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Our Interest 

Model Checking of Probabilistic and Higher-
Order Systems 
 (with applications to verification of 
 probabilistic functional programs) 
cf. 
– Model checking of probabilistic procedural 

programs (probabilistic pushdown [Esparza+ 04], 
recursive Markov chains [Etessami&Yannakakis 04]) 

– Model checking of higher-order programs 
[Knapik+02, Ong06, K09,...] 



This Talk 

pHORS: probabilistic extension of  
     higher-order recursion schemes 
Termination problems for pHORS 

– Undecidability of AST of order-2 pHORS 
– Fixpoint characterization of termination 

probabilities 
– Approximate computation of termination 

probabilities 
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pHORS 
 A set of (simply-typed) rules of the form 

                  F x1 ... xn = tL ⊕p  tR 
where: 
 t ::=  e (termination) | Ω (divergence) | 
               x | F | t1t2 

Order-1 pHORS  
(Random Walk):  
   S = F e ⊕1 Ω 
F x = x ⊕1/3 F (F x)   
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... 
Order-1 pHORS ≈ Probabilistic pushdown systems 
                               ≈ recursive Markov chains 



Termination Probabilities and 
Verification Problems 

Termination probability of pHORS G 
TP(G): the probability that SG →* e 
 
 
 
   TP(G1) = the least solution of z=p+(1-p) z2 
                =   1               if p≥0.5 
                      p/(1-p)   if p<0.5 
   Thus, TP(G1)=1 iff p≥0.5  

 G1:        S = F e 
           F x = x ⊕p F (F x)   



Termination Probabilities and 
Verification Problems 

Termination probability of pHORS G 
TP(G): the probability that SG →* e 

Problems of interest 
– Decision problems: 

Input: G, a rational number r ∈ [0,1]  
Output: whether TP(G) ∼ r  (where ∼ ∈ {=, >, <} ) 
(Special case: almost sure termination TP(G)=1) 
 Known to be decidable for probabilistic pushdown (or recursive  

Markov chains) [Esparza+ 04][Etessami&Yannakakis 04]),  
hence also for order-1 pHORS 



Termination Probabilities and 
Verification Problems 

Termination probability of pHORS G 
TP(G): the probability that SG →* e 

Problems of interest 
– Decision problems: 

Input: G, a rational number r ∈ [0,1]  
Output: whether TP(G) ∼ r  (where ∼ ∈ {=, >, <} ) 
(Special case: almost sure termination TP(G)=1) 

– Approximation: 
Input: G, a rational number ε>0 
Output: r such that |TP(G)-r| < ε 



Termination Probabilities and 
Verification Problems 

Problems of interest 
– Decision problems: 

Input: G, a rational number r ∈ [0,1]  
Output: whether TP(G) ∼ r  (where ∼ ∈ {=, >, <} ) 

– Approximation: 
Input: G, a rational number ε>0 
Output: r such that |TP(G)-r| < ε 

Why termination? 
– A fundamental property of programs 
– Used as a basis of other model checking procedures for 

probabilistic pushdown [Etessami+][Esparza+] 



Outline 
 pHORS: probabilistic extension of higher-order 

recursion schemes 
 Termination Problems 
 Undecidability of AST of order-2 pHORS 

– summary of results 
– proof ideas 

 Fixpoint characterization of termination 
probabilities 

 Approximate computation of termination 
probabilities 

 Conclusion 



Undecidability of AST  
(Almost Sure Termination) 

 The following decision problem is undecidable 
– Input: order-2 pHORS G 
– Output: whether TP(G)=1. 

More precisely, the following sets are not 
recursively enumerable (for r∈(0,1]) 
– G=r = {G: order-2 pHORS | TP(G)=r} 
– G≥r ={G: order-2 pHORS | TP(G)≥r}  
cf. G>r ={G: order-2 pHORS | TP(G)>r} is r.e. 
open: whether G<r and G≤r are r.e. 
 
 



Relationship between open 
problems 

G<r ={G: order-2 pHORS | TP(G)<r} is r.e. 

Approximate computability 
(Computability of r such that |r-TP(G)|< ε  

for any order-2 pHORS G and ε>0)  

G≤r ={G: order-2 pHORS | TP(G)≤r} is r.e. 



