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Our Interest

¢ Model Checking of Probabilistic and Higher-
Order Systems
(with applications to verification of
probabilistic functional programs)

cf.

— Model checking of probabilistic procedural
programs (probabilistic pushdown [Esparza+ 04],
recursive Markov chains [Etessami&Yannakakis 04])

— Model checking of higher-order programs
[Knapik+02, Ong06, K09,...]



This Talk

¢ pHORS: probabilistic extension of
higher-order recursion schemes

4 Termination problems for pHORS
— Undecidability of AST of order-2 pHORS

— Fixpoint characterization of termination
probabilities

— Approximate computation of termination
probabilities
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PpHORS

4 A set of (simply-typed) rules of the form
FX...x,=t, &, t;

where:
t ::= e (termination) | Q (divergence) |
x| F| tt,
Order-1 pHORS ) S
(Random Walk): $1
S=Fe®, Q s Fev\l/3
\FX=X@1/3 F(F x) % e/z/\‘“F(F e)
PR
Order-1 pHORS = Probabilistic pushdown systems ( (\\@3
~ recursive Markov chains 2/3% ~




Termination Probabilities and
Verification Problems

4 Termination probability of pHORS G

TP(G): the probability that S; —* e
C )
G:L: S=Fe

Fx=x®,F (Fx)
\ y

TP(G,) = the least solution of z=p+(1-p) z?
=1 if p=0.5
{ p/(1-p) if p<0.5
Thus, TP(G,)=1 iff p=0.5



Termination Probabilities and

Verification Problems

¢ Termination probability of pHORS G
TP(G): the probability that S; —>* e
¢ Problems of interest

— Decision problems:
Input: G, a rational numberr € [0,1]
Output: whether TP(G) ~r (where ~ € {=, >, <})
(Special case: almost sure termination TP(G)=1)

Known to be decidable for probabilistic pushdown (or recursive
Markov chains) [Esparza+ 04][Etessami&Yannakakis 04]),
hence also for order-1 pHORS
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Termination Probabilities and
Verification Problems

¢ Problems of interest

— Decision problems:

Input: G, a rational numberr € [0,1]

Output: whether TP(G) ~r (where ~ € {=, >, <})
— Approximation:

Input: G, a rational number £>0
Output: r such that |TP(G)-r| <&

¢ Why termination?

— A fundamental property of programs

— Used as a basis of other model checking procedures for
probabilistic pushdown [Etessami+][Esparza+]
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Undecidability of AST
(Almost Sure Termination)

¢ The following decision problem is undecidable
— Input: order-2 pHORS G
— Output: whether TP(G)=1.

¢ More precisely, the following sets are not
recursively enumerable (for re(0,1])
— ¢_, = {G: order-2 pHORS | TP(G)=r}
— G, ={G: order-2 pHORS | TP(G)=r}
cf. G, ={G: order-2 pHORS | TP(G)>r}is r.e.
open: whether ¢_ . and G__ are r.e.



Relationship between open
problems

Approximate computability

(Computability of r such that |r-TP(G)|< €
for any order-2 pHORS G and £>0)

!

G.. ={G: order-2 pHORS | TP(G)<r} is r.e.

|

G.. ={G: order-2 pHORS | TP(G)<r}isr.e.
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Proof Idea

¢ Reduction from Hilbert’s 10t Problem
(unsolvability of Diophantine equations)
— Given polynomials P(x,,...,x.) and Q(x,,...,x,)
(with non-negative coefficients),

AXy,ee0, X P(Xg,..0,X, ) < Q(Xy,...,X,) is undecidable
(corollary of unsolvability of Diophantine)

Note: D(x,...,X,)=0 iff D(x,,...,x )2 < 1



Proof Idea

¢ Reduction from Hilbert’s 10t Problem
(unsolvability of Diophantine equations)
— Given polynomials P(x,,...,x.) and Q(x,,...,x,)
(with non-negative coefficients),

AXy,ee0, X P(Xg,..0,X, ) < Q(Xy,...,X,) is undecidable
(corollary of unsolvability of Diophantine)

— Given P(x,,...,x,) and Q(x,,...,x.), one can
effectively construct an order-2 pHORS G,  s.t.

