
Probabilistic Higher-Order Recursion Schemes
 and Termination Probabilities

Naoki Kobayashi
University of Tokyo

joint work with

Ugo Dal Lago (University of Bologna)
Charles Grellois (Aix-Marseille University)

Our Interest

Model Checking of Probabilistic and Higher-
Order Systems
 (with applications to verification of
 probabilistic functional programs)
cf.
– Model checking of probabilistic procedural

programs (probabilistic pushdown [Esparza+ 04],
recursive Markov chains [Etessami&Yannakakis 04])

– Model checking of higher-order programs
[Knapik+02, Ong06, K09,...]

This Talk

pHORS: probabilistic extension of
 higher-order recursion schemes
Termination problems for pHORS

– Undecidability of AST of order-2 pHORS
– Fixpoint characterization of termination

probabilities
– Approximate computation of termination

probabilities

This Talk

pHORS: probabilistic extension of
 higher-order recursion schemes
Termination problems for pHORS

– Undecidability of AST of order-2 pHORS
– Fixpoint characterization of termination

probabilities
– Approximate computation of termination

probabilities

pHORS
 A set of (simply-typed) rules of the form

 F x1 ... xn = tL ⊕p tR
where:
 t ::= e (termination) | Ω (divergence) |
 x | F | t1t2

Order-1 pHORS
(Random Walk):
 S = F e ⊕1 Ω
F x = x ⊕1/3 F (F x)

S

F(F e) e

F e
1

1/3
2/3

1/3

F(F (F e)) 2/3
1/3

2/3
1/3

...
Order-1 pHORS ≈ Probabilistic pushdown systems
 ≈ recursive Markov chains

Termination Probabilities and
Verification Problems

Termination probability of pHORS G
TP(G): the probability that SG →* e

 TP(G1) = the least solution of z=p+(1-p) z2
 = 1 if p≥0.5
 p/(1-p) if p<0.5
 Thus, TP(G1)=1 iff p≥0.5

 G1: S = F e
 F x = x ⊕p F (F x)

Termination Probabilities and
Verification Problems

Termination probability of pHORS G
TP(G): the probability that SG →* e

Problems of interest
– Decision problems:

Input: G, a rational number r ∈ [0,1]
Output: whether TP(G) ∼ r (where ∼ ∈ {=, >, <})
(Special case: almost sure termination TP(G)=1)
 Known to be decidable for probabilistic pushdown (or recursive

Markov chains) [Esparza+ 04][Etessami&Yannakakis 04]),
hence also for order-1 pHORS

Termination Probabilities and
Verification Problems

Termination probability of pHORS G
TP(G): the probability that SG →* e

Problems of interest
– Decision problems:

Input: G, a rational number r ∈ [0,1]
Output: whether TP(G) ∼ r (where ∼ ∈ {=, >, <})
(Special case: almost sure termination TP(G)=1)

– Approximation:
Input: G, a rational number ε>0
Output: r such that |TP(G)-r| < ε

Termination Probabilities and
Verification Problems

Problems of interest
– Decision problems:

Input: G, a rational number r ∈ [0,1]
Output: whether TP(G) ∼ r (where ∼ ∈ {=, >, <})

– Approximation:
Input: G, a rational number ε>0
Output: r such that |TP(G)-r| < ε

Why termination?
– A fundamental property of programs
– Used as a basis of other model checking procedures for

probabilistic pushdown [Etessami+][Esparza+]

Outline
 pHORS: probabilistic extension of higher-order

recursion schemes
 Termination Problems
 Undecidability of AST of order-2 pHORS

– summary of results
– proof ideas

 Fixpoint characterization of termination
probabilities

 Approximate computation of termination
probabilities

 Conclusion

Undecidability of AST
(Almost Sure Termination)

 The following decision problem is undecidable
– Input: order-2 pHORS G
– Output: whether TP(G)=1.

