LINEARITY IN HIGHER-ORDER

RECURSION SCHEMES

Pierre Clairambault Charles Grellois
N FOrC=NER BT apaldpiseledolaidesie

Andrzej Murawski
University of Oxford

Unsafe Grammars and Panic Automata

eodor Knapik®, Damiax
Pavel et ol \)Ss]ukmwlczs e

! Université de la Nouvelle Calédonic

knapik@univ--nc.n
i, i s u..mmw
iuinski, urzy}ens
3 GBS LaBRL. Unieersté Bondenn 1
igulabri.fr

Abstract. We show that the problem of checking if an infinite tree gen-
erated by a higher-order grammar of level 2 (hyperalgebraic) satisfies
a given p-calculus formula (or, equivalently, if it is accepted by an al-
fornting pority automaton) Is decidable actually 2 EXPTIME-complete
Consequently, the monadic second-order theory of any hyperalgebraic
tree is decidable, so that the safety restric n be removed from
our previous decidability result. The last result has been independently
obtained by Aehlig, de Miranda and Ong. Our proof goes via a char-
acterization of possibly unsafe second-order grammars by a new variant
of higher-order puahd«.ku automata, which we call panic automata. In
i S o g i
e Bt et v s

Jem 12 then reduccd. to the problem of decding the winmcr m a pasity
game over a suitable 2nd order pushdown system.

1 Introduction

Context-free tree grammars constitute the basic level in an infinite hierarchy of
higher-order grammars introduced by W. Damm [8] (built on the earlier ideas
of [11]). Courcelle [6] proved decidability of the monadic second-order (MSO)
theory of any tree generated by an algcbraic (context-free) tree grammar. Later
Knapik cf al [13,14] attempted to extend this decidability result to all levels of
the Damm hierarchy. This has been achieved partially, namely with an additional
syntactic restriction imposed on the grammars, called safety: the MSO theory
of any tree generated by a safe grammar of level n s decidable.

Higher-order grammars can be scen as program schemes, where functions
can take higher-order arguments. The tree generated by such a grammar de-
scribes completely the semantics of the program scheme. Thus decidability of

* Partly supported by KBN Grant 4 T11C 042 25.

** Partly supported by KBN Grant 3 T11C 002 27.

* The 2nd and the 4th anthor were also supported by the EC Rescarch Training
Network Games

L. Cares ot al. (Bds.): ICALP 2005, LNCS 3580, pp. 1450-1461, 2005,
© Springer-Verlag Berlin Heidelberg 2005

S —

Walukiewicz et al
@R 2005)

—

EALS

On model-checking trees generated by higher-order recursion schemes

C-H.L.Ong'
Oxford University Computing Laboratory

Abstract

We prove that the modal mu-calculus model-checking
problem for (ranked and ordered) node-labelled trees that
are generated by order-n recursion schemes (whether safe
or not, and whether homogencously typed or not) is n-
EXPTIME complete, for every n > 0. It follows that the
monadic second-order theories of these trees are decidable.

There are three major ingredients. The first is a certain

f scheme

Shupp [13] proved that the configuration graphs of push-
down systems have decidable MSO theories. In the 90
as finite-state technologies matured, researchers embraced
the challenges of software verification. A highlight from
this period was Caucal’s result [5] that prefix-recognizable
graphs have decidable MSO theories. In 2002 a flurry of
discoveries significantly extended and unified earlier devel-
opments. Ina FOSSACS'02 paper [11], Knapik, Niwiriski
and Urzyczyn studied the infinite hierarchy of term-trees
generated by higher-order recursion schemes that are -

— the value tree 10 an tree, which is
itselfa ree gencrated by a elated order-0 recursion scheme
(equivalently, a regular tree). Using innocent game seman-
sics in the sense of Hyland and Ong, we establish a strong
correspondence between paths in the value tree and traver-
sals in the computation tree. This allows us 10 prove that a
given alternating parity tree automaton (APT) has an (ac-
cepting) run-tree over the value tree iff it has an (accept-
ing) traversal-tree over the computation tree. The second
ingredient is the simulation of an (accepting) traversal-tree
by a certain set of annotated paths over the computation
iree; we introduce traversal-simulating APT as a recognis-
ing device for the latter: Finally, for the complexity resul,
we prove that traversal-simulating APT enjoy a succinct-
ness property: for deciding acceptance, it is enough to con-
sider run-trees that have a reduced branching factor. The
desired bound is then obtained by analysing the complexity
of solving an associated (finite) acceptance parity ganme.

1. Introduction

What classes of finitely-presentable infinite-state sys-
tems hm decidable monadic second-order (MSO) theo-

logic. One of the best known examples of such a class are
the regular trees as studied by Rabin in 1969. A notable
advance occurred some fifteen years later, when Muller and

“users.comlab.ox.ac. uk/luke .ong/ index. html

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06)
0-7695-2631-4/06 $20.00 ©2006 IEEE

typed and satisfy a called
safety. They showed that for every n > 0, trees generated
by order-n safe schemes are exactly those that are accepted
by order-n pushdown automata: further they have decid-
able MSO theories. Later in the year at MFCS'02 [6], Cau-
cal introduced a tree hierarchy and a graph hierarchy that
are defined by mutual recursion, using a pair of powerful
transformations that preserve decidability of MSO theories.
Caucal’s tree hierarchy coincides with the hierarchy of trees
generated by higher-order pushdown automata.

