXPTIME-complete
(where n is the order of the recursion scheme G). The idea of
Kobayashi’s verification method [20] is to translate a functional
program into a recursion scheme that generates a tree whose paths
represent all the possible event sequences of the program, so that
temporal properties of the functional program can be verified by
model-checking the recursion scheme. For example, consider the
following program that accesses a file (where * denotes a random
boolean value):

let x = open_in "foo" in
let rec f() = if * then close(x) else read(x); f()
in f()

It can be translated into the following recursion scheme G1:

S → F e F k → br (c k) (r (F k))

Here, r, c, br and e denote a read operation, a close opera-
tion, a non-deterministic branch, and program termination respec-
tively. The recursion scheme generates the tree shown in Figure 2,
which represents all the possible event (i.e. read, write, branch,
and termination) sequences of the program. Kobayashi [20] ap-
plied the verification method to resource usage verification [14]
(the problem of checking whether a program accesses resources
such as files in a valid manner), and showed that it is sound and
complete for the simply-typed λ-calculus extended with recur-
sion, resource creation/access primitives, and booleans. The com-
pleteness follows intuitively because recursion schemes are es-
sentially terms of the simply-typed λ-calculus with recursion and
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Abstract

Higher-order model checking—the model checking of trees gen-
erated by higher-order recursion schemes (HORS)—is a natural
generalisation of finite-state and pushdown model checking. Re-
cent work has shown that it can serve as a basis for software
model checking for functional languages such as ML and Haskell.
In this paper, we introduce higher-order recursion schemes with
cases (HORSC), which extend HORS with a definition-by-cases
construct (to express program branching based on data) and non-
determinism (to express abstractions of behaviours). This paper is
a study of the universal HORSC model checking problem for de-
terministic trivial automata: does the automaton accept every tree
in the tree language generated by the given HORSC? We first char-
acterise the model checking problem by an intersection type sys-
tem extended with a carefully restricted form of union types. We
then present an algorithm for deciding the model checking prob-
lem, which is based on the notion of traversals induced by the
fully abstract game semantics of these schemes, but presented as
a goal-directed construction of derivations in the intersection and
union type system. We view HORSC model checking as a suitable
backend engine for an approach to verifying functional programs.
We have implemented the algorithm in a tool called TRAVMC, and
demonstrated its effectiveness on a test suite of programs, including
abstract models of functional programs obtained via an abstraction-
refinement procedure from pattern-matching recursion schemes.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Verification

Keywords Model-checking, Higher-order Programs

1. Introduction

Over the past decade, model checking and its allied methods
have been applied to program verification with great effect. For
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first-order, imperative programs, highly optimised finite-state and
pushdown model checkers (such as SLAM [2] and BLAST [3])
have been successfully applied to bug-finding, property check-
ing and test case generation. Building on theoretical results on
the model checking of higher-order recursion schemes (HORS)
[6, 16], Kobayashi [8] has sparked a growing interest in the de-
velopment of an analogous model checking framework for higher-
order, functional programs.

A HORS is a kind of higher-order grammar, which can be viewed as
a mechanism for generating a possibly-infinite, ranked tree. HORS
model checking is concerned with the problem of deciding whether
the tree generated by a given HORS satisfies a given property and,
when the property is expressed by a formula of the modal mu-
calculus (equivalently, an alternating parity tree automaton), then
the problem is known to be decidable [16]. Since they can equally
well be viewed as a closed, ground-type term of the simply-typed
lambda calculus with recursion and uninterpreted first-order con-
stants, HORS are a natural home for models of higher-order com-
putation. Indeed, HORS model checking is a smooth generalisation
of finite-state and pushdown model checking (finite-state programs
and pushdown systems/Boolean programs are captured by order-0
and order-1 HORS respectively).