More precisely, the following sets are not
recursively enumerable (for r∈(0,1])
– G=r = {G: order-2 pHORS | TP(G)=r}
– G≥r ={G: order-2 pHORS | TP(G)≥r}
cf. G>r ={G: order-2 pHORS | TP(G)>r} is r.e.
open: whether G<r and G≤r are r.e.

Relationship between open
problems

G<r ={G: order-2 pHORS | TP(G)<r} is r.e.

Approximate computability
(Computability of r such that |r-TP(G)|< ε

for any order-2 pHORS G and ε>0)

G≤r ={G: order-2 pHORS | TP(G)≤r} is r.e.

Outline
 pHORS: probabilistic extension of higher-order

recursion schemes
 Termination Problems
 Undecidability of AST of order-2 pHORS

– summary of results
– proof ideas

 Fixpoint characterization of termination
probabilities

 Approximate computation of termination
probabilities

 Conclusion

Proof Idea

Reduction from Hilbert’s 10th Problem
(unsolvability of Diophantine equations)
– Given polynomials P(x1,...,xn) and Q(x1,...,xn)

(with non-negative coefficients),
∃x1,...,xn.P(x1,...,xn) < Q(x1,...,xn) is undecidable
(corollary of unsolvability of Diophantine)

Note: D(x1,...,xn)=0 iff D(x1,...,xn)2 < 1

Proof Idea

Reduction from Hilbert’s 10th Problem
(unsolvability of Diophantine equations)
– Given polynomials P(x1,...,xn) and Q(x1,...,xn)

(with non-negative coefficients),
∃x1,...,xn.P(x1,...,xn) < Q(x1,...,xn) is undecidable
(corollary of unsolvability of Diophantine)

– Given P(x1,...,xn) and Q(x1,...,xn), one can
effectively construct an order-2 pHORS GP,Q s.t.

TP(GP,Q)<1 iff ∃x1,...,xn.P(x1,...,xn) < Q(x1,...,xn)

Construction of GP,Q (order-3 case)
 Church-encode natural numbers

[n]:nat = λs.λz.sn z
(where nat=(o→o)→o→o)

 Construct Test< : nat→ nat→o such that:
 m<n iff Test< m n is not AST

 Let GP,Q run Test< (P(x1,...,xn)) (Q(x1,...,xn)) for all
x1,...,xn:
 S = TestAll 0 0
 TestAll x1 ... xn = Test< (P(x1,...,xn)) (Q(x1,...,xn))
 ⊕ TestAll (x1+1) x2 ... xn ⊕ ...
 ⊕ TestAll x1 ... xn-1 (xn+1)

Construction of GP,Q (order-3 case)
 Church-encode natural numbers

– [n] = λs.λz.sn z : (o→o)→o→o

 Construct Test< : nat→ nat→o s.t.
 m<n iff Church m n is not AST

 Let GP,Q run Test< (P(x1,...,xn)) (Q(x1,...,xn)) for all
x1,...,xn:
 S = TestAll 0 0
 TestAll x1 ... xn = Test< (P(x1,...,xn)) (Q(x1,...,xn))
 ⊕ TestAll (x1+1) x2 ... xn ⊕ ...
 ⊕ TestAll x1 ... xn-1 (xn+1)

Construction of Test< m n

 Recall:
– F e where F x = x ⊕p F(F x)

is non-AST iff p<0.5

 Parametrize F by ⊕p :
– F’ g e where F’ g x = g x (F’ g (F’ g x)) is non-AST

if g: o→o→o chooses the first branch with prob. <0.5

 Define Test< by:
– Test< m n = F’ (LT m n) e
– LT m n x y = ((H x)m y) ⊕0.5 ((H y)n x)
– H x y = x ⊕0.5 y Chooses x with

prob. 1− 1/2m
Chooses x with

prob. 1/2n

Chooses the first branch
with prob. < 0.5 iff m<n

½ (1-1/2m) + ½(1/2n) = ½ + ½ (1/2n - 1/2m) < ½ iff m<n

 GP,Q for order-3 case
 S = TestAll Zero Zero

TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn)
 ⊕ TestAll (x1+1) x2 ... xn ⊕ ...
 ⊕ TestAll x1 ... xn-1 (xn+1)
Test< m n = F’ (LT m n) e
LT m n x y = ((H x)m y) ⊕0.5 ((H y)n x)
H x y = x ⊕0.5 y

Zero s z = z
P x1 ... xn = ...
Q x1 ... xn = ...