Knapik et al. [11] have asked if the safety assumption is
really necessary for their MSO decidability result. A partial
answer has recently been obtained by Achlig, de Miranda
and Ong: they showed at TLCA'05 [2] that all trees up to or-
der 2, whether safe or not, have decidable MSO thearies. In-
dependently, Knapik, Niw rzyczyn and Walukiewicz
obtained a sharper result: they proved at ICALP"05 [12] that
the modal mu-caleulus model-checking problem for trees
generated by order-2 recursion schemes (whether safe or
not) is 2-EXPTIME complete. In this paper we give a com-
plete answer to the question:

Theorem 1. The modal mu-calculus model-checking prob-
lem for trees generated by ordern recursion schemes
(whether safe or not, and whether homogeneously typed or
not) is n-EXPTIME complete, for every n > 0. Thus these
trees have decidable MSO theories.

Our approach is to transfer the algorithmic analysis from
the tree generated by a recursion scheme, which we call
value tree, 10 an auxiliary computation tree, which is it-
self a tree generated by a related order-0 recursion scheme
(equivalently, a regular tree). The computation tree recov-
ers useful intensional information about the computational

R —

Ong
(LICS 2006)

COMPUTER
SOCIE

Types and Higher-Order Recursion Schemes for Verification of
Higher-Order Programs

Naoki Kobayashi
Tohoku University
koba@ecei.tohoku.ac.jp

Abstract

‘We propose a new verification method for temporal properties of
higher-order functional programs, which takes advantage of Ong’s

Tem of resource usage verification [19] for higher-order functional
languages with dynamic resource creation and access primiives.
The gou o the verification i 0 heck ha cach dymamically cr-

recent result on the decidability of the problem

N

formed 10 an HORS that generates a tree representing all the possi-

Bl el S g o S0
o

also present a type-b:

 HORS, under the assumption that
the sizes of types and specifications are bounded by a constant
Categories and Subject Descriptors D24 [Software Engineer-
ingl: Software/Program Verification; 3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
‘With the increasing importance of software reliability, program ver-

ifc
vare model checking [3-5] has e e lmp:m—

e oo dynamlc comm\ such T iy lal\g\mges
fres

Bt i pmgmmi r)p(e
recognized as effective techniques for program verification. How-
ever, they cither require explicit type annotations (as in dependent
type systems), or suffer from many false alarms.

n this paper, we propose a novel verification technique for tem-
poral properties of higher-order programs. We consider the prob-

Permission to make digalor hard copies of allorpart of his work for peror
asroom us s graned Wi 00 providd hat cupes s ot o sl

o st e To oy s el 0 pos o s or el
o s, et prioespeciic permision andior

POPL0, ey 1. 24,20, S e USA
Copyright © 2009 ACNI 575-1.60555-379-20901 55,00

‘manner (ike “an opened fle
cventinly losed and 1 o e o Writen afle being
odel-checking problems (ke

2 lac)
resomo uiegs ey PSR
s
verification technique is built on the recent result on
model checking of higher-order recursion schemes (HORS's, for
short) [29]. A higher-oder recur grammar for de-
scribing an infinite tre. HORS is a generalization of regular tree
grammars; they are described by HORS’s of order 0. Ong [29]
il e sy i e o S
whether t T]
Jiealculus formula s and B
“The first main idea of this paper i t ransform a higher-order
functional program into an HORS that produces an infinite tree.
bl L G ol e
By the the problem
o chenking » gtlt Tty resiicoyts ek
of a functional program is reduced o that of checking the cor-
responding regular property of the infinite tree gencrated by the.
HORS. The latter can be solved by Ong’s model checking algo-
sithm for HORS [29]. For programs having only resources and
functions as values, the transformation into HORS is achieved by
CPS conversion and A-lifting, along with an additional trick (0 ex-
ract “resource-wise” access behavior. For programs with ordinary
values (such as integers), we can apply the technique of predicate.
abstractions and counter-example-guided abstraction refinement.
“The resulting verification framework is sketched in Figure 1. Given
asource program, we frstapply CPS conversion and -lifting to get
a system of top-level function definitions (Step 1. We then apply
predicatc abstractions 10 get & higher-order boolean program (Stcp.
2).1tis then converted to HORS (Steps 3 and 4), and the HORS is
model-checked (Step 5). If the model checking fails, a counterex-
ample is investigated, and the abstraction is refined (Steps 6 and
7.