Outline 
 pHORS: probabilistic extension of higher-order 

recursion schemes 
 Termination Problems 
 Undecidability of AST of order-2 pHORS 

– summary of results 
– proof ideas 

 Fixpoint characterization of termination 
probabilities 

 Approximate computation of termination 
probabilities 

 Conclusion 



Proof Idea 

Reduction from Hilbert’s 10th Problem 
(unsolvability of Diophantine equations) 
– Given polynomials P(x1,...,xn) and Q(x1,...,xn) 

(with non-negative coefficients), 
∃x1,...,xn.P(x1,...,xn) < Q(x1,...,xn) is undecidable 
(corollary of unsolvability of Diophantine) 

Note: D(x1,...,xn)=0 iff D(x1,...,xn)2 < 1 



Proof Idea 

Reduction from Hilbert’s 10th Problem 
(unsolvability of Diophantine equations) 
– Given polynomials P(x1,...,xn) and Q(x1,...,xn) 

(with non-negative coefficients), 
∃x1,...,xn.P(x1,...,xn) < Q(x1,...,xn) is undecidable 
(corollary of unsolvability of Diophantine) 

– Given P(x1,...,xn) and Q(x1,...,xn), one can 
effectively construct an order-2 pHORS GP,Q s.t. 

TP(GP,Q)<1 iff ∃x1,...,xn.P(x1,...,xn) < Q(x1,...,xn)  

 



Construction of GP,Q (order-3 case)  
 Church-encode natural numbers 

[n]:nat  = λs.λz.sn z  
(where nat=(o→o)→o→o ) 

 Construct Test< : nat→ nat→o such that: 
    m<n iff Test< m n is not AST 

 Let GP,Q  run Test< (P(x1,...,xn)) (Q(x1,...,xn)) for all 
x1,...,xn: 
   S = TestAll 0 .... 0 
   TestAll x1 ... xn = Test< (P(x1,...,xn)) (Q(x1,...,xn)) 
                               ⊕ TestAll (x1+1) x2 ... xn ⊕ ... 
                               ⊕ TestAll  x1  ... xn-1 (xn+1) 
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   TestAll x1 ... xn = Test< (P(x1,...,xn)) (Q(x1,...,xn)) 
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Construction of Test< m n 

 Recall: 
– F e where F x = x ⊕p F(F x)  

is non-AST iff p<0.5 

 Parametrize F by ⊕p : 
– F’ g e where F’ g x = g x (F’ g (F’ g x)) is non-AST 

if g: o→o→o chooses the first branch with prob. <0.5 

 Define Test< by: 
– Test<  m n = F’  (LT m n) e 
– LT m n x y = ((H x)m y) ⊕0.5  ((H y)n x) 
– H x y = x ⊕0.5 y Chooses x with 

prob. 1− 1/2m 
Chooses x with 

prob.  1/2n 

Chooses the first branch 
with prob. < 0.5 iff m<n 

½ (1-1/2m) + ½(1/2n) = ½ + ½ (1/2n - 1/2m) < ½ iff m<n 



 GP,Q  for order-3 case 
       S = TestAll Zero .... Zero 

TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn) 
                               ⊕ TestAll (x1+1) x2 ... xn ⊕ ... 
                               ⊕ TestAll  x1  ... xn-1 (xn+1) 
Test<  m n = F’  (LT m n) e 
LT m n x y = ((H x)m y) ⊕0.5  ((H y)n x) 
H x y = x ⊕0.5 y 
 

Zero s z = z 
P x1 ... xn = ... 
Q x1 ... xn = ... 
  
 

 
 

Run  
Test<  (P x1 ... xn) 
           (Q x1 ... xn) 
for all x1,...,xn 

non-AST iff m<n 

Define natural numbers 
and polynomials using 
Church encoding 

GP,Q is non-AST iff P(x1,...,xn)<Q(x1,...,xn) is satisfiable 
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Zero s z = z 
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Run  
Test<  (P x1 ... xn) 
           (Q x1 ... xn) 
for all x1,...,xn 

non-AST iff m<n 

Define natural numbers 
and polynomials using 
Church encoding 

GP,Q is non-AST iff P(x1,...,xn)<Q(x1,...,xn) is satisfiable 

Does not work for order-2 case,  
because Church numerals are order-2 functions 



Ideas for Order-2 Case 
Represent natural numbers as order-1 

probabilistic functions 
  [n] = λx.λy. x ⊕p(n) y   where p(n)=1 –  1/2n 

  Zero x y = y      Succ n x y = x ⊕1/2  (n x y) 
    Prob(“Succ n x y chooses y”) 
      = 1/2⋅1/2n =  1/2n+1 