HORS model checking is, inherently, an extremely complex prob-
lem. Ong [16] has shown that the modal mu-calculus model
checking problem for order-n recursion schemes is n-EXPTIME
(i.e. tower of exponentials of height n) complete. Even for the
purposes of safety verification (model checking against properties
expressible as deterministic trivial tree automata (DTT)), the prob-
lem is (n� 1)-EXPTIME complete [11], which is still formidably
complex. Hence, the feasibility of HORS model checking as a veri-
fication technology is predicated upon the ability to design decision
procedures that hit the worst-case complexity only in pathological
cases.

That such algorithms are possible was demonstrated by Kobayashi’s
hybrid algorithm, presented in [7], which solves the safety verifi-
cation problem. In an attempt to avoid the hyper-exponential bot-
tleneck, the algorithm closely analyses the actual behaviour of the
HORS as it is evaluated, generating the ranked tree. The hybrid
algorithm builds a graph to record the trace of this computational
behaviour and from the graph derives guesses at proofs which wit-
ness the satisfaction of the property. The algorithm is implemented
in the TRECS tool [9], which has been shown to perform remark-
ably well in a variety of applications.

However, whilst HORS allow for the expression of higher-order
behaviour very naturally, they lack two important features which,
we believe, are highly desirable in a convenient abstract model of
functional programs. The first is a case analysis construct, with
which one can express program branching based on data; the sec-
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Abstract. This paper studies the complexity of the reachability problem
(a typical and practically important instance of the model-checking prob-
lem) for simply-typed call-by-value programs with recursion, Boolean val-
ues, and non-deterministic branch, and proves the following results. (1)
The reachability problem for order-3 programs is nonelementary. Thus,
unlike in the call-by-name case, the order of the input program does not
serve as a good measure of the complexity. (2) Instead, the depth of types
is an appropriate measure: the reachability problem for depth-n programs
is n-EXPTIME complete. In particular, the previous upper bound given
by the CPS translation is not tight. The algorithm used to prove the up-
per bound result is based on a novel intersection type system, which we
believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs is to use
higher-order model checking [7,8,15], which is a decision problem about the trees
generated by higher-order recursion schemes. Various verification problems such
as the reachability problem and the resource usage verification [5] are reducible
to the higher-order model checking [8].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. This is
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. In fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
to a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has a bad effect: the order of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call-
by-name programs is (n− 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase
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Our restriction on kinds amounts to forbidding products on the left of a non-linear arrow, and
on the right of any arrow. However, any non-restricted kind built from {o,(,!,&} is isomorphic
to a kind from De�nition 1 through the isomorphisms (of Intuitionistic Linear Logic [Girard 1987]):

� ! (&i 2I�i ) � &i 2I (� ! �i ) � ( (&i 2I�i ) � &i 2I (� ( �i )
(&i 2{1, ...,n }�i ) ! � � �1 ! · · · ! �n ! �

The �rst two equations hide a combinatorial explosion: converting a non-restricted kind to one in
De�nition 1 may cause an exponential blow-up. For some of our developments, it will be important
that we opt for the notion of kind in De�nition 1, with no such hidden complexity.

Measures. The size |� | and linear order ò(�) of a kind � are de�ned inductively:

|o | = 1 ò(o) = 0
|� ( � | = |� | + |� | + 1 ò(� ( �) = max( ò(�), ò(�))
|� ! � | = |� | + |� | + 1 ò(� ! � ) = max( ò(�) + 1, ò(� ))
| &i 2I �i | = 1 +

Õ
i 2I |�i | ò(&i 2I�i ) = maxi 2I ò(�i )

While the de�nition of size is straightforward, that of linear order deserves a comment. If we
ignore the clauses for( and &, we simply obtain the standard notion of order of a simple type,
see e.g. [Salvati and Walukiewicz 2016]. The order is extended to ( and & simply by ignoring the
constructors and taking the maximum of the linear order of their operands. This should be natural
to the reader familiar with linear logic [Girard 1987]: indeed, recall that the call-by-name Girard
translation interprets � ! � as !� ( � in linear logic. Hence, one can understand the de�nition of
linear order above as simply counting the maximal nesting of exponentials in the corresponding
linear logic formula. A key inspiration for this work is the idea that the main source of complexity
in the higher-order model-checking problem is the exponential, and not the arrow in itself.