‘The second main idea of this paper is to use fypes for model-
checking HORS, ionesd of Ong s algorife based cn game so-
For a fragment of modal y-calculus (for describing safety

and complete. inthe sense that an HORS is well-typed if and only if
the HORS satisfes the given property. Thus, a type inference algo-

T—

Kobayashi
(POPL 26858

TREES OV
FIRST-ORDER AL
S=1{bzo—o0— B

/b\b
N
i o
e d|2 CI3 /

AB

0

RECURSIVE APPLICATIVE PROGRAM
SCHEMES (NIVAT, 19705)

Fi(xla g ,Xn,-) — (5

F(ce)
b(x, F(cx))

@)
Do
=
sl

HIGHER-ORD

R TYPES

A:::O|A%A

ord(o) =0
ord(A; — As) = max(ord(A1)+1, ord(As))

HIGHER-ORDER
BRECURSION SCHEMESS

order-2HORS G = 3, N, R,S)

pRE=—i::i0 —» 0 — 0,c 2 0 > 0,d 0 — o€l
N={S:0F:(0—>0) —>0G:0—0H:(— 0 — o0— o}

S — G
Ff = b(fe)(F(HS))
Gy = cldx)
Hfx = c(f(dx))

-XAM

FG
b(fe)(F(HS))
c(dx)

c(f (dx))

MSO (LICS 2006)

On model-checking trees generated by higher-order recursion schemes

C.-H. L. Ong*
Oxford University Computing Laboratory

R — e EEE——__

Theorem 1. The modal mu-calculus model-checking prob-
lem for trees generated by order-n recursion schemes
(whether safe or not, and whether homogeneously typed or
not) is n-EXPTIME complete, for every n > 0. Thus these
trees have decidable MSO theories.

IS0 (FOSSSACS 2008

Higher-Order Pushdown Trees Are Easy

Teodor Knapik!, Damian Niwinski?*, and Pawet Urzyczyn?**

! Université de la Réunion, BP 7151,
97715 Saint Denis Messageries Cedex 9, Réunion
knapik@univ--reunion.fr
2 Institute of Informatics, Warsaw University
ul. Banacha 2, 02-097 Warszawa, Poland

{niwinski,urzy}@mimuw.edu.pl

Abstract. We show that the monadic second-order theory of an infinite
tree recognized by a higher-order pushdown automaton of any level is
decidable. We also show that trees recognized by pushdown automata
of level n coincide with trees generated by safe higher-order grammars
of level n. Our decidability result extends the result of Courcelle on
algebraic (pushdown of level 1) trees and our own result on trees of
level 2.

AU TOMATES

RS [L[L ab5] [erotii

Unsafe Grammars and Panic Automata

Teodor Knapik!, Damian Niwinski?*,
Pawel Urzyczyn?**, and Igor Walukiewicz3* * *

L — -

Collapsible Pushdown Automata and Recursion Schemes

MATTHEW HAGUE, Royal Holloway, University of London

ANDRZE]J S. MURAWSKI, DIMAP and Department of Computer Science, University of Warwick
C.-H. LUKE ONG, Department of Computer Science, University of Oxford

OLIVIER SERRE, IRIF, CNRS & Université Paris Diderot — Paris 7

L —— —————

ICALP'O5

LICS'08

HORS (POPL 2009)

Types and Higher-Order Recursion Schemes for Verification of
Higher-Order Programs

Naoki Kobayashi
Tohoku University

koba®ecei.tohoku.ac.jp

Abstract

We propose a new verification method for temporal properties of
higher-order functional programs, which takes advantage of Ong’s
recent result on the decidability of the model-checking problem
for higher-order recursion schemes (HORS’s). A program is trans-
formed to an HORS that generates a tree representing all the possi-
ble event sequences of the program, and then the HORS is model-
checked. Unlike most of the previous methods for verification of
higher-order programs, our verification method is sound and com-
plete. Moreover, this new verification framework allows a smooth
integration of abstract model checking techniques into verification
of higher-order programs. We also present a type-based verification

lem of resource usage verification [19] for higher-order functional
languages with dynamic resource creation and access primitives.
The goal of the verification is to check that each dynamically cre-
ated resource is accessed in a proper manner (like “an opened file is
eventually closed, and it is not read or written after being closed”).
Assertion-based model-checking problems (like “X > 0 holds at
program point p”’) can also be recasted as the resource verification
problem, by regarding an assertion failure as an access to a global
resource. (For example, “assert (b)” can be transformed into “if
b then skip else fail,” where fail is an action to the global
resource. Then the problem of checking lack of assertion failures
is reduced to the resource usage verification problem of checking

whathar tha fa41 antinn Aarcnire \

LINEARITY (POPL'I8)

Linearity in Higher-Order Recursion Schemes

PIERRE CLAIRAMBAULT, Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
CHARLES GRELLOIS, INRIA, Sophia Antipolis, France and Aix Marseille Université, CNRS, ENSAM,
Université de Toulon, LSIS UMR 7296, Marseille, France

ANDRZE] S. MURAWSKI, Department of Computer Science, University of Oxford, United Kingdom

Higher-order recursion schemes (HORS) have recently emerged as a promising foundation for higher-order
program verification. We examine the impact of enriching HORS with linear types. To that end, we introduce
two frameworks that blend non-linear and linear types: a variant of the A1Y-calculus and an extension of HORS,
called linear HORS (LHORS).