Run
Test< (P x1 ... xn)
 (Q x1 ... xn)
for all x1,...,xn

non-AST iff m<n

Define natural numbers
and polynomials using
Church encoding

GP,Q is non-AST iff P(x1,...,xn)<Q(x1,...,xn) is satisfiable

 GP,Q for order-3 case
 S = TestAll Zero Zero

TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn)
 ⊕ TestAll (x1+1) x2 ... xn ⊕ ...
 ⊕ TestAll x1 ... xn-1 (xn+1)
Test< m n = F’ (LT m n) e
LT m n x y = ((H x)m y) ⊕0.5 ((H y)n x)
H x y = x ⊕0.5 y

Zero s z = z
P x1 ... xn = ...
Q x1 ... xn = ...

Run
Test< (P x1 ... xn)
 (Q x1 ... xn)
for all x1,...,xn

non-AST iff m<n

Define natural numbers
and polynomials using
Church encoding

GP,Q is non-AST iff P(x1,...,xn)<Q(x1,...,xn) is satisfiable

Does not work for order-2 case,
because Church numerals are order-2 functions

Ideas for Order-2 Case
Represent natural numbers as order-1

probabilistic functions
 [n] = λx.λy. x ⊕p(n) y where p(n)=1 – 1/2n

 Zero x y = y Succ n x y = x ⊕1/2 (n x y)
 Prob(“Succ n x y chooses y”)
 = 1/2⋅1/2n = 1/2n+1

Ideas for Order-2 Case
Represent natural numbers as order-1

probabilistic functions
 [n] = λx.λy. x ⊕p(n) y where p(n)=1 – 1/2n

 Zero x y = y Succ n x y = x ⊕1/2 (n x y)
 Add m n x y = m x (n x y)
 Prob(“Add m n x y chooses y”)
 = 1/2m ⋅ 1/2n = 1/2m+n

Ideas for Order-2 Case
Represent natural numbers as order-1

probabilistic functions
 [n] = λx.λy. x ⊕p(n) y where p(n)=1 – 1/2n

 Zero x y = y Succ n x y = x ⊕1/2 (n x y)
 Add m n x y = m x (n x y)

S = TestAll Zero Zero
TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn)
 ⊕ TestAll (x1+1) x2 ... xn ⊕ ... ⊕ TestAll x1 ... xn-1 (xn+1)
Test< m n = F’ (LT m n) e
LT m n x y = (m x y) ⊕0.5 (n y x)

Ideas for Order-2 Case
Represent natural numbers as order-1

probabilistic functions
 [n] = λx.λy. x ⊕p(n) y where p(n)=1 – 1/2n

 Zero x y = y Succ n x y = x ⊕1/2 (n x y)
 Add m n x y = m x (n x y)

S = TestAll Zero Zero
TestAll x1 ... xn = Test< (P x1 ... xn) (Q x1 ... xn)
 ⊕ TestAll (x1+1) x2 ... xn ⊕ ... ⊕ TestAll x1 ... xn-1 (xn+1)
Test< m n = F’ (LT m n) e
LT m n x y = (m x y) ⊕0.5 (n y x)

This cannot be
defined!