While our main theorem will substantiate this claim, there will be a proviso because linear kinds,
to an extent, do impact complexity. Consequently, to arrive at our asymptotic bounds, we will need
to control the use of linear kinds by bounding the extent to which purely linear type constructors
can occur contiguously (without being separated by the left-hand side of a non-linear arrow, i.e. by
a !). For that purpose we introduce the notion of linear depth of a kind.

De�nition 2. The local linear depth lld(�) of a kind � is de�ned inductively as follows

lld(o) = 0 lld(� ( �) = max(lld(�), lld(�)) + 1
lld(&i 2I�i ) = maxi 2I lld(�i ) + 1 lld(� ! � ) = lld(� )

The linear depth of �, written d̀(�), is the maximum of lld(�), taken over all subkinds � of �.

Observe that purely non-linear kinds have linear depth 0. We shall see that, even though bounded
linear depth increases expressivity, this does not a�ect the asymptotic complexity of model-checking.
In particular, our translations of Sections 5 and 6 will yield kinds with bounded linear depth.

2.1.2 Kinded terms and their measures.

De�nition 3. Raw terms are de�ned as follows.

t ,u ::= x | �x� .u | `x� .u | t u | hui | 1  i  ni | �i | Yx� .u

After De�nition 1, we wrote that we will sometimes identify a functional kind � with the unary
product &{?}�. Accordingly, we will also identify a (non-product) term t and the unary tuple
ht | i 2 {?}i – this will enable more uniform notations later on.
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From there, it is relatively easy to derive the following by arithmetic reasoning:

C�������� 32. If G has linear order n, linear depth D and generalized arity A, then for all � in G:
]�  expn(A 2D+1(Q |� |)2D+1), where exp0(x) = x , expn+1(x) = 2expn (x ).

The tower is two steps higher than usual if one considersD as a variable. It is easy to come up with
a sequence of purely linear kinds showing that the additional double exponential is unavoidable.
However, if D is �xed, we get bounds of the form expn(O(poly(AQS))) for re�nements of kinds of
linear order n, generalized arity A, size S , with types built from Q states – as hoped. We will see
later that this is not an unreasonable assumption, as our translations yield a small linear depth.

Finally, from the above one can deduce complexity bounds for solving Typ(G,A).

P���������� 33. Given a LHORS G with N non-terminals, kinds of maximal size S , linear depth
D and linear order n; and a linear-nonlinear APT A with colours bounded by p and states bounded by
Q � p. For n � 1, the time complexity for solving Typ(G,A) is O(N dp/2e+2 expn(O(2D )(QS)O (2D ))).

P����. The following inequalities follow immediately from the de�nition of Typ(G,A) and
Corollary 32 (using also that the generalized arity of a kind is always bounded by its size).

|V8 |, |V9 |  N expn(O(2D )(QS)O (2D )) |E |  N 2 expn(O(2D )(QS)O (2D ))
The result follows by applying the algorithm from [Jurdziński 2000]. ⇤

Finally, let us �x some D � 1. A LHORS is D-deep if its linear depth does not exceed D. Our
main theorem then follows as a corollary of the above:

T������ 34. Assume n � 1. The time complexity of checking whether a LNAPTAA = h�,Q,� ,q0i
accepts the value tree of a D-deep LHORS G of linear order n is expn(O(pol�(|Q||G|))). In particular,
the problem is n-EXPTIME complete (hardness follows from [Ong 2006]).

5 IMMEDIATE CONSEQUENCES
Although recent developments in higher-order program veri�cationwere prompted by a decidability
result for HORS [Ong 2006], subsequent complexity results for richer formalisms did not appeal to
the result directly. Instead, their authors were developing dedicated decision procedures.