Ideas for Order-2 Case 
Represent natural numbers as order-1 

probabilistic functions 
  [n] = λx.λy. x ⊕p(n) y   where p(n)=1 – 1/2n 

  Zero x y = y      Succ n x y = x ⊕1/2 (n x y) 
  Add m n x y = m x (n x y) 
  Prob(“Add m n x y chooses y”) 
      = 1/2m ⋅ 1/2n = 1/2m+n  
 



Ideas for Order-2 Case 
Represent natural numbers as order-1 

probabilistic functions 
  [n] = λx.λy. x ⊕p(n) y   where p(n)=1 – 1/2n 

  Zero x y = y      Succ n x y = x ⊕1/2 (n x y) 
  Add m n x y = m x (n x y) 

S = TestAll Zero .... Zero 
TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn) 
                 ⊕ TestAll (x1+1) x2 ... xn ⊕ ... ⊕ TestAll  x1  ... xn-1 (xn+1) 
Test<  m n = F’  (LT m n) e 
LT m n x y = (m x y) ⊕0.5  (n y x) 



Ideas for Order-2 Case 
Represent natural numbers as order-1 

probabilistic functions 
  [n] = λx.λy. x ⊕p(n) y   where p(n)=1 – 1/2n 

  Zero x y = y      Succ n x y = x ⊕1/2 (n x y) 
  Add m n x y = m x (n x y) 

S = TestAll Zero .... Zero 
TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn) 
                 ⊕ TestAll (x1+1) x2 ... xn ⊕ ... ⊕ TestAll  x1  ... xn-1 (xn+1) 
Test<  m n = F’  (LT m n) e 
LT m n x y = (m x y) ⊕0.5  (n y x) 

This cannot be 
defined! 



Ideas for Order-2 Case 
 Represent natural numbers as order-1 probabilistic 

functions 
  [n] = λx.λy. x ⊕p(n) y   where p(n)=1 – 1/2n 

  Zero x y = y      Succ n x y = x ⊕1/2 (n x y) 
  Add m n x y = m x (n x y) 

 Pass around the values of x1
k1... xn

kn 
 (for k1≤ d1, ..., 

kn ≤ dn, where di is the degree of P+Q in xi) 
 

      S = TestAll One Zero ..... Zero 
      TestAll v0,...,0 ... vd1,...,dn=  
               Test< (P v0,...,0 ... vd1,...,dn) (Q v0,...,0 ... vd1,...,dn) 
           ⊕ TestAll (Inc1  𝐯𝐯) ⊕ ... ⊕ TestAll (Incn  𝐯𝐯)  

vk1,...,kn  holds the value of 
x1

k1... xn
kn  

Inci  updates vk1,...,kn to the value of x1
k1...(xi+1) ki xn

kn  



Ideas for Order-2 Case 
 Pass around the values of x1

k1... xn
kn 

 (for k1≤ d1, ..., kn 
≤ dn, where di is the degree of P+Q in xi) 

      Example:  P =x2y,  Q = x2+y 
      TestAll v00 v01 v10 v11 v20 v21 =  
               Test< (P v00 v01 v10 v11 v20 v21 ) (Q v00 v01 v10 v11 v20 v21) 
           ⊕ TestAll (Incx,00 v00 v01 v10 v11 v20 v21 ) ... 
                              (Incx,21 v00  v01 v10 v11 v20 v21 )  
            ⊕ TestAll (Incy,00 v00 v01 v10 v11 v20 v21 ) ... 
                              (Incy,21 v00  v01 v10 v11 v20 v21 ) 
  P v00 v01 v10 v11 v20 v21 = v21    Q v00 v01 v10 v11 v20 v21 = Add v20 v01  
      Incx,00 v00 v01 v10 v11 v20 v21 = One 
      ... 
      Incx,21 v00 v01 v10 v11 v20 v21 = Add v21 (Add v11 (Add v11 v01)) 
                                                                    (since (x+1)2y = x2y+2xy+y) 

vjk holds the 
value of xj yk

 