Ideas for Order-2 Case
 Represent natural numbers as order-1 probabilistic

functions
 [n] = λx.λy. x ⊕p(n) y where p(n)=1 – 1/2n

 Zero x y = y Succ n x y = x ⊕1/2 (n x y)
 Add m n x y = m x (n x y)

 Pass around the values of x1
k1... xn

kn
 (for k1≤ d1, ...,

kn ≤ dn, where di is the degree of P+Q in xi)

 S = TestAll One Zero Zero
 TestAll v0,...,0 ... vd1,...,dn=
 Test< (P v0,...,0 ... vd1,...,dn) (Q v0,...,0 ... vd1,...,dn)
 ⊕ TestAll (Inc1 𝐯𝐯) ⊕ ... ⊕ TestAll (Incn 𝐯𝐯)

vk1,...,kn holds the value of
x1

k1... xn
kn

Inci updates vk1,...,kn to the value of x1
k1...(xi+1) ki xn

kn

Ideas for Order-2 Case
 Pass around the values of x1

k1... xn
kn

 (for k1≤ d1, ..., kn
≤ dn, where di is the degree of P+Q in xi)

 Example: P =x2y, Q = x2+y
 TestAll v00 v01 v10 v11 v20 v21 =
 Test< (P v00 v01 v10 v11 v20 v21) (Q v00 v01 v10 v11 v20 v21)
 ⊕ TestAll (Incx,00 v00 v01 v10 v11 v20 v21) ...
 (Incx,21 v00 v01 v10 v11 v20 v21)
 ⊕ TestAll (Incy,00 v00 v01 v10 v11 v20 v21) ...
 (Incy,21 v00 v01 v10 v11 v20 v21)
 P v00 v01 v10 v11 v20 v21 = v21 Q v00 v01 v10 v11 v20 v21 = Add v20 v01
 Incx,00 v00 v01 v10 v11 v20 v21 = One
 ...
 Incx,21 v00 v01 v10 v11 v20 v21 = Add v21 (Add v11 (Add v11 v01))
 (since (x+1)2y = x2y+2xy+y)

vjk holds the
value of xj yk

Construction of GP,Q

S = TestAll One Zero Zero
TestAll v0,...,0 ... vd1,...,dn=
 Test< (P v0,...,0 ... vd1,...,dn) (Q v0,...,0 ... vd1,...,dn)
 ⊕ TestAll (Inc1 𝐯𝐯) ⊕ ... ⊕ TestAll (Incn 𝐯𝐯)
Test< m n = F’ (LT m n) e
LT m n x y = (m x y) ⊕0.5 (n y x)
F’ g x = g x (F’ g (F’ g x))
Zero x y = y
Succ n x y = x ⊕1/2 (n x y)
Add m n x y = m x (n x y)
P v0,...,0 ... vd1,...,dn = ...
Inci, k1,...,kn v0,...,0 ... vd1,...,dn = ...

Run
Test< (P(x1 ,...,xn))
 (Q(x1 ,...,xn))
for all x1,...,xn

non-AST iff m<n

Encode natural numbers
as order-1
probabilistic functions

Can be expressed as
linear combinations of v

Summary of Undecidability Results

 The following decision problem is undecidable
– Input: order-2 pHORS G
– Output: whether TP(G)=1.

More precisely, the following sets are not
recursively enumerable (for r∈(0,1])
– G=r = {G: order-2 pHORS | TP(G)=r}
– G≥r ={G: order-2 pHORS | TP(G)≥r}
cf. G>r ={G: order-2 pHORS | TP(G)>r} is r.e.
open: whether G<r and G≤r are r.e.