There are at least two reasons for this. Firstly, HORS represent only the part of the control �ow
of a program coming from higher-order computation, while programs typically manipulate data,
and their behaviour depends on the data. Secondly, programs typically follow a di�erent evaluation
strategy, such as call-by-value. Both problems can be dealt with using plain HORS: data types can
be represented via their Church encoding, e.g. with B⇤ = o ! o ! o, while call-by-value programs
can be translated to HORS (call-by-name) with CPS. Unfortunately, both translations increase type
order and suggest increases in complexity.
In contrast, we are going to show that, thanks to Theorem 34, LHORS (equivalently, the �̀Y -

calculus) are a suitable target for such translations. First, in this section, we shall derive optimal
bounds for MSO model-checking in two extensions of HORS by translation into LHORS. In the
next section, we shall follow the same methodology (translation into the �̀Y -calculus) to handle
accurately a resource veri�cation problem in the call-by-value setting.

5.1 Recursion Schemes over Finite data Domains
Recursive schemes over �nite data domains (RSFD) [Kobayashi et al. 2010] extend standard (non-
linear) HORS with a new ground kind d representing a �nite domain whose elements correspond
to constants d1, · · · ,dk of that kind. Terms of RSFDs are those of standard HORS extended with
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Abstract

The model checking of higher-order recursion schemes
has important applications in the verification of higher-
order programs. Ong has previously shown that the modal
mu-calculus model checking of trees generated by order-
n recursion scheme is n-EXPTIME complete, but his algo-
rithm and its correctness proof were rather complex. We
give an alternative, type-based verification method: Given
a modal mu-calculus formula, we can construct a type sys-
tem in which a recursion scheme is typable if, and only if,
the (possibly infinite, ranked) tree generated by the scheme
satisfies the formula. The model checking problem is thus
reduced to a type checking problem. Our type-based ap-
proach yields a simple verification algorithm, and its cor-
rectness proof (constructed without recourse to game se-
mantics) is comparatively easy to understand. Further-
more, the algorithm is polynomial-time in the size of the
recursion scheme, assuming that the sizes of types and the
formula are bounded above by a constant.

1 Introduction

The model checking of infinite structures generated by
higher-order recursion schemes has drawn growing atten-
tion from both theoretical and practical communities. From
a theoretical perspective, the recent interest was sparked by
the discovery of Knapik et al. [9] that higher-order recur-
sion schemes satisfying a syntactic constraint called safety
generate the same class of (possibly infinite, ranked) trees
as higher-order pushdown automata. Remarkably they also
showed that these trees have decidable monadic second-
order (MSO) theories [10], subsuming earlier well-known
MSO decidability results for regular (or order-0) trees [16]
and algebraic (or order-1) trees [2]. (MSO logic is a kind of
gold standard of expressivity for logics that describe com-
putational properties: all the standard temporal logics can
be embedded into it, and it is hard to extend it meaningfully
without sacrificing decidability where it holds.) Ong [15]
has subsequently shown that the modal mu-calculus model

checking problem for trees generated by arbitrary order-
n recursion schemes is n-EXPTIME complete (and hence
these trees have decidable MSO theories); further [5] these
schemes are equi-expressive with a new class of automata,
called collapsible pushdown automata. On the practical
side, Kobayashi [11] has recently shown that the verification
of higher-order programs can be reduced to that of higher-
order recursion schemes. He constructed a transformation
of a higher-order program into a recursion scheme that gen-
erates a (possibly infinite) tree representing all the possible
event sequences of the program; thus, temporal properties
of the program can be verified by model-checking the re-
cursion scheme.
Ong’s algorithm for verifying higher-order recursion

schemes is rather complex and probably hard to under-
stand: The algorithm reduces the model-checking problem
to a parity game over variable profiles, and its correctness
proof relies on game semantics [7]. Hague et al. [5] gave
an alternative proof via a reduction of the model checking
of recursion schemes to that of collapsible pushdown au-
tomata; their reduction is also based on game semantics.
Kobayashi [11] showed that given a Büchi tree automaton
with a trivial acceptance condition (a class which Aehlig [1]
has called trivial automata), one can construct an intersec-
tion type system in which a recursion scheme is typable if,
and only if, the tree generated by the scheme is accepted by
the automaton. (Prior to Kobayashi’s work [11], Aehlig [1]
has also proposed a verification method for the same class
of trivial automata. Kobayashi’s type system is closely re-
lated to Aehlig’s, which was not presented in the form of a
type system: See Section 6.) The advantages of the type
system are that the correctness of the algorithm is much
simpler, and it is easier to optimize the algorithm in a num-
ber of special cases, by standard methods for type infer-
ence. Specifically, Kobayashi [11] has shown that under
the assumption that the sizes of types and the automaton
are bounded above by a constant, the verification algorithm
runs in time linear in the size of the recursion scheme.
This paper builds on Kobayashi’s type system [11] and

