On Higher-Order Probabilistic Computation:

Relational Reasoning, Termination, and Bayesian Programming

Ugo Dal Lago
(Based on joint work with Michele Alberti, Raphaélle
Crubillé, Charles Grellois, Davide Sangiorgi,. ..)

P4
ALMA MATER STUDIORUM ' opormariques, 7 mathématiques

UNIVERSITA DI BOLOGN A W

{LE
SIS

IFIP WG 2.2 Annual Meeting, Brno, September 17th

Probabilistic Models

» The environment is supposed not to behave
determanistically, but probabilistically.

Probabilistic Models

» The environment is supposed not to behave
determanistically, but probabilistically.

» Crucial when modeling uncertainty.

Probabilistic Models

» The environment is supposed not to behave
determanistically, but probabilistically.

» Crucial when modeling uncertainty.

» Useful to handle complex domains.

Probabilistic Models

» The environment is supposed not to behave
determanistically, but probabilistically.

» Crucial when modeling uncertainty.
» Useful to handle complex domains.

» Example:

Probabilistic Models

v

The environment is supposed not to behave
determanistically, but probabilistically.

v

Crucial when modeling uncertainty.

v

Useful to handle complex domains.

v

Example:

Abstractions:
» (Labelled) Markov Chains.

v

Probabilistic Models

LS *Probabilistic

ROBOTICS

=
P

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX

ROBOTICS

Probabilistic Models

PROBABILISTIC GRAPHICAL MODELS

ARTIFICIAL
INTELLIGENCE

Probabilistic Models

FOUNDATIONS OF
STATISTICAL NATURAL LANGUAGE
PROCESSING

CHRISTOPHER D. MANNIN

HINRICH ScHiTZE

NATURAL LANGUAGE

PROCESSING

Randomized Computation

» Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

Randomized Computation

» Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

» This is a powerful tool when solving computational
problems.

Randomized Computation

» Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

» This is a powerful tool when solving computational

problems.

» Example:

Input: n > 3, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write n - 1 as 2°-d with d odd by factoring powers of 2 from n - 1
WitnessLoop: repeat k times:
pick a random integer a in the range [2, n - 2]
x « ad mod n
if x =1 or x = n - 1 then do next WitnessLoop
repeat s - 1 times:
x - x® mod n
if x = 1 then return composite
if x = n — 1 then do next WitnessLoop
return composite
return probably prime

Randomized Computation

» Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

» This is a powerful tool when solving computational

problems.

» Example:

Input: n > 3, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write n - 1 as 2°-d with d odd by factoring powers of 2 from n - 1

WitnessLoop: repeat k times:
Ipick a random integer a in the range [2, n - Z]I
T T
if x=1or x = n - 1 then do next WitnessLoop
repeat s - 1 times:
x - x® mod n
if x = 1 then return composite
if x = n - 1 then do next WitnessLoop
return composite
return probably prime

Randomized Computation

» Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

» This is a powerful tool when solving computational

problems.

» Example:

Input: n > 3, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write n - 1 as 2°-d with d odd by factoring powers of 2 from n - 1

WitnessLoop: repeat k times:
Ipick a random integer a in the range [2, n - Z