Note: A hope remains on approximate computation:
 Input: G, a rational number ε>0
 Output: r such that |TP(G)-r| < ε

Outline
 pHORS: probabilistic extension of higher-order

recursion schemes
 Termination Problems
 Undecidability of AST of order-2 pHORS
 Fixpoint characterization of termination

probabilities
– Order-n characterization
– Order-(n-1) characterization

 Approximate computation of termination
probabilities

 Conclusion

Order-n (Least) Fixpoint
Characterization of Termination Prob.

for Order-n pHORS
Just replace
 e (termination) with 1
 Ω (divergence) with 0
 tL ⊕p tR with p[tL] + (1-p)[tR]

Order-1 pHORS:
 S = F e
F x = x ⊕1/3 F (F x)

Order-1 fixpoint equations
 S = F 1
F x = 1/3· x + 2/3·F (F x)

The least solution: S = 0.5, F(x) = 0.5 x

Order-(n-1) Fixpoint Characterization?
(cf. Order-0 equations for termination probabilities of

probabilistic PDS [Etessami+; Esparza+])
Easy in order-1 case

(cf. probabilistic pushdown)

Order-1 pHORS:
 S = F e
F x = x ⊕1/3 F (F x)

Order-0 fixpoint equations
 S = F0 + F1· 1
 F1 = 1/3· 1 + 2/3·F1·F1
 F0 = 1/3· 0 + 2/3·(F0 +F1·F0)

F0: prob. of terminating without using x
F1: prob. of using x
 Order-1 function of arity k can be expressed as

 (F0, F1,..., Fk) ∈ Realk+1

where F0 : prob. of terminating without using any arguments
 Fi: prob. of using the i-th argument

Order-(n-1) Fixpoint Characterization:
General Case

 How to translate an order-2 function F of type
(o→ o) → o?
– Naive solution: as a function from

 (g0, g1)∈Real2 (g0: prob. that the argument g terminates,
 g1: prob. that g uses its argument)
to the termination probability of F(g).

 => Does not work when g contains a variable:
 e.g. J x = F (H x)
 There is no way to calculate the prob. that J uses x
 from the translation of F.

Order-(n-1) Fixpoint Characterization:
General Case

 In a context where order-0 variables x1,...,xk are
visible, a function λy1...yl. λz1...zm. t is translated to:

(t0, t1, ..., tm, tm+1, ..., tm+k , tm+k+1)

order-0

Returns the prob.
of reaching the

current
reachability target

(given the
translation of y’s)

order(yl)> 0

Returns prob.
of reaching zi

Returns prob.
of reaching xj

Returns prob. of
reaching a

“fresh” variable
t does not know

Order-(n-1) Fixpoint Characterization:
General Case

 In a context where order-0 variables x1,...,xk are
visible, a function λy1...yl. λz1...zm. t is translated to:

(t0, t1, ..., tm, tm+1, ..., tm+k , tm+k+1)

Returns the prob.

of reaching the
current

reachability target
Returns prob.
of reaching zi

Returns prob.
of reaching xj

Returns prob. of
reaching a

“fresh” variable
t does not know

e.g. λy.λz. y (x⊕1/3 z) is translated to:
 (λ(y0,y1,y2).y0, λ(y0,y1,y2).2/3·y1, λ(y0,y1,y2).1/3·y1, λ(y0,y1,y2).y2)

Translation Relation for
Order-(n-1) Fixpoint Characterization

 Γ; x1,...,xk |− t: κ1 →... → κl → om→o
  (t0, t1, ..., tm, tm+1, ..., tm+k , tm+k+1)

prob. of reaching

the current
reachability

target
prob. of reaching

each order-0
argument

prob. of
reaching xj

prob. of reaching
a “fresh” variable
t does not know

order-0 variables

Translation Rule for
Ω (divergence)

 Γ; x1,...,xk |− Ω: κ1 →... → κl → om→o
  (0, t1, ..., tm, 0, ..., 0 , 0)

prob. of reaching

the current
reachability

target
prob. of reaching

each order-0
argument

prob. of
reaching xj

order-0 variables

prob. of reaching
a “fresh” variable
t does not know

Translation Rule for
Order-0 Variables

 Γ; x1,...,xk |− xi: κ1 →... → κl → om→o
  (0, t1, ..., tm, 0i-1, 1, 0k-i , 0)

prob. of reaching

the current
reachability

target
prob. of reaching

each order-0
argument

prob. of
reaching xj

order-0 variables

prob. of reaching
a “fresh” variable
t does not know

Translation Rule for
Variables

 Γ; x1,...,xk |− y: κ1 →... → κl → om→o
  (y0, y1, ..., ym, ym+1, ..., ym+1 , ym+1)

prob. of reaching

the current
reachability

target
prob. of reaching

each order-0
argument

prob. of
reaching xj

order-0 variables

prob. of reaching
a “fresh” variable
t does not know

Translation Rule for Applications
(order-1 case)