extends it to a type system capable of the modal mu-
calculus model checking of trees generated by higher-order

1
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o ! · · · ! o ! o

o & · · · & o ( o

o ( . . .( o ( o

(A1 !� A2)⇤ = A⇤
1 ! (A⇤

2 ! o) ! o

(A1 !� A2)⇤ = A⇤
1 ! (A⇤

2 ! o) ( o

Fi (x1, · · · ,xni ) = ei
S = F (ce)

F (x) = b(x , F (cx))

b

c b

e c2 b

e c3 b

e c4 . . .

e

N = { S :: o,
F :: (o ( o) ( o,
G :: o ( o,
H :: (o ( o) ( o ( o }

are kinded simply by replacing the non-linear arrows with linear arrows in the HORS of Example
??; and, �nally:

S = F G
F f = b hf e, F (H f )i
Gx = c (dx)

H f x = c (f (dx))
S = F G

F f = b (f e) (F (H f ))
Gx = c (dx)

H f x = c (f (dx))

T������ 2. Assume n � 1. The time complexity
of checking whether a LNLAPTA A = h�,Q,� ,q0i
accepts the value tree of a LHORSG of linear ordern
(and bounded linear depth) is expn(O(pol�(|Q||G|))).

q 2 Q

q :: o
� :: � � :: �
� ( � :: � ( �

(�i :: �)i 2I � :: �

(
€
i 2I
⇤ci �i ) ! � :: � ! �
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The parity game Typ(G,A) is �nite; therefore, the LNAPTA model-checking problem for in�nite
trees generated by LHORS is decidable. Of course, that in itself is not new since a LHORS can be
easily translated to a HORS generating the same in�nite tree (but with higher order). The value of
the development above will appear more clearly in the next section with the complexity analysis.

4.3 Complexity analysis
We have seen that given a LHORS G and a LNAPTA A, the model-checking problem is reduced to
the existence of a winning strategy for Eve in the parity game Typ(G,A). Since the parity game is
played on typing judgements of our intersection type system, the key element of the complexity
analysis will be �nding an upper bound on the number of intersection types re�ning a given kind.
As pointed out before, linear kinds will a�ect the complexity in a relatively small manner.

4.3.1 Bounding the size of refinements. First, let us explain brie�y why only non-linear arrows
are expected to cause an exponential blow-up. Fix a LHORS G and a linear-nonlinear APT A.
The source of the tower of exponentials in the complexity of higher-order model-checking is the
following re�nement rule for non-linear arrows:€

i 2I
⇤ci �i ! � :: � ! �

(which combines two re�nement rules of De�nition 20), where for all i 2 I , �i :: � and � :: � . The
intersection types are idempotent, so assuming � and � have only �nitely many re�nements it
follows that the same holds for � ! � . Writing ]� for the number of distinct intersection type
re�nements of �, we get ](� ! � )  2C]�]� , where C is the number of colours. It should be clear
to the reader how non-linear arrows nested on the left will iterate this exponential, culminating in
a tower of height equal to the order of the kind. The impact of the other kind constructors is milder:

](o) = Q ](&i 2I�i ) =
’
i 2I

C ]�i ](� ( �) = (]� + 1)(]�)

where Q is the number of states of A.
None of these cause directly an exponential blow-up. However, it would be naive to ignore their

e�ect. From our discussions, one might expect that, for purely linear kinds �, ]� will be linear in
|� |. Unfortunately, it is easy to see that this is not the case: the kind o ( . . .( o ( o has size
O(n), but admits O(Qn) re�nements. To circumvent the apparent issue, we introduce the notion of
linear depth, capturing the maximal depth of isolated linear chunks of kinds.
In the purely non-linear case [Kobayashi and Ong 2009], the bound also involves the maximal

arity of kinds. The presence of linear kinds forces us to switch to a generalized notion of arity.