TP(Gp )< iff TXgyeees X P(XgyeesXy) < QX pennX,)



Construction of G, , (order-3 case)

4 Church-encode natural numbers
[n]:nat =As.Az.s"z
(where nat=(0—0)—>0—0)
¢ Construct Test. : nat— nat—o such that:
m<n iff Test. m n is not AST
¢ Let G, o run Test,_ (P(xy,...,x,)) (Q(Xy,...,x,)) for all
Xqyeenr Xt
S=TestAll0....0

TestAll x, ... x, = Test_ (P(x,,...,x,)) (Q(xy,...,X,))
@ TestAll (x,;+1) x, ... x, D ...

@ TestAll x, ... x,, (x, +1)



Construction of G, , (order-3 case)

4 Church-encode natural numbers
— [n] =As.Azs"z: (0—>0)—>0—>0
¢ Construct Test, : nat— nat—o s.t.
m<n iff Church m n is not AST
¢ Let G, o run Test,_ (P(xy,...,x,)) (Q(Xy,...,x,)) for all
Xqyeenr Xt
S=TestAll0....0

TestAll x, ... x, = Test_ (P(x,,...,x,)) (Q(xy,...,X,))
@ TestAll (x,;+1) x, ... x, D ...

@ TestAll x, ... x,, (x, +1)



Construction of Test. m n

¢ Recall:

— Fe where Fx=x®, F(F x)
is non-AST iff p<0.5

¢ Parametrize Fby @, :

— FFgewhereF gx=gx (F g (F gx)) is non-AST
if g: 0>0—0 chooses the first branch with prob. <0.5

¢ Define Test_ by: Chooses the first branch
— Test. mn=F |(LTm n)|e with prob. < 0.5 iff m<n
-~ LTmnxy=((Hx)"y)®,5 ((Hy)"x)

— Hxy=x €I90.5 Y | Chooses x with Chooses x with
prob. 1—1/2™ prob. 1/2"

1@1-1/2m)+ 1(1/27) = £ + 1 (1/27- 1/2m) < % iff men



G, o for order-3 case

S = TestAll Zero .... Zero 7

Run
TestAll x, ... x, = Test_(P x; ... x.) (Q X, ... X,) Test, (P x,... X,)
@ TestAll (x,+1) x, ... x, D ... (Qx; ... x,)
@ TestAll x; ...x, (x +1) for all Xy,....X,

Test. mn=F (LTmn)e

LTmnxy=((Hx)"y)®D,s ((Hy)" x) ~  non-AST iff m<n

Hxy=x®,:Yy

Zerosz=12 Define natural numbers
PX{.o X = ... - and polynomials using
QX o X, = . ] Church encoding

G o is non-AST iff P(x,,...,x,)<Q(x,,...,x,) is satisfiable




G, o for order-3 case

—

S = TestAll Zero .... Zero

Run
TestAll x, ... x, = Test_(P x; ... x.) (Q X, ... X,) Test, (P x,... X,)
@ TestAll (x,+1) x, ... x, D ... (Qx; ... x,)
@ TestAll x; ...x, (x +1) for all Xy,...,X,

_Test. mn=F (ITmnle ]
Does not work for order-2 case,

because Church numerals are order-2 functions

-

—

Zerosz=12 Define natural numbers
PX{.o X = ... - and polynomials using
Church encoding

Q XI (XN} xn - (XN} _

G o is Non-AST iff P(x,,...,x,)<Q(x,,...,x,) is satisfiable




Ideas for Order-2 Case

4 Represent natural numbers as order-1
probabilistic functions
[n] = Ax.Ay. x®,, Yy where p(n)=1- 1/2"
Zeroxy=y Succnxy=x®,, (nxy)
Prob(“Succ n x y chooses y”)
=1/2-1/2"= 1/2"*1
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Ideas for Order-2 Case