 Γ; x1,...,xk |− s: om+1→o
  (s0, s1, ..., sm+1,sm+2 ..., sm+k+1 , sm+k+2)
 Γ; x1,...,xk |− t: o  (t0, t1 ..., tk , tk+1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Γ; x1,...,xk |− s t: om→o
  (s0 + s1·t0 , s2, ..., sm+1,
 sm+2 + s1·t1,..., sm+k+2 + s1·tk+1)

order-0 variables

Translation Rule for Applications
(higher-order case)

 Γ; x1,...,xk |− s: κ1 →... → κl → om→o
  (s0, s1, ..., sm, sm+1 , ..., sm+k , sm+k+1)
 Γ; x1,...,xk |− t: κ1
  (t0, t1 ..., tn , tn+1 , ..., tn+k , tn+k+1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Γ; x1,...,xk |− s t: κ2 →... → κl → om→o
  (s0(t0, t1 ..., tn, tn+k+1), ..., sm(t0, t1 ..., tn, tn+k+1),
 sm+1(tn+1, t1 ..., tn, tn+k+1), ...,
 sm+k+1(tn+k+1, t1 ..., tn, tn+k+1))

order-0 variables

Translation of Rewriting rules

 y1,...,yl; x1,...,xk |− s: o  (s0, s1, ..., sk , sk+1)
 y1,...,yl; x1,...,xk |− t: o  (t0, t1, ..., tk , tk+1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 F y1,...,yl x1,...,xk = s ⊕p t
 { F0 (y1,0,...) ... (yl,0,...) = ps0 + (1-p)t0 ,
 ...,
 Fk (y1,0,...) ... (yl,0,...) = psk + (1-p)tk }

order-0 variables

Example
S’ = S e Ω S x y = F (C x y) F g = g H
H x = x ⊕0.5 Ω C x y f = (f x) ⊕0.3 (f y)
(S’: o, S: o->o->o, H: o->o, F: ((o->o)->o)->o,
 C: o->o->(o->o)->o

S0 = F0(C0 0 0, C0 0 0) S1=F0(C0 1 0, C0 0 0)
S2= F0(C0 0 1, C0 0 0)
F0(g0, g1) = g0(H0, H1, H0)
C0 x0 y0 (f0, f1, f2) = 0.3(f0+f1·x0)+0.7(f0+f1·y0)
H0=0 H1 = 0.5

S1=F0(C0 1 0, C0 0 0) = C0 1 0 (H0, H1, H0)
 = 0.3(H0 + H1·1) + 0.7(H0 + H1·0) = 0.15

Correctness of Fixpoint
Characterization

If G  EG, then:
 TP(G) is the least solution of EG
 (more precisely, TP(G, S e) = lfp(EG)(S1)).

For any order-n pHORS G,
EG (such that G  EG) is
 - a system of order-(n-1) fixpoint equations; and
 - constructible in polynomial time

Outline
 pHORS: probabilistic extension of higher-order

recursion schemes
 Termination Problems
 Undecidability of AST of order-2 pHORS
 Fixpoint characterization of termination

probabilities
 Approximate computation of termination

probabilities (for order-2 pHORS)
 Related work and conclusion

Summary of the Talk So far
TP(G)～r is undecidable for ～∈ { =, ≥}

– A hope remains on approximate computability:
Input: G, a rational number ε>0
Output: r such that |TP(G)-r| < ε

TP(G) can be characterized as order-(n-1)
fixpoint equations
 (order-1 equations for order-2 pHORS)
– immediately yields a method for computing a

lower bound for TP(G)
• Given f=F(f), the least solution can be lower-

approximated by Fk(⊥)

– how about upper-approximation?