De�nition 30. We de�ne the local generalized arity ga(� ) for a kind � by:
ga(o) = 1 ga(� ( �) = max(ga(�), ga(�)) + 1

ga(&i 2I�i ) = maxi 2I ga(�i ) ga(� ! � ) = 1 + ga(� )
We say that � has generalized arity A i� for all subkind � of � , we have ga(�)  A.

Assume from now on that kinds in G have linear depth D, and generalized arity A. For the key
lemma below, we assume that the number of colours ofA is bounded byQ (from the de�nition it is
bounded byQ + 1 as the intersection type system uses an additional colour � , but the requirement is
easy to ensure with no loss of generality, for instance, by adding a dummy state) – we �nd it more
convenient to give a bound expressed inQ than inC andQ , which can be proved by induction on �.

L���� 31. For all d � 0, de�ne f0(n,x ,�, z) = (x�)2n and fd+1(n,x ,�, z) = x�z2
n fd (D,x,�,A). Then,

for all kinds � appearing in G, we have ]�  f ò(�)(lld(�), |� | + 1,Q, ga(�)).
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From there, it is relatively easy to derive the following by arithmetic reasoning:

C�������� 32. If G has linear order n, linear depth D and generalized arity A, then for all � in G:
]�  expn(A 2D+1(Q |� |)2D+1), where exp0(x) = x , expn+1(x) = 2expn (x ).

The tower is two steps higher than usual if one considersD as a variable. It is easy to come up with
a sequence of purely linear kinds showing that the additional double exponential is unavoidable.
However, if D is �xed, we get bounds of the form expn(O(poly(AQS))) for re�nements of kinds of
linear order n, generalized arity A, size S , with types built from Q states – as hoped. We will see
later that this is not an unreasonable assumption, as our translations yield a small linear depth.

Finally, from the above one can deduce complexity bounds for solving Typ(G,A).

P���������� 33. Given a LHORS G with N non-terminals, kinds of maximal size S , linear depth
D and linear order n; and a linear-nonlinear APT A with colours bounded by p and states bounded by
Q � p. For n � 1, the time complexity for solving Typ(G,A) is O(N dp/2e+2 expn(O(2D )(QS)O (2D ))).

P����. The following inequalities follow immediately from the de�nition of Typ(G,A) and
Corollary 32 (using also that the generalized arity of a kind is always bounded by its size).

|V8 |, |V9 |  N expn(O(2D )(QS)O (2D )) |E |  N 2 expn(O(2D )(QS)O (2D ))
The result follows by applying the algorithm from [Jurdziński 2000]. ⇤

Finally, let us �x some D � 1. A LHORS is D-deep if its linear depth does not exceed D. Our
main theorem then follows as a corollary of the above:

T������ 34. Assume n � 1. The time complexity of checking whether a LNAPTAA = h�,Q,� ,q0i
accepts the value tree of a D-deep LHORS G of linear order n is expn(O(pol�(|Q||G|))). In particular,
the problem is n-EXPTIME complete (hardness follows from [Ong 2006]).

5 IMMEDIATE CONSEQUENCES
Although recent developments in higher-order program veri�cationwere prompted by a decidability
result for HORS [Ong 2006], subsequent complexity results for richer formalisms did not appeal to
the result directly. Instead, their authors were developing dedicated decision procedures.