4 Represent natural numbers as order-1
probabilistic functions

[n] = Ax.Ay. x®,, Yy where p(n)=1-1/2"
Zeroxy=y Succnxy=x®,,(nxy)
Addmnxy=mx(nxy) ( This cannot be ]

ined!
S = TestAll Zero .... Zero %flned. )

TestAll x, ... x, =Test_(P x, ... x,) (A x; ... x,)
@ TestAll (x,+1) x, ... x, D ... @ TestAll x, ... x,, (x,+1)

Test. mn=F (LTmn)e

LTmnxy=(mxy)®,; (nyx)




Ideas for Order-2 Case

4 Represent natural numbers as order-1 probabilistic
functions
[n] =Ax.Ay.x®,,, y where p(n)=1-1/2"
Zeroxy=y Succnxy=x&,,(nxy)
Addmnxy=mx(nxy)

¢ Pass around the values of x,*... x " (for k,<d,, ...,
k,<d,_, where d, is the degree of P+Q in x;)

Via....kn Dolds the value of
S = TestAll One Zero ..... Zero XKL, x o
[ NN n

uuuuu

-----

uuuuu




Ideas for Order-2 Case

4 Pass around the values of x,*... x ¥ (for k,<d,, ..., k,
<d_, where d. is the degree of P+Q in x;)
Example: P =x2y, Q= x>+ ) v, holds the
TestAll vy, Vy; Vig Viq Voo Vpq = . Value of X yk

Test, (P Vo Vo1 Vg V11 Vag Va1 ) (Q Vg Vs Vg Vi1 Voo Vai)
©® TestAll (Inc, o Voo Vo1 Vi V11 Vao Va1 ) -+
(I“Cx,21 Voo Vo1 V1o Va1 Vag Va1 )
@ TestAll (Inc, 4 Voo Vo1 Vi Va1 Vag Va1 ) -+
(Inc, 51 Voo Vo1 V1o Va1 Voo Va1 )

P Voo Vo1 Vg Vi1 Voo Va1 = Va1 Q Vg Vg Vig Vg Vag Voq = Add v, Vg,

Inc, o0 Voo Vo1 V1o V11 V2o V21 = ONeE

Inc, 51 Voo Vo1 V1o V11 Va0 V21 = Add vy, (Add vy, (Add vy, v,))
(since (x+1)%y = x2y+2xy+y)



Construction of G,

—

S = TestAll One Zero .... Zero Run
TestAllv, o...Vy 4o | Test, (P(xy,..0%,))
e e (Q(xq,.--,%,))
Test, (P Vo....,0 o le,...,dn) (Q Vo....,0 = vd_} ..... dn) for all XqpeeerX,,
@ TestAll (Inc; v) @ ... ® TestAll (Inc, v) -

Test. mn=F (LTmn)e

LTmnxy=(mxy)®,; (nyx) ~  non-AST iff m<n

Fgx=gx(F g(F gx)) .

Zeroxy=y Encode natural numbers

Succnxy=x®,, (nxy) - as order-1

Addmnxy=mx(nxy) probabilistic functions

PVg 0+ Vq1,. dn= 1 Can be expressed as

INC; 11 kn Vo0 -+ Vd1,...dn= »= " linear combinations of v




Summary of Undecidability Results

4 The following decision problem is undecidable

— Input: order-2 pHORS G

— Output: whether TP(G)=1.
4 More precisely, the following sets are not

recursively enumerable (for re(0,1])

— @_, ={G: order-2 pHORS | TP(G)=r}

— ¢., ={G: order-2 pHORS | TP(G)=r}

cf. ¢, ={G: order-2 pHORS | TP(G)>r}isr.e.

open: whether ¢_ and G__arer.e.
Note: A hope remains on approximate computation:

Input: G, a rational number >0

Output: r such that |TP(G)-r| < ¢



Outline

4 pHORS: probabilistic extension of higher-order
recursion schemes

¢ Termination Problems

4 Undecidability of AST of order-2 pHORS

¢ Fixpoint characterization of termination
probabilities
— Order-n characterization
— Order-(n-1) characterization

4 Approximate computation of termination
probabilities

4 Conclusion



Order-n (Least) Fixpoint
Characterization of Termination Prob.
for Order-n pHORS

¢ Just replace

e (termination) with 1

Q2 (divergence) with 0

t, ©, tp with p[t,] + (1-p)[t;]

/
Order-1 pHORS:

S=Fe
Fx=x€r)1/3F(Fx)
\_

\

/

—

-

.