Non-Solution 1:
Upper-approximation of greatest fixpoint

 For f=F(f),
 lfp(F) ≤ gfp(F) ≤ Fn (λx.1),

 but Fn (λx.1) may be too imprecise as an upper bound
 for lfp(F).

e.g. For F = λf.λx.f(x),
 lfp(F)=λx.0, but gfp(F) = Fn(λx.1)= λx.1

Non-Solution 2:
Upper-approximation by Polynomials

Example: f(x)= 1/3 · x + 2/3 ·f(f(x))
Template: f(x) = c0 + c1 x

 Sufficient condition for upper-approximation:
 f(x) ≥ 1/3 · x + 2/3 ·f(f(x))
 = 1/3 · x + 2/3(c0 + c1 (c0 + c1 x)),
 i.e. c0 ≥ 2/3(c0 + c1c0)
 c1 ≥ 1/3 + 2/3 c1

2 ,
 yielding c1= 1/2, c0=0, i.e. f(x)=1/2 x

Non-Solution 2:
Upper-approximation by Polynomials

 Imprecise for: f(x1, x2)= x1 + x2 ·f(x1, x2)
(where x1, x2 are constrained by 0≤ x1+x2 ≤ 1)
– least solution:
 f(x1, x2)= 0 if x1 =0
 x1/(1-x2) if x1 >0
 Since f(x1, x2)=1 for x1 = ε>0 and x2 = 1-ε,
 f’(0,1)=1 > f(0,1)
for any sound polynomial upper-approximation f’ of f
(due to the continuity of f’)

Our Approach: Discretization
(à la Finite Element Method)

 Decompose [0,1] into a finite number of intervals, and
use a step-wise linear function f* as an upper bound

 f* is determined by
a finite number of points
(x0, y0), ... (xn, yn)

 Sufficient condition for
sound approximation:
 yi ≥ f*(xi) for i=0,...,n

 yi can be computed by:
– using decidability of theories

of real arithmetics; or
– discretization of codomain

y

1

x 1 O

y=f(x)
y=f*(x)

Example
 f(x) = 0.25x + 0.75f(f(x))

– discrete points:
(0, y0), (0.5, y1), (1,y2)

– constraints:
y0 ≥ 0.25⋅0 + 0.75f*(f*(0)), y1 ≥ 0.25⋅0.5 + 0.75 f*(f*(0.5)),
y2 ≥ 0.25⋅1 + 0.75f*(f*(1))
where f*(x) = (1-2x)y0 + 2xy1 if x∈ [0, 0.5]
 (2-2x)y1 + (2x-1)y2 if x∈ (0.5, 1]

– with discretization of yi to {0, 0.25, 0.5, 0.75, 1}:
 (y0, y1, y2)(0) = (0, 0, 0)

 (y0, y1, y2)(1) = (0, 0.25, 0.25)
 (y0, y1, y2)(2) = (y0, y1, y2)(3) = (0, 0.25, 0.5)
 yielding f*(x)=0.5x (exact solution: f(x)=1/3⋅x)

Experimental Results

Experimental Results
f(x1, x2)= x1 + x2 ·f(x1, x2)
The exact solution is:

f(x1, x2)= 0 if x1 =0
 x1/(1-x2) if x1 >0, x2 <1

Experimental Results
Artificial examples (having no corresponding
pHORS) that show possible incompleteness.
Incomp:
 S = F(S), F(x) = x2 + 0.4x + 0.09
Incomp2:
 S = F(S), F(x) = 0.5x2 + 2F(0.5x)