Construction of GP,Q 

S = TestAll One Zero .... Zero 
TestAll v0,...,0 ... vd1,...,dn=  
           Test< (P v0,...,0 ... vd1,...,dn) (Q v0,...,0 ... vd1,...,dn) 
       ⊕ TestAll (Inc1  𝐯𝐯) ⊕ ... ⊕ TestAll (Incn  𝐯𝐯)  
Test<  m n = F’  (LT m n) e 
LT m n x y = (m x y) ⊕0.5  (n y x) 
F’ g x = g x (F’ g (F’ g x)) 
Zero x y = y       
Succ n x y = x ⊕1/2 (n x y) 
Add m n x y = m x (n x y) 
P v0,...,0 ... vd1,...,dn = ... 
Inci, k1,...,kn v0,...,0 ... vd1,...,dn = ... 

Run  
Test<  (P(x1 ,...,xn)) 
           (Q(x1 ,...,xn)) 
for all x1,...,xn 

non-AST iff m<n 

Encode natural numbers 
as order-1 
probabilistic functions 

Can be expressed as 
linear combinations of v 



Summary of Undecidability Results 

 The following decision problem is undecidable 
– Input: order-2 pHORS G 
– Output: whether TP(G)=1. 

More precisely, the following sets are not 
recursively enumerable (for r∈(0,1]) 
– G=r = {G: order-2 pHORS | TP(G)=r} 
– G≥r ={G: order-2 pHORS | TP(G)≥r}  
cf. G>r ={G: order-2 pHORS | TP(G)>r} is r.e. 
open: whether G<r and G≤r are r.e. 

Note: A hope remains on approximate computation: 
     Input: G, a rational number ε>0 
     Output: r such that |TP(G)-r| < ε 
 

 
 



Outline 
 pHORS: probabilistic extension of higher-order 

recursion schemes 
 Termination Problems 
 Undecidability of AST of order-2 pHORS 
 Fixpoint characterization of termination 

probabilities 
– Order-n characterization 
– Order-(n-1) characterization 

 Approximate computation of termination 
probabilities 

 Conclusion 



Order-n (Least) Fixpoint 
Characterization of Termination Prob. 

for Order-n pHORS 
Just replace 
      e (termination) with 1 
  Ω (divergence) with 0 
   tL ⊕p tR with p[tL] + (1-p)[tR] 

Order-1 pHORS: 
   S = F e  
F x = x ⊕1/3 F (F x)   

Order-1 fixpoint equations 
   S = F 1 
F x = 1/3· x + 2/3·F (F x)   

The least solution: S = 0.5, F(x) = 0.5 x  



Order-(n-1) Fixpoint Characterization? 
(cf. Order-0 equations for termination probabilities of 

probabilistic PDS [Etessami+; Esparza+]) 
Easy in order-1 case  

(cf. probabilistic pushdown) 

Order-1 pHORS: 
   S = F e  
F x = x ⊕1/3 F (F x)   

Order-0 fixpoint equations 
   S = F0 + F1· 1 
  F1 = 1/3· 1 + 2/3·F1·F1  
  F0 = 1/3· 0 + 2/3·(F0 +F1·F0) 

F0: prob. of terminating without using x 
F1: prob. of using x 
 Order-1 function of arity k can be expressed as 

    (F0, F1,..., Fk) ∈ Realk+1 

where F0 : prob. of terminating without using any arguments 
             Fi: prob. of using the i-th argument 



Order-(n-1) Fixpoint Characterization: 
General Case 

 How to translate an order-2 function F of type  
(o→ o) → o? 
– Naive solution: as a function from 

   (g0, g1)∈Real2   (g0: prob. that the argument g terminates,  
                                 g1: prob. that g uses its argument) 
to the termination probability of F(g). 

  => Does not work when g contains a variable: 
    e.g.   J x = F (H x) 
    There is no way to calculate the prob. that J uses x  
    from the translation of F.  