Order-1 fixpoint equations

S=F1

Fx=1/3-x+2/3-F (Fx)

\

/

The least solution: S = 0.5, F(x) = 0.5 x



Order-(n-1) Fixpoint Characterization?

(cf. Order-0 equations for termination probabilities of
probabilistic PDS [Etessami+; Esparza+])

¢ Easy in order-1 case

(cf. probabilistic pushdown)

.

/

~

4 ) " Order-0 fixpoint equations
Order-1 pHORS: S=Fy+F,1
S=Fe ) | -1/3-1+2/3FF,
Fx=x®,;F(Fx) \Foz 1/3'0+2/3'(F0+F1'F0)/

F,: prob. of terminating without using x
F,: prob. of using x

Order-1 function of arity k can be expressed as
(Fo, Fy,..., F) € Realk!
where F,: prob. of terminating without using any arguments

F.: prob. of using the i-th argument




Order-(n-1) Fixpoint Characterization:

General Case

4 How to translate an order-2 function F of type
(0> 0) > 0?
— Naive solution: as a function from
(8., 8,)€Real? (g,: prob. that the argument g terminates,

g,: prob. that g uses its argument)
to the termination probability of F(g).

=> Does not work when g contains a variable:
e.g. Jx=F(HXx)

There is no way to calculate the prob. that J uses x
from the translation of F.



Order-(n-1) Fixpoint Characterization:
General Case

¢ In a context where order-0 variables x,,...,x, are
visible, a function Ay,...y,. Az,...z_. tis translated to:

order(ye/)h[ onder-0 ]
~

(tor t1) veey tm'r tm+1r coey m+k ) m+k+1 Returns prob. of
\
' ' reaching a

' Y
/Retﬁr}s the pro\k\ “fresh” variable
of reaching the

t does not know

J

current Returns prob. Returns prob
reachability target of reaching z. of reaching x
(given the J

\_translation of y’s)/




Order-(n-1) Fixpoint Characterization:
General Case

¢ In a context where order-0 variables x,,...,x, are
visible, a function Ay,...y,. Az,...z . t is translated to:

(tor ‘tl' ©ee’ tm" tm+1r ©er tm+k ’ tm+k+1 Returns prob. of\
/_/\ ' | ' ' reaching a
Returns the pro\t\ “fresh” variable
of reaching the t does not know/

current Returns prob.
\reachability target of reaching z,

of reaching x;

Returns prob. ]

e.g. Ay.Az.y (x®y,3 z) is translated to:
(MYor Y1 Ya)-Yor MYorY1Y2)-2/3V1, MYo Y1, Y2)-1/3Y 1, MY Y1 Ya)-Y,)



Translation Relation for
Order-(n-1) Fixpoint Characterization

order-0 variables

—t—
[ XgpeeX |- i > > K, > 0M>0

= (t,, .tlr ooy tm,’ | SPPRRTIL ST vy )
| . prob. of reaching

! Y
/ﬁ)f reaching a “fresh” variable
the current > t does not know

reachability prob. of reaching
L target Y, each order-0 prob. of
argument reaching x;

J




Translation Rule for
Q) (divergence)

order-0 variables

,_I_‘
]._" xll Xy |_ Q: ~N
0, , 0 prob. of reaching
a “fresh” variable
prob of reachlng t does not know
the current J
reachability prob of reaching

\_ target ) each order-0 prob. of
argument y reaching x;