First we prove that the two formalisms are equivalent and there exist polynomial-time translations between
them. Then, in order to support model-checking of (trees generated by) LHORS, we propose a refined version of
alternating parity tree automata, called LNAPTA, whose behaviour depends on information about linearity. We
show that the complexity of LNAPTA model-checking for LHORS depends on two type-theoretic parameters:
linear order and linear depth. The former is in general smaller than the standard notion of order and ignores
linear function spaces. In contrast, the latter measures the depth of linear clusters inside a type. Our main
result states that LNAPTA model-checking of LHORS of linear order n is n-EXPTIME-complete, when linear
depth is fixed. This generalizes and improves upon the classic result of Ong, which relies on the standard

« Data (booleans)

J— o — @ — @

- CBVY

(A >, Ay)" =A] > (A5, > 0) > o0

THREE

Higher-Order Multi-Parameter Tree Transducers
and Recursion Schemes for Program Verification

Naoki Kobayashi Naoshi Tabuchi Hiroshi Unno
Tohoku University Tohoku University Tohoku University
kobaGecei tohoku.ac.jp. tabee@kb.ecei tohoku.ac jp uhiro@kb.ecei.tohoku.ac jp

Abstract

We introduce higher-order, multi-parameter, tree transducers
AT T, fo s which e Mo o it

Rl e S gt e oviced

that the input trees conform to input specifications (where both

S e e e it g s NI,

sume higher-order recursion schemes and ordinary (ree trans

ers, so that their verification has a number of potential applications

to verficuion of fuctiona Igpote ta struc-
Rt oo

act ype- SR T e

e propose a sound but incomplete verification algorithm for
the HMTT verification problem: the algorithm reduces the verifica-
tlon proben o8 modekehecing roem o igheronder recr-

schemes extended with finite data domains, and then uses (an
A AR A e R e e
schemes. While the algorith is incomplete (indeed, as we show in
the paper, the verification problem s undecidable in general), i
sound o compleisfora ublas of HMTT:clled lnear HOATT:
‘We have applied our HMTT verification algorithm (o various pro-

S i et A e A e e T

e e e
ing]: Software/Program Verifica 1 (Logis and eaning
u(Pm}:mrm] Speciying and veiyng and Reosoning sbon

General Terms Languages, Verification

1. Introduction
Kobayashi [20] has recently proposed a verification method for
higher-order functional programs based on Ong’s decidability re-
sulton model-checking recursion schemes [32). A higher-order re-
cursion scheme (recursion scheme, for short) i & grammar for gen-
crating a (possibly infiit) tec. I is an extension of regula tree

terminal symbols can take rees and higher-
order functions on trees as parameers. For example, the follow-
ing grammar Gy is an order-1 recursion scheme, where the non-

Peamisson @ make digal o b copis of alor part ofthis work fo personalor
clasoon us s gratcd withou e provided tht copis ar not made o distrbucd

o et e To sy v o bl 0 post st oo e
ot e i specfic pemission ador

PL'10Januay 17-23, 2010, Madeid Spin
Copyright © 2010 ACM 978.1.60SSKATO H001.._$10.0

I &%
7 A

Figure 1. The tree gencrated by G,

terminal F takes a ree as an argument
S—Fc Fz—az(F(b)
i e rule. By infinitary
rewriting of the star s
55— fc — ac(F(ve) —

e bt he nfite e shown n Figre 1 On (32 has shown
that modal mualelas model-checking of
(o e S T S e
docs e e genrited by § Ty ¢ s n-EXPTIME compleis
(where 7 is the order of the recursion scheme G). The idea of
Kom,m. s verification method [20] is to translate a functional
a8 recunon scher at geneass a e whose pats
i nt sequences of the program, so that
by 0 e e Gl e
model-checking the recursion scheme. For example, consider the
e e Ao
boolean value):

let x = open_in "foo" in
let rec £() = if * then close(x) else read(x); £()
in 10

Tt can be translated ino the following recursion scheme G
S—Fe Flk—br(ch) (x(FK)

Here, x, ¢, br and o denote a read operation, a close opera-
o ot b s g o s
sively. The recurson ot the tr
TR e e e e e oy
and termination) sequences of the program. Kobayshi [20] ap-
plied the verification method to resource usage veriication [14]
e vk ofchecking Wheter o progra s e
@ vald mamen, and showed it s sound and
o e b f R O
Sion, resource creationfaccess primitivs, and boolcans. The com-
pleteness follows intitively because recursion schemes are s
sentially terms of the simply-typed A-calculus with recursion and

RSFD
(POPL 2010)

A Traversal-based Algorithm for
Higher-Order Model Checking

Robin P. Neatherway C.-H. Luke Ong Steven J. Ramsay
University of Oxford Universty of Oxford University of Oxford
ke "
Abstract first-order, imperative programs, highly optimised finite-state and