 



Order-(n-1) Fixpoint Characterization: 
General Case 

 In a context where order-0 variables x1,...,xk are 
visible, a function λy1...yl. λz1...zm. t is translated to: 
 
    
 
(t0, t1, ...,  tm, tm+1, ...,  tm+k , tm+k+1 ) 
 
 

 

order-0 

Returns the prob. 
of reaching the 

current 
reachability target 

(given the 
translation of y’s) 

order(yl )> 0 

Returns prob. 
of reaching zi 

Returns prob. 
of reaching xj 

Returns prob. of 
reaching a 

“fresh” variable 
t does not know  



Order-(n-1) Fixpoint Characterization: 
General Case 

 In a context where order-0 variables x1,...,xk are 
visible, a function λy1...yl. λz1...zm. t is translated to: 
 
(t0, t1, ...,  tm, tm+1, ...,  tm+k , tm+k+1 ) 
 
 

 
Returns the prob. 

of reaching the 
current 

reachability target 
Returns prob. 
of reaching zi 

Returns prob. 
of reaching xj 

Returns prob. of 
reaching a 

“fresh” variable 
t does not know  

e.g. λy.λz. y (x⊕1/3 z)  is translated to: 
     (λ(y0,y1,y2).y0, λ(y0,y1,y2).2/3·y1, λ(y0,y1,y2).1/3·y1, λ(y0,y1,y2).y2 ) 



Translation Relation for  
Order-(n-1) Fixpoint Characterization 

 Γ; x1,...,xk  |−   t: κ1 →... → κl → om→o  
    (t0, t1, ...,  tm, tm+1, ...,  tm+k , tm+k+1 ) 

 
 

 
prob. of reaching 

the current 
reachability 

target 
prob. of reaching 

each order-0 
argument 

prob. of 
reaching xj 

prob. of reaching 
a “fresh” variable 
t does not know  

order-0 variables 



Translation Rule for  
Ω (divergence) 

 Γ; x1,...,xk  |−   Ω: κ1 →... → κl → om→o  
    (0, t1, ...,  tm,     0,  ...,   0 ,     0 ) 

 
 

 
prob. of reaching 

the current 
reachability 

target 
prob. of reaching 

each order-0 
argument 

prob. of 
reaching xj 

order-0 variables 

prob. of reaching 
a “fresh” variable 
t does not know  



Translation Rule for  
Order-0 Variables 

 Γ; x1,...,xk  |−   xi: κ1 →... → κl → om→o  
    (0, t1, ...,  tm,     0i-1, 1,   0k-i ,     0 ) 

 
 

 
prob. of reaching 

the current 
reachability 

target 
prob. of reaching 

each order-0 
argument 

prob. of 
reaching xj 

order-0 variables 

prob. of reaching 
a “fresh” variable 
t does not know  



Translation Rule for  
Variables 

 Γ; x1,...,xk  |−   y: κ1 →... → κl → om→o  
    (y0, y1, ...,  ym, ym+1, ...,  ym+1 , ym+1 ) 

 
 

 
prob. of reaching 

the current 
reachability 

target 
prob. of reaching 

each order-0 
argument 

prob. of 
reaching xj 

order-0 variables 

prob. of reaching 
a “fresh” variable 
t does not know  



Translation Rule for Applications 
(order-1 case) 

 Γ; x1,...,xk  |−   s: om+1→o  
    (s0, s1, ..., sm+1,sm+2 ...,  sm+k+1 , sm+k+2 ) 
 Γ; x1,...,xk  |−   t: o   (t0, t1 ...,  tk , tk+1 ) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 Γ; x1,...,xk  |−   s t: om→o  
    (s0 + s1·t0 , s2, ..., sm+1, 
               sm+2 + s1·t1,..., sm+k+2 + s1·tk+1) 
 
 

 
 

 

order-0 variables 



Translation Rule for Applications 
(higher-order case) 

 Γ; x1,...,xk  |−   s:  κ1 →... → κl → om→o  
    (s0, s1, ..., sm, sm+1 , ...,  sm+k , sm+k+1 ) 
 Γ; x1,...,xk  |−   t: κ1   
     (t0, t1 ...,  tn , tn+1 , ...,  tn+k , tn+k+1 ) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 Γ; x1,...,xk  |−   s t: κ2 →... → κl → om→o  
    (s0(t0, t1 ...,  tn, tn+k+1), ..., sm(t0, t1 ...,  tn, tn+k+1), 
           sm+1(tn+1, t1 ...,  tn, tn+k+1), ...,  
            sm+k+1(tn+k+1, t1 ...,  tn, tn+k+1)) 
 