Translation Rule for
Order-0 Variables

order-0 variables

,_I_‘
F; XqireeerXi |_ X;. ©
\-) (O; ’ Oi-l’ 11 Ok ’ 0 A
: | L : prob. of reaching
1
//b\f . a “fresh” variable
prob. of reaching > t does not know
the current /
reachability prob. of reaching

\_ target ) each order-0 prob. of
argument y reaching x;




Translation Rule for

Variables

order-0 variables

——t—
I XppeeXy |— YK Do &> K, > 0M>0

- (y()l |y1r seey yml lym+1r cee) ym+:'1 ) ym+1 )

prob. of reach

—~\ |
N
the current >

reachability

\_

target

prob. of reaching
Yy, each order-0

argument

prob. of reaching
a “fresh” variable
t does not know

~

J

prob. of
reaching x;




Translation Rule for Applications
(order-1 case)

order-0 variables

l_'_|
['; Xgpee0X, |- $: 0150

H (SO’ Sl’ eee) Sm+1’sm+2 eee) Sm+k+1 ) Sm+k+2 )
r; X1’ooo’Xk |_ t: o H (tO’ t1 LERY tk ) tk+1 )

[ XX, |- st: 0™—>0
= (Sg +S1°ty, Sy eeer Sias

Sme2 T S1 s Smas2 F S1°thaa)



Translation Rule for Applications
(higher-order case)

order-0 variables

——Lt—
I XqpeenX |- S K >0 > K, —> 0M>0

- (SOI Sll °°°’ Sm' Sm+1 ) o) Sm+k ’ Sm+k+1 )
r; X1’ooo’Xk |_ t: Kl

= (tg, ty e o, t i, o, )

[ XgpeeX |- sSti 6, >.c. > K, > 0M—>0
= (So(to, ty-ees oy toiiia)s coer Sltor ty oees T Eoiiin),
Sm+1(tn+1' t1 cee tn’ tn+k+1)’ “ee

Sm+k+1(tn+k+1i tl e tn' tn+k+1))



Translation of Rewriting rules

order-0 variables
l_l_|
yl’ooo’ye; X1’ooo’Xk |_ S: O H (50’ Sl’ eee) Sk y ] Sk+1 )

yl’...’ye; Xl’.'.’xk |_ t: O H (to’ tl’ see) tk ) tk+1 )

FYireearYe XgpeoesX = S D t
{ Fo (Y1 0re-:) o- (Vg 0-2) = PSg+ (1-p)E,

Fi. (Yigreee) oo (Yeoreer) = PS+ (1-p)t, }



Example

(S =SeQ Sxy=F(Cxy) Fg=gH
Hx=x®,:Q Cxyf=(fx) D5 (fy)

(S’: 0, S:0->0->0, H: 0->0, F: ((0->0)->0)->0,
\_C: 0->0->(0->0)->0

(S, = F,(C,00,C,00) S,=F,(C,10,C,00)
S,= F,(C,0 1, C,00)
Fo(80, 81) = 8o(Hg, Hy, Hp)
Co X Yo (fo, Ty, f,) = 0.3(f+f-xg )+0.7(fy+f;-y,)
\H;=0  H;=0.5

S,=F,(C,10,C,00) =C,10 (H,, Hy, Hy)
=0.3(H, +H;-1)+0.7(H, + H;-0) = 0.15



Correctness of Fixpoint
Characterization

/
If G = &, then:

TP(G) is the least solution of &
% (more precisely, TP(G, S e) = Ifp(E:)(S,)).

/

/For any order-n pHORS G,
Co(suchthatG ™= &) is

\- constructible in polynomial time

~

- a system of order-(n-1) fixpoint equations; and

J




Outline

4 pHORS: probabilistic extension of higher-order
recursion schemes

¢ Termination Problems

4 Undecidability of AST of order-2 pHORS

4 Fixpoint characterization of termination
probabilities

¢ Approximate computation of termination
probabilities (for order-2 pHORS)

¢ Related work and conclusion



Summary of the Talk So far

¢ TP(G)~r is undecidable for ~ e { =, >}
— A hope remains on approximate computability:
Input: G, a rational number £>0

Output: r such that |TP(G)-r| <&
¢ TP(G) can be characterized as order-(n-1)
fixpoint equations
(order-1 equations for order-2 pHORS)

— immediately yields a method for computing a
lower bound for TP(G)

e Given f=F(f), the least solution can be lower-
approximated by F¥(_)

— how about upper-approximation?