Higher-order model checking—the model checking of trees gen-
erated by higher-order recursion schemes (HORS)—is a naural
Eeenistion o st aud psbown el checking R

ork hat it can serve as a basis for software
el checking for uncionallnguage suchas . and Haskl,
In this paper, we introduce higher-order recursion schemes with
cases (HORSC), which extend HORS with a defnition-by-cases
consruct (1o express program branching based on data) and non-

a study of the wniversal HORSC model checking problem for de-
terministic trivial automata: does the automaton accept every tree
in the tree language generated by the given HORSC? We firs char-
acterise the model checking problem by an interscction type sys-
tem extended with a carefully restricted form of union types. We
then present an algorithm for deciding the madel checking prob-
lem, which is based on the notion of fraversals induced by the
£l ahuract ame e of tese s, bt presened s
 gon-ieted constrcion of drvwons i e ikerecion
umion type system. We viey] checking s bl
backend engine for an a pl\ia:hl verifying functional programs.
‘We have implemented the algorithm in a ool called TRAYMC, and
luding

Ffunctional
refinement procedure from pattern-matching recursion schemes.
Categories and Subject Descriptors D24 [Software Eumm

ing]: Software/Program Verification; F.3.1 [Logics ane
o o Speciing nd vertying and Ressoning ot Pr
erams

General Terms Algorithms, Verification

pushdown model checkers (such zs SLAM [2] and BLAST [3])
RS (it St A (3 (o o, e, G
ing and test case generation. Building on theoretical results on
the model checking of higher-order recursion schemes (HORS)
{6, 161, Kobayashi (8] has sparked a growing interest in the de-
T A e g T
order, functional programs.

amechanism for generating a possibly-infnite, ranked tree. HORS

the e genersod by iven HORS saisfis gt progerty and
i property is expressed rmula of the modal m
et (equivalently, an allemaung pﬂnly ()
the problem s known to be decidable [16]. Since they can equally
term of the simply-typed
Tambda calculus with recursion and uninterpreted firt-order con-
stants, HORS are a natural home for models of higher-order com-
i d

of
and pushdown systems/Boolean programs are captured by order-0
and order-I HORS respectively).

HORS mode hecking i, nrey anexencly comples prob-
lem. Ong [16] b modal mu-calcul
i vt s e o EXPTIME
e T e S I e e
purposes of safety verification (model checking against properties
expressible as deterministic rivial tree automata (DTT)), the prob-
Temis (n — 1)-EXPTIME complete [11], which s sil formidably
complex. Hence, the feasibility of HORS model checking as a veri-

procedures that hit the worst-case complexity only in pathological

Keywords Model- Higher- =

1. Introduction

Over the past decade, model checking and its allied methods
have been applied to program verification with great effect. For

Permision (0 make digal o hard copies o ll o part ofthis work for personal or
clastoon use i sranted wthou e provided e copies are no e o disuted

ot g Tocopy ot e 0ot s o o o
o, e prio e pemivion e

IS S 15, At Copags, B
Conyiai & I3 ACH 9701 450 TR 1300 51000

hybrid algorithm, presented in [7], which solves the safety verifi-
cation problem. In an atiempt o avoid the hyper-cxponential bol-
tleneck, the algorithm closely analyses the actual behaviour of the

it s evaluated, generating the ranked tree. The hybrid
algrithm builds graph o ecod the raceofthis computatonl

behaviour and from the graph derives guesses at proof
st e un.muon of the property. The ulgunlhm it inglemened
ind ol [9], which has

ably llina wnny of applications.

However, whilst HORS allow for the expression of higher-order
behaviour very naturally, they lack two important features which,
we believe, are highly desirable in a convenient abstract model of
Jfunctional programs. The first is a case analysis construct, with
‘which one can express program branching based on data; the se

HORSC
(POPL 2012)

- XAMPLES

C lexity of Model-Checking Call-by-Value
Programs

Takeshi Tsukada’? and Naoki Kobayashi®

! University of Oxford
* JSPS Postdoctoral Fellow for Rescarch Abroad
The University of Tokyo

Abstract. This paper studi
(a typical he prob-
lem) for simply-typed call-by-value programs with recursion, Boolean val-
ues, and non-deterministic branch, and proves the following results. (1)
The reachability problem for order-3 progtams is nonelementary. Thus,
unlike in the call-by-name case, the order of the input, program does not.
serve as a good measure of the complesity. (2) Instead, the depth of types
pre -

s the complexity of the reachability problem

is n-EXPTIME complete. In particular, the previous upper bound given
by the CPS translation is not tight. The algorithm used to prove the up-
per bound result is based on a novel intersection type system, which we.
believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs i to use
higher-order model checking [7,8,15], which problem about the trees
generated by higher-order recursion schemes. Various verification problems
T AT o S Nl e (5] are S
to the higher-order model checking [5].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. Thi
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. Tn fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
t0 a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has ba der of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call
by-name programs is (n — 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase

oll (Ed): FOSSACS 2014, LNCS 8412, pp. 180194, 2014,
{6 Soinser-Voiok Born etdetbors 2011

CBV
(FOSSACS 2014)

N

), Ve e

) 185 4 T

“AR HORS

olo—yY|p—oy
¢ | &icr;