There are at least two reasons for this. Firstly, HORS represent only the part of the control �ow
of a program coming from higher-order computation, while programs typically manipulate data,
and their behaviour depends on the data. Secondly, programs typically follow a di�erent evaluation
strategy, such as call-by-value. Both problems can be dealt with using plain HORS: data types can
be represented via their Church encoding, e.g. with B⇤ = o ! o ! o, while call-by-value programs
can be translated to HORS (call-by-name) with CPS. Unfortunately, both translations increase type
order and suggest increases in complexity.
In contrast, we are going to show that, thanks to Theorem 34, LHORS (equivalently, the �̀Y -

calculus) are a suitable target for such translations. First, in this section, we shall derive optimal
bounds for MSO model-checking in two extensions of HORS by translation into LHORS. In the
next section, we shall follow the same methodology (translation into the �̀Y -calculus) to handle
accurately a resource veri�cation problem in the call-by-value setting.

5.1 Recursion Schemes over Finite data Domains
Recursive schemes over �nite data domains (RSFD) [Kobayashi et al. 2010] extend standard (non-
linear) HORS with a new ground kind d representing a �nite domain whose elements correspond
to constants d1, · · · ,dk of that kind. Terms of RSFDs are those of standard HORS extended with
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From there, it is relatively easy to derive the following by arithmetic reasoning:

C�������� 32. If G has linear order n, linear depth D and generalized arity A, then for all � in G:
]�  expn(A 2D+1(Q |� |)2D+1), where exp0(x) = x , expn+1(x) = 2expn (x ).

The tower is two steps higher than usual if one considersD as a variable. It is easy to come up with
a sequence of purely linear kinds showing that the additional double exponential is unavoidable.
However, if D is �xed, we get bounds of the form expn(O(poly(AQS))) for re�nements of kinds of
linear order n, generalized arity A, size S , with types built from Q states – as hoped. We will see
later that this is not an unreasonable assumption, as our translations yield a small linear depth.

Finally, from the above one can deduce complexity bounds for solving Typ(G,A).

P���������� 33. Given a LHORS G with N non-terminals, kinds of maximal size S , linear depth
D and linear order n; and a linear-nonlinear APT A with colours bounded by p and states bounded by
Q � p. For n � 1, the time complexity for solving Typ(G,A) is O(N dp/2e+2 expn(O(2D )(QS)O (2D ))).

P����. The following inequalities follow immediately from the de�nition of Typ(G,A) and
Corollary 32 (using also that the generalized arity of a kind is always bounded by its size).

|V8 |, |V9 |  N expn(O(2D )(QS)O (2D )) |E |  N 2 expn(O(2D )(QS)O (2D ))
The result follows by applying the algorithm from [Jurdziński 2000]. ⇤

Finally, let us �x some D � 1. A LHORS is D-deep if its linear depth does not exceed D. Our
main theorem then follows as a corollary of the above:

T������ 34. Assume n � 1. The time complexity of checking whether a LNAPTAA = h�,Q,� ,q0i
accepts the value tree of a D-deep LHORS G of linear order n is expn(O(pol�(|Q||G|))). In particular,
the problem is n-EXPTIME complete (hardness follows from [Ong 2006]).

5 IMMEDIATE CONSEQUENCES
Although recent developments in higher-order program veri�cationwere prompted by a decidability
result for HORS [Ong 2006], subsequent complexity results for richer formalisms did not appeal to
the result directly. Instead, their authors were developing dedicated decision procedures.

There are at least two reasons for this. Firstly, HORS represent only the part of the control �ow
of a program coming from higher-order computation, while programs typically manipulate data,
and their behaviour depends on the data. Secondly, programs typically follow a di�erent evaluation
strategy, such as call-by-value. Both problems can be dealt with using plain HORS: data types can
be represented via their Church encoding, e.g. with B⇤ = o ! o ! o, while call-by-value programs
can be translated to HORS (call-by-name) with CPS. Unfortunately, both translations increase type
order and suggest increases in complexity.
In contrast, we are going to show that, thanks to Theorem 34, LHORS (equivalently, the �̀Y -

calculus) are a suitable target for such translations. First, in this section, we shall derive optimal
bounds for MSO model-checking in two extensions of HORS by translation into LHORS. In the
next section, we shall follow the same methodology (translation into the �̀Y -calculus) to handle
accurately a resource veri�cation problem in the call-by-value setting.