Non-Solution 1:
Upper-approximation of greatest fixpoint

¢ For f=F(f),
Ifp(F) < gfp(F) <F"(Ax.1),

but F" (Ax.1) may be too imprecise as an upper bound
for Ifp(F).

e.g. For F = Af.Ax.f(x),
Ifp(F)=Ax.0, but gfp(F) = F"(Ax.1)= Ax.1



Non-Solution 2:
Upper-approximation by Polynomials

¢ Example: f(x)=1/3 - x + 2/3 -f(f(x))
Template: f(x) =c, + ¢, X

Sufficient condition for upper-approximation:
f(x)>1/3 - x + 2/3 -f(f(x))
=1/3 - x+2/3(cy + ¢, (cy + ¢, X)),

i.e. co 2/3(c, + clco)
>1/3 +2/3¢.;?,

yielding c,=1/2, c,=0, i.e. f(x)=1/2 x



Non-Solution 2:
Upper-approximation by Polynomials

¢ Imprecise for: f(x,, X,)= X, + X, -f(x,, X,)
(where x,, x, are constrained by 0< x,+x, < 1)
— least solution:
f(x;, x,)=10 if x, =0
{xll (1-x,) if x, >0
Since f(x,, x,)=1 for x;, = €>0 and x, = 1-¢,

f’(0,1)=1 > £(0,1)
for any sound polynomial upper-approximation f’ of f
(due to the continuity of f’)



Our Approach: Discretization
(a la Finite Element Method)

4 Decompose [0,1] into a finite number of intervals, and
use a step-wise linear function f* as an upper bound

¢ f* is determined by

a finite number of points
(X Yo)s --- (X, Vi) yt
¢ Sufficient condition for 1
sound approx".natlon: | y=F(x)
y; = f*(x,) for i=0,...,n /1
7 /1 Y=1(x)
¢ y.can be computed by: é/

— using dec'ldablllt.y of theories S
of real arithmetics; or

— discretization of codomain



Example
f(x) = 0.25x + 0.75f(f(x))
— discrete points:
(0, ¥o), (0.5,v,), (Ly,)
— constraints:

Yo = 0.25-0 + 0.75F*(f*(0)), y, > 0.25-0.5 + 0.75 f*(£*(0.5)),
¥, > 0.25-1 + 0.75f*(f*(1))

where f*(x) =[(1-2x)y, + 2xy, if xe [0, 0.5]
{(2-2x)y1+ (2x-1)y, if xe (0.5, 1]
— with discretization of y, to {0, 0.25, 0.5, 0.75, 1}:
(Yo, Y1, ¥2)? = (0, 0, 0)
(Yo, V1, ¥2)'* = (0, 0.25, 0.25)

(Vo, Yi, yz)(z) = (yo, Yi, yz)(3) = (0, 0.25, 0.5)
yielding f*(x)=0.5x (exact solution: f(x)=1/3-x)



Experimental Results

equations #dom | #codom | Lb.| u.b. ub.(step)  exact
Fx2.3-1 16 51210.333 1 0.336 1.0} 3
Fx2.3-v1 16 51210.31210.315 0.365 -
Fix2.3-v2 16 51210.262 | 0.266 0.321 -
Fx2.4 16 51210.320 | 0.323 0.329 -
Double 16 5121 0.649 | 0.653 1.0 -
Discont(0,1) 16 b12| 0.0 0.0 0.0 0
Discont(0.01,0.99) 16 51210.999| 1.0 1.0 |
Incomp 16 51210.299| 1.0 1.0 0.3
Incomp 10 10010.299 | 0.3 03] 0.3
Incomp?2 16 51210.249| 1.0 1.0} 0.25
Incomp?2 256 65536 10.249| 1.0 1.0} 0.25