TPING RULES

R RE D o @ I'|Agbppu =2 @

I [Ayl b 0 2 @

IR o —) I'| _Fapu ¢

I'|Abap tu @2

FlAl-apti Q@ (lEI)
I | A |_ap <ti | 1 € I> s &iEI(Pi

MY

JEA
B A x sk A oe &ser (O S Do o
F'|AiFt s k—o¢ ' Ay Fu ik F|AFt oY [| ks
F|A1,A2I—tu::cp T|A|—tu::¢
I, 50 s | [TAN S A 1/ | s v o e F|AFt = @ (1<i<n)

F'|ArAX?.t 2 oo ¢ F'|Aréx®.t ik — @ F'|ArF{ |1 <i<n) &<i<n®i

F|AFt = &<i<n®; | Ay o B L 1

AR o [[e

INEAR ORDER

Q. Y,... = olo—yle—oy
@ENICSl . s =) | &iEIQDi
to(lo) = 0
to(@ — ¢) = max(lo(@), o))
tolp = ¢) = max(l(p)+1,{(¥))

50(&,’61(,01') maXiej &)(‘Pi)

LINEA

R ORD

R-0 LRHO

INEE="1 S :: 0,

F :: (0o — 0) —o o,
G:o0—o,
H:(0—o00)—o00-—o0 }

S u== G
R/ =l e R (G)
Gx = c(dx)
Hijs s = e ((dia))

RS

MAIN

THEOREM 2. Assumen >

“SULT (

g

0| 8)

1. The time complexity

of checking whether a LNAPTA A = (X, Q, 9, qp)
accepts the value tree of a LHORS G of linear ordern
(and bounded linear depth) isexp, (O(poly(|Q||G|))).

AP

> RSIE

S ORSC

ey

O =975

LU

[ONS

—0 0 —70

o0& ---&0-—o00

(A} >4 A)" = A] > (A5, > 0) —o0

Higher-Order Multi-Parameter Tree Transducers
and Recursion Schemes for Program Verification

Naoki Kobayashi
“Tohoku University
koba@ecei.tohoku.ac.jp

Abstract

We introduce higher-order, multi-parameter, tree transducers
AT T, fo s which e Mo o it

Rl e S gt e oviced

that the input trees conform to input specifications (where both

S e e e it g s NI,

sume higher-order recursion schemes and ordinary (ree trans

ers, so that their verification has a number of potential applications

to verficuion of fuctiona Igpote ta struc-
Rt oo

act ype- SR T e

e propose a sound but incomplete verification algorithm for
the HMTT verification problem: the algorithm reduces the verifica-
tlon proben o8 modekehecing roem o igheronder recr-

schemes extended with finite data domains, and then uses (an
A AR A e R e e
schemes. While the algorith is incomplete (indeed, as we show in
the paper, the verification problem s undecidable in general), i
sound o compleisfora ublas of HMTT:clled lnear HOATT:
‘We have applied our HMTT verification algorithm (o various pro-

S i et A e A e e T

e e e
ing]: Software/Program Verifica 1 (Logis and eaning
u(Pm}:mrm] Speciying and veiyng and Reosoning sbon

General Terms Languages, Verification

1. Introduction
Kobayashi [20] has recently proposed a verification method for
higher-order functional programs based on Ong’s decidability re-
sulton model-checking recursion schemes [32). A higher-order re-
sion scheme, or shor) is a grammar for gen-

crating a (possibly infiit) tec. I is an extension of regula tree
terminal symbols can take rees and higher-

order functions on trees as parameers. For example, the follow-
ing grammar Gy is an order-1 recursion scheme, where the non-

Peamisson @ make digal o b copis of alor part ofthis work fo personalor
clasoon us s gratcd withou e provided tht copis ar not made o distrbucd

o et e To sy v o bl 0 post st oo e
ot e i specfic pemission ador

PL'10Januay 17-23, 2010, Madeid Spin
Copyright © 2010 ACM 978.1.60SSKATO H001.._$10.0

Naoshi Tabuchi
Tohoku University
tabee@kb.ecei tohoku.ac jp

Hiroshi Unno
Tohoku University
uhiro@kb.ecei.tohoku.ac jp

I &%
7 A

Figure 1. The tree gencrated by G,

terminal F takes a ree as an argument
S—Fc Fz—az(F(b)
i e rule. By infinitary
rewriting of the star s
55— fc — ac(F(ve) —

e bt he nfite e shown n Figre 1 On (32 has shown
that modal mualelas model-checking of
(o e S T S e
docs e re penraid by saily p7) i 1-EXPTIME <oniplee
(where 7 is the order of the recursion scheme G). The idea of
Kom,m. s Ve o 0T it oo
a8 recunon scher at geneass a e whose pats
i nt sequences of the program, so that
T O program can b verifed by
model-checking the recursion scheme. For example, consider the
e e Ao
boolean value):

let x = open_in "foo" in
let rec £() = if * then close(x) else read(x); £()
in 10

Tt can be translated ino the following recursion scheme G
S—Fe Flk—br(ch) (x(FK)