 

 
 

 

order-0 variables 



Translation of Rewriting rules 

 y1,...,yl; x1,...,xk  |−   s: o   (s0, s1, ...,  sk , sk+1 ) 
 y1,...,yl; x1,...,xk  |−   t: o   (t0, t1, ...,  tk , tk+1 ) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
    F y1,...,yl x1,...,xk = s ⊕p t 
   { F0 (y1,0,...) ... (yl,0,...) = ps0 + (1-p)t0 , 
         ..., 
        Fk  (y1,0,...) ... (yl,0,...) = psk + (1-p)tk  } 
 
 

 
 

 

order-0 variables 



Example 
S’ = S e Ω     S x y = F (C x y)     F g = g H      
H x = x ⊕0.5 Ω    C x y f = (f x) ⊕0.3 (f y)  
(S’: o,   S: o->o->o, H: o->o,  F: ((o->o)->o)->o,  
  C: o->o->(o->o)->o 

S0 = F0(C0 0 0, C0 0 0)     S1=F0(C0 1 0, C0 0 0) 
S2= F0(C0 0 1, C0 0 0) 
F0(g0, g1) = g0(H0, H1, H0) 
C0  x0  y0 (f0, f1, f2)  = 0.3(f0+f1·x0 )+0.7(f0+f1·y0) 
H0=0      H1 = 0.5 

S1=F0(C0 1 0, C0 0 0)  = C0 1 0 (H0, H1, H0) 
     = 0.3(H0 + H1·1 ) + 0.7(H0 + H1·0 ) = 0.15  
 



Correctness of Fixpoint 
Characterization 

If G  EG, then: 
    TP(G) is the least solution of EG  
   (more precisely, TP(G, S e) = lfp(EG)(S1)). 

For any order-n pHORS G,    
EG (such that G  EG ) is 
 -  a system of order-(n-1) fixpoint equations; and  
 - constructible in polynomial time 



Outline 
 pHORS: probabilistic extension of higher-order 

recursion schemes 
 Termination Problems 
 Undecidability of AST of order-2 pHORS 
 Fixpoint characterization of termination 

probabilities 
 Approximate computation of termination 

probabilities (for order-2 pHORS) 
 Related work and conclusion 



Summary of the Talk So far 
TP(G)～r is undecidable for ～∈ { =, ≥} 

– A hope remains on approximate computability: 
Input: G, a rational number ε>0 
Output: r such that |TP(G)-r| < ε 

TP(G) can be characterized as order-(n-1) 
fixpoint equations 
 (order-1 equations for order-2 pHORS) 
– immediately yields a method for computing a 

lower bound for TP(G) 
• Given f=F(f), the least solution can be lower-

approximated by Fk(⊥) 

– how about upper-approximation? 



Non-Solution 1:  
Upper-approximation of greatest fixpoint 

 For f=F(f),   
       lfp(F) ≤ gfp(F)  ≤ Fn (λx.1), 

    but Fn (λx.1)  may be too imprecise as an upper bound  
    for lfp(F). 

e.g.  For F = λf.λx.f(x), 
     lfp(F)=λx.0, but gfp(F) = Fn(λx.1)= λx.1 
 



Non-Solution 2:  
Upper-approximation by Polynomials 

Example: f(x)= 1/3 · x + 2/3 ·f(f(x)) 
Template: f(x) = c0 + c1 x  

    Sufficient condition for upper-approximation: 
         f(x) ≥ 1/3 · x + 2/3 ·f(f(x)) 
                = 1/3 · x + 2/3(c0 + c1 (c0 + c1 x)), 
       i.e.   c0 ≥ 2/3(c0 + c1c0 ) 
                c1 ≥ 1/3  + 2/3 c1

2 , 
      yielding c1= 1/2, c0=0, i.e. f(x)=1/2 x 
 



Non-Solution 2:  
Upper-approximation by Polynomials 

 Imprecise for: f(x1, x2)= x1 + x2 ·f(x1, x2) 
(where x1, x2 are constrained by 0≤ x1+x2 ≤ 1) 
– least solution: 
      f(x1, x2)=    0              if x1 =0 
                         x1/(1-x2)  if x1 >0  
 Since f(x1, x2)=1 for x1 = ε>0 and x2 = 1-ε, 
   f’(0,1)=1 > f(0,1) 
for any sound polynomial upper-approximation f’ of f 
(due to the continuity of f’) 