Experimental Results

equati( f(xy, %,)= x; + X, -f(x4, X,) P) eXEin
223 The exact solution is: & 3
Fx2.3- 65 -
Fx?2 3- f(Xl, X2)= 0 if X4 =0 21 _
Ex24 1 x,/(1-x,) if x; >0, x, <1 P -
Double —~_ o7 OIZ[UBAITU.653 1.0 -
Discont(0,1) 16 ol2) 0.0 0.0 0.0 0
Discont(0.01,0.99) 16 51210.999 | 1.0 1.0 |
Incomp 16 51210.299| 1.0 1.0 0.3
[ncomp 10 10010.299 | 0.3 0.3 0.3
Incomp?2 16 51210.249| 1.0 1.0} 0.25
Incomp?2 256 65536 10.249| 1.0 1.0} 0.25




Experimental Results

e—mﬁrtificial examples (having no corresponding

ct
4 PHORS) that show possible incompleteness. [
Ex Incomp: _
Ex S =F(S), F(x) = x>+ 0.4x + 0.09 -
EX Incomp2: -
o\ S=F(S), F(x) = 0.5x*+ 2F(0.5x) ;
Discont(0.01,0: ~ 512/0.999] 1.0 1.0 1
Incomp 16 51210.299 | 1.0 1.0 0.3
Incomp 10 100]0.299 | 0.3 0.3 0.3
Incomp?2 16 51210.249| 1.0 1.0} 0.25
Incomp?2 256 65536 0.249| 1.0 1.0 0.25




Experimental Results

frtificial examples (having no correspondin
el pHORS) that show possible incompleteness

EX Incomp:

Hix

Dd Incomp2:

EX s =F(S), F(x) = X2 + 0.4x + 0.09

= S > F(S) iff (5-0.3)2<0 iff $=0.3

&)
ct

Diss_ S = F(S), F(x) = 0.5x2 + 2F(0.5x) 0
Discont(0.01,0. ~ 51210.999| 1.0 1.0 1
Incomp 16 51210.299| 1.0 1.0 0.3
Incomp 10 10010.299 | 0.3 0.3, 0.3
Incomp?2 16 51210.249| 1.0 1.0} 0.25
Incomp?2 256 65536 10.249| 1.0 1.0} 0.25




Outline

4 pHORS: probabilistic extension of higher-order
recursion schemes

4 Termination Problems
4 Undecidability of AST of order-2 pHORS
4 Fixpoint characterization of termination

4 Approximate computation of termination
probabilities

¢ Related Work and Conclusion



Related Work

¢ Model checking of probabilistic

pushdownsystems/recursive Markov chains
[Esparza+ 04, Etessami&Yannakakis 04,...]

— termination probabilities as polynomial equations
(special case of our order-(n-1) fixpoint characterization)

— studies of linear-time/branching-time model checking
problems

¢ Model checking of (non-probabilistic) HORS
[Knapik+02, Ong06, Kobayashi09, ...]
¢ Type-based characterization of termination

probabilities of probabilistic functional programs
[Dal Lago&Grellois, Breuvart&Dal Lago]

— do not provide a method for precise approximation



Conclusion

¢ pHORS as a model of probabilistic functional
programs

4 Undecidability of AST of order-2 pHORS

¢ Order-(n-1) Fixpoint Characterization of
Termination Probability of order-n pHORS

¢ Sound (but possibly incomplete) method for
approximate computation of TP(G) for order-
2 pHORS



Future Work

¢ Settling the question of approximate
computability of TP(G) with arbitrary precision

Input: G, a rational number £>0
Output: r such that |TP(G)-r| <€

(equivalent to the question of whether
G., ={G: order-2 pHORS | TP(G)<r}isr.e.)

¢ Practical method for approximate computation
of TP(G) for pHORS of arbitrary order

¢ Model checking of pHORS
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