Experimental Results
Artificial examples (having no corresponding
pHORS) that show possible incompleteness.
Incomp:
 S = F(S), F(x) = x2 + 0.4x + 0.09
 S ≥ F(S) iff (S-0.3)2≤0 iff S=0.3
Incomp2:
 S = F(S), F(x) = 0.5x2 + 2F(0.5x)

Outline
 pHORS: probabilistic extension of higher-order

recursion schemes
 Termination Problems
 Undecidability of AST of order-2 pHORS
 Fixpoint characterization of termination
 Approximate computation of termination

probabilities
 Related Work and Conclusion

Related Work
Model checking of probabilistic

pushdownsystems/recursive Markov chains
[Esparza+ 04, Etessami&Yannakakis 04,...]
– termination probabilities as polynomial equations

(special case of our order-(n-1) fixpoint characterization)
– studies of linear-time/branching-time model checking

problems

Model checking of (non-probabilistic) HORS
[Knapik+02, Ong06, Kobayashi09, ...]

 Type-based characterization of termination
probabilities of probabilistic functional programs
[Dal Lago&Grellois, Breuvart&Dal Lago]
– do not provide a method for precise approximation

Conclusion
pHORS as a model of probabilistic functional

programs
Undecidability of AST of order-2 pHORS
Order-(n-1) Fixpoint Characterization of

Termination Probability of order-n pHORS
Sound (but possibly incomplete) method for

approximate computation of TP(G) for order-
2 pHORS

Future Work
Settling the question of approximate

computability of TP(G) with arbitrary precision
Input: G, a rational number ε>0
Output: r such that |TP(G)-r| < ε

(equivalent to the question of whether
 G<r ={G: order-2 pHORS | TP(G)<r} is r.e.)

Practical method for approximate computation
of TP(G) for pHORS of arbitrary order
Model checking of pHORS

	Probabilistic Higher-Order Recursion Schemes� and Termination Probabilities
	Our Interest
	This Talk
	This Talk
	pHORS
	Termination Probabilities and Verification Problems
	Termination Probabilities and Verification Problems
	Termination Probabilities and Verification Problems
	Termination Probabilities and Verification Problems
	Outline
	Undecidability of AST �(Almost Sure Termination)
	Relationship between open problems
	Outline
	Proof Idea
	Proof Idea
	Construction of GP,Q (order-3 case)
	Construction of GP,Q (order-3 case)
	Construction of Test< m n
	 GP,Q for order-3 case
	 GP,Q for order-3 case
	Ideas for Order-2 Case
	Ideas for Order-2 Case
	Ideas for Order-2 Case
	Ideas for Order-2 Case
	Ideas for Order-2 Case
	Ideas for Order-2 Case
	Construction of GP,Q
	Summary of Undecidability Results
	Outline
	Order-n (Least) Fixpoint Characterization of Termination Prob. for Order-n pHORS
	Order-(n-1) Fixpoint Characterization?�(cf. Order-0 equations for termination probabilities of probabilistic PDS [Etessami+; Esparza+])
	Order-(n-1) Fixpoint Characterization:�General Case
	Order-(n-1) Fixpoint Characterization:�General Case
	Order-(n-1) Fixpoint Characterization:�General Case
	Translation Relation for �Order-(n-1) Fixpoint Characterization
	Translation Rule for �W (divergence)
	Translation Rule for �Order-0 Variables
	Translation Rule for �Variables
	Translation Rule for Applications (order-1 case)
	Translation Rule for Applications (higher-order case)
	Translation of Rewriting rules
	Example
	Correctness of Fixpoint Characterization
	Outline
	Summary of the Talk So far
	Non-Solution 1: �Upper-approximation of greatest fixpoint
	Non-Solution 2: �Upper-approximation by Polynomials
	Non-Solution 2: �Upper-approximation by Polynomials
	Our Approach: Discretization �(à la Finite Element Method)
	Example
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Outline
	Related Work
	Conclusion
	Future Work