Our Approach: Discretization  
(à la Finite Element Method) 

 Decompose [0,1] into a finite number of intervals, and 
use a step-wise linear function f* as an upper bound 

 f* is determined by 
a finite number of points 
(x0, y0), ... (xn, yn) 

 Sufficient condition for 
sound approximation: 
   yi ≥ f*(xi) for i=0,...,n 

 yi can be computed by: 
– using decidability of theories 

of real arithmetics; or 
– discretization of codomain 

 

y 

1 

x 1 O 

y=f(x) 
y=f*(x) 



Example 
 f(x) = 0.25x + 0.75f(f(x)) 

– discrete points:  
(0, y0),  (0.5, y1),  (1,y2) 

– constraints: 
y0 ≥ 0.25⋅0 + 0.75f*(f*(0)), y1 ≥ 0.25⋅0.5 + 0.75 f*(f*(0.5)),  
y2 ≥ 0.25⋅1 + 0.75f*(f*(1)) 
where f*(x) =  (1-2x)y0 + 2xy1   if x∈ [0, 0.5] 
                           (2-2x)y1 + (2x-1)y2 if  x∈ (0.5, 1] 

– with discretization of yi to {0, 0.25, 0.5, 0.75, 1}: 
  (y0, y1, y2)(0) = (0, 0, 0) 

      (y0, y1, y2)(1) = (0, 0.25, 0.25) 
       (y0, y1, y2)(2) = (y0, y1, y2)(3) =  (0, 0.25, 0.5) 
     yielding  f*(x)=0.5x  (exact solution: f(x)=1/3⋅x) 

 
 
  
 



Experimental Results 



Experimental Results 
f(x1, x2)= x1 + x2 ·f(x1, x2) 
The exact solution is: 

f(x1, x2)=    0              if x1 =0 
                  x1/(1-x2)  if x1 >0, x2 <1   



Experimental Results 
Artificial examples (having no corresponding 
pHORS) that show possible incompleteness. 
Incomp:   
   S = F(S), F(x) = x2 + 0.4x + 0.09 
Incomp2:  
   S = F(S), F(x) = 0.5x2 + 2F(0.5x) 



Experimental Results 
Artificial examples (having no corresponding 
pHORS) that show possible incompleteness. 
Incomp:   
   S = F(S), F(x) = x2 + 0.4x + 0.09  
        S ≥ F(S) iff (S-0.3)2≤0 iff S=0.3 
Incomp2:  
   S = F(S), F(x) = 0.5x2 + 2F(0.5x) 



Outline 
 pHORS: probabilistic extension of higher-order 

recursion schemes 
 Termination Problems 
 Undecidability of AST of order-2 pHORS 
 Fixpoint characterization of termination 
 Approximate computation of termination 

probabilities 
 Related Work and Conclusion 



Related Work 
Model checking of probabilistic 

pushdownsystems/recursive Markov chains 
[Esparza+ 04, Etessami&Yannakakis 04,...] 
– termination probabilities as polynomial equations  

(special case of our order-(n-1) fixpoint characterization) 
– studies of linear-time/branching-time model checking 

problems  

Model checking of (non-probabilistic) HORS 
[Knapik+02, Ong06, Kobayashi09, ...] 

 Type-based characterization of termination 
probabilities of probabilistic functional programs 
[Dal Lago&Grellois, Breuvart&Dal Lago] 
– do not provide a method for precise approximation 

 



Conclusion 
pHORS as a model of probabilistic functional 

programs 
Undecidability of AST of order-2 pHORS 
Order-(n-1) Fixpoint Characterization of 

Termination Probability of order-n pHORS 
Sound (but possibly incomplete) method for 

approximate computation of TP(G) for order-
2 pHORS 



Future Work 
Settling the question of approximate 

computability of TP(G) with arbitrary precision 
Input: G, a rational number ε>0 
Output: r such that |TP(G)-r| < ε 

(equivalent to the question of whether 
   G<r ={G: order-2 pHORS | TP(G)<r} is r.e. ) 

Practical method for approximate computation 
of TP(G) for pHORS of arbitrary order 
Model checking of pHORS 
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