Here, x, ¢, br and o denote a read operation, a close opera-
o ot b s g o s
sively. The recurson ot the tr
TR e e e e e oy
and termination) sequences of the program. Kobayshi [20] ap-
plied the verification method to resource usage veriication [14]
e vk ofchecking Wheter o progra s e
@ vald mamen, and showed it s sound and
o e b f R O
Sion, resource creationfaccess primitivs, and boolcans. The com-
pleteness follows intitively because recursion schemes are s
sentially terms of the simply-typed A-calculus with recursion and

RSFD
(POPL 2010)

A Traversal-based Algorithm for
Higher-Order Model Checking

Robin P. Neatherway

University of Oxford

C.-H. Luke Ong
Universty of Oxford
ke

Steven J. Ramsay
University of Oxford

Abstract

Higher-order model checking—the model checking of trees gen-
erated by higher-order recursion schemes (HORS)—is a naural
Eeenistion o st aud psbown el checking R

ork hat it can serve as a basis for software
el checking for uncionallnguage suchas . and Haskl,
In this paper, we introduce higher-order recursion schemes with
cases (HORSC), which extend HORS with a defnition-by-cases
consruct (1o express program branching based on data) and non-

a study of the wniversal HORSC model checking problem for de-
terministic trivial automata: does the automaton accept every tree
in the tree language generated by the given HORSC? We firs char-
acterise the model checking problem by an interscction type sys-
tem extended with a carefully restricted form of union types. We
then present an algorithm for deciding the madel checking prob-
lem, which is based on the notion of fraversals induced by the
£l ahuract ame e of tese s, bt presened s
 gon-ieted constrcion of drvwons i e ikerecion
union type system. Checking o s e
i o e pl\ia:hl vcn’ymg functional programs.
‘We have implemented the algorithm in a ool called TRAYMC, and
luding

Ffunctional
refinement procedure from pattern-matching recursion schemes.
Categories and Subject Descriptors D24 [Software Eumm

ing]: Software/Program Verification; F.3.1 [Logics ane
o o Speciing nd vertying and Ressoning ot Pr
erams

General Terms Algorithms, Verification

firs-order, imperative programs, highly optimised finite-sate and
pushdown model checkers (such zs SLAM [2] and BLAST [3])
RS (it St A (3 (o o, e, G
ing and test case generation. Building on theoretical results on
the model checking of higher-order recursion schemes (HORS)
{6, 161, Kobayashi (8] has sparked a growing interest in the de-
T A e g T
order, functional programs.
amechanism for generating a possibly-infnite, ranked tree. HORS

the e genersod by iven HORS saisfis gt progerty and
i property is expressed rmula of the modal m
et (equivalently, an allemaung pﬂnly ()
the problem s known to be decidable [16]. Since they can equally
term of the simply-typed
Tambda calculus with recursion and uninterpreted firt-order con-
stants, HORS are a natural home for models of higher-order com-
i d

of
and pushdown systems/Boolean programs are captured by order-0
and order-I HORS respectively).

HORS mode hecking i, nrey anexencly comples prob-
lem. Ong [16] b modal mu-calcul
i vt s e o EXPTIME
e T e S I e e
purposes of safety verification (model checking against properties
expressible as deterministic rivial tree automata (DTT)), the prob-
Temis (n — 1)-EXPTIME complete [11], which s sil formidably
complex. Hence, the feasibility of HORS model checking as a veri-

procedures that hit the worst-case complexity only in pathological

Keywords Model- Higher- =

1. Introduction

Over the past decade, model checking and its allied methods
have been applied to program verification with great effect. For

Permision (0 make digal o hard copies o ll o part ofthis work for personal or
clastoon use i sranted wthou e provided e copies are no e o disuted

ot g Tocopy ot e 0ot s o o o
o, e prio e pemivion e

IS S 15, At Copags, B
Conyiai & I3 ACH 9701 450 TR 1300 51000

hybrid algorithm, presented in [7], which solves the safety verifi-
cation problem. In an atiempt o avoid the hyper-cxponential bol-
tleneck, the algorithm closely analyses the actual behaviour of the

it s evaluated, generating the ranked tree. The hybrid
algrithm builds graph o ecod the raceofthis computatonl

behaviour and from the graph derives guesses at proof
st e un.muon of the property. The ulgunlhm it inglemened
ind ol [9], which has

ably llina wnny of applications.