5.1 Recursion Schemes over Finite data Domains
Recursive schemes over �nite data domains (RSFD) [Kobayashi et al. 2010] extend standard (non-
linear) HORS with a new ground kind d representing a �nite domain whose elements correspond
to constants d1, · · · ,dk of that kind. Terms of RSFDs are those of standard HORS extended with
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C[(�x� . t)u] .� C[t[u/x]] C[�x� . t x] .� C[t] x<fv(t )
C[(`x� . t)u] .� C[t[u/x]] C[`x� . t x] .� C[t] x<fv(t )

C[�i hti | i 2 I i] .� C[ti ] C[h�i t | i 2 I i] .� C[t]
Fig. 2. �-reduction and �-contraction on �̀Y -terms

may have linear order 0 or 1. We shall see that the choice of kinding may have signi�cant impact
on the set of in�nite trees generated and the set of properties that can be veri�ed.

De�nition 4. Tree kinds are the kinds � generated by

� ::= o | � ( � | o ! � and � ::= &1in o

A tree signature is a �nite list � = b1 :: �1, . . . , bn :: �n where �i is a tree kind for all 1  i  n.

Remark 5. Tree kinds have the form � = &1jp1o  1 . . .  n�1 &1jpno  n o, where
 i2 {!,(}, and pi = 1 whenever i=!, with the convention that o may be written as &{?} o
to uniformize notations. A tree kind � induces a �rst-order kind {|� |} if one ignores the linear
information: {|� |} = o ! · · · ! o|          {z          }

p1

! · · · ! o ! · · · ! o|          {z          }
pn

! o is called the delinearization of � .

Likewise, by applying the above transformation to each kind of a tree signature �, we can obtain a
�rst-order signature in the standard sense, written {|�|}.

If � is a tree signature, any �nite tree on {|�|} can be presented as a �nite term � | _ ` t :: o, the
latter possibly containing tuples to represent di�erent branches. For instance, the tree of Example
11 (with dots replaced with ? :: o) is represented by the term t 2 KT� |_(o) given below on the left

b hc (d e),
b hc (c (d (d e))),

b hc (c (c (d (d (d e))))),
b hc (c (c (c?))),?iiii

with � = b :: o & o ( o, c :: o ( o, d :: o ( o, e :: o,? :: o.
Note that tuples of terms were introduced to match the linear
speci�cation of �. Next we de�ne notions of reduction on �̀Y -
terms, and explain how to use them to generate in�nite trees
represented in an analogous way.

2.2 Reduction and Böhm trees
In this section, we study operational properties of the �̀Y -calculus. We de�ne notions of reduction,
state its basic properties, and de�ne the Böhm tree (in�nite normal form) of a term.

2.2.1 �-reduction and �-contraction. We de�ne as usual a context as a term with a hole, i.e. a
term de�ned by the following grammar:

C[�] ::= [�] | �x� .C[�] | `x� .C[�] | C[�]u | t C[�] | �i C[�] |
hu1, . . . ,ui�1,C[�],ui+1, . . . ,uni | Yx� .C[�]

The basic reductions are �-reduction (for linear and non-linear functions, and for products),
and �-contraction (again, for all three constructors). The rules are in Figure 2 – fv(t) denotes the
set of free variables in t , either linear or non-linear. We will occasionally refer to �-expansion, the
opposite of �-contraction, only de�ned for terms of appropriate kind. We write .�� for the union
of .� , .� . Without any rules for unfolding �xpoints, reduction is strongly normalizing:

P���������� 6. The reduction .�� is con�uent, and strongly normalizing.

P����. Immediate by embedding into the simply-typed �-calculus with surjective pairing, which
is well-known to be strongly normalizing [Pottinger 1981]. ⇤
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CONCLUSIONS

• LHORS: more expressivity for the same asymptotic 
model-checking complexity

• Unification and extension of existing results, where 
reduction to HORS would give inaccurate bounds

• A tool to understand and tame complexity of 
higher-order model checking