However, whilst HORS allow for the expression of higher-order
behaviour very naturally, they lack two important features which,
we believe, are highly desirable in a convenient abstract model of
Jfunctional programs. The first is a case analysis construct, with
‘which one can express program branching based on data; the se

HORSC
(POPL 2012)

RS

C lexity of Model-Checking Call-by-Value
Programs

Takeshi Tsukada’? and Naoki Kobayashi®

! University of Oxford
* JSPS Postdoctoral Fellow for Rescarch Abroad
The University of Tokyo

Abstract. This paper studi
(a typical he prob-
lem) for simply-typed call-by-value programs with recursion, Boolean val-
ues, and non-deterministic branch, and proves the following results. (1)
The reachability problem for order-3 progtams is nonelementary. Thus,
unlike in the call-by-name case, the order of the input, program does not.
serve as a good measure of the complesity. (2) Instead, the depth of types
pre -

s the complexity of the reachability problem

is n-EXPTIME complete. In particular, the previous upper bound given
by the CPS translation is not tight. The algorithm used to prove the up-
per bound result is based on a novel intersection type system, which we.
believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs i to use
higher-order model checking [7,8,15], which problem about the trees
generated by higher-order recursion schemes. Various verification problems
T AT o S Nl e (5] are S
to the higher-order model checking [5].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. Thi
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. Tn fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
t0 a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has ba der of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call
by-name programs is (n — 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase

oll (Ed): FOSSACS 2014, LNCS 8412, pp. 180194, 2014,
{6 Soinser-Voiok Born etdetbors 2011

CBV
(FOSSACS 2014)

EINEAR DEP TS

Definition 2. The local linear depth lld(x) of a kind « is defined inductively as follows

d(o) = 0 ld(@ —o @) = max(lld(®@),1ld(p)) + 1
lld(&iej(pi) = maXi;ey Hd((pl) + 1 Hd(QD — ¢) = lld(w)

The linear depth of k, written &(x), is the maximum of 1ld(:), taken over all subkinds ¢ of x.

PropoOsSITION 33. Given a LHORS G with N non-terminals, kinds of maximal size S, linear depth
D and linear order n; and a linear-nonlinear APT ‘A with colours bounded by p and states bounded by

Q > p. Forn > 1, the time complexity for solving Typ(G, A) is O(N 1P/21+2 eXpn(O(ZD)(QS)O(ZD))),

LICS'09

A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes

N. Kobayashi
Tokohu University

Abstract

The model checking of higher-order recursion schemes
has important applications in the verification of higher-
order programs. Ong has previously shown that the modal
mu-calculus model checking of trees generated by order-
n recursion scheme is n-EXPTIME complete, but his algo-
rithm and its correctness proof were rather complex. We
give an alternative, type-based verification method: Given
a modal mu-calculus formula, we can construct a type sys-
tem in which a recursion scheme is typable if, and only if,
the (possibly infinite, ranked) tree generated by the scheme
satisfies the formula. The model checking problem is thus
reduced to a type checking problem. Our type-based ap-
proach yields a simple verification algorithm, and its cor-
rectness proof (constructed without recourse to game se-
mantics) is comparatively easy to understand. Further-
more, the algorithm is polynomial-time in the size of the
recursion scheme, assuming that the sizes of types and the
formula are bounded above by a constant.

1 Introduction

The model checking of infinite structures generated by
higher-order recursion schemes has drawn growing atten-
tion from both theoretical and practical communities. From

C.-H.L. Ong
University of Oxford

checking problem for trees generated by arbitrary order-
n recursion schemes is n-EXPTIME complete (and hence
these trees have decidable MSO theories); further [5] these
schemes are equi-expressive with a new class of automata,
called collapsible pushdown automata. On the practical
side, Kobayashi [11] has recently shown that the verification
of higher-order programs can be reduced to that of higher-
order recursion schemes. He constructed a transformation
of a higher-order program into a recursion scheme that gen-
erates a (possibly infinite) tree representing all the possible
event sequences of the program; thus, temporal properties
of the program can be verified by model-checking the re-
cursion scheme.

Ong’s algorithm for verifying higher-order recursion
schemes is rather complex and probably hard to under-
stand: The algorithm reduces the model-checking problem
to a parity game over variable profiles, and its correctness
proof relies on game semantics [7]. Hague et al. [5] gave
an alternative proof via a reduction of the model checking
of recursion schemes to that of collapsible pushdown au-
tomata; their reduction is also based on game semantics.
Kobayashi [11] showed that given a Biichi tree automaton
with a trivial acceptance condition (a class which Aehlig [1]
has called trivial automata), one can construct an intersec-
tion type system in which a recursion scheme is typable if,
and only if, the tree generated by the scheme is accepted by
the automaton. (Prior to Kobayashi’s work [11], Aehlig [1]

E

* Intersection types

q €0 G) e 1]

REFINE

q :o GfsOR TE ()eON ()
* Parity game

Typ(G, A)

 Number of refinements

Hp — ¥) < 2CHo4y

= NE

(05 = @©)ier G
(/\ O, G;) > or ol
iel

exp, (O(poly(|Q[|G 1))

(@ — @) = (o + 1)(He)

LNAPTA

Definition 4. Tree kinds are the kinds 0 generated by
GRT=Eor o 0 0. 0 and R S ©

A tree signature is a finite list X = b; = 64,..., b, :: 0,, where 0; is a tree kind forall1 < i < n.

APTA = LNAPTA for standard tree kinds

CONCLUSIONS

» LHORS: more expressivity for the same asymptotic
model-checking complexity

» Unification and extension of existing results, where
reduction to HORS would give inaccurate bounds

» A tool to understand and tame complexity of
higsher-order model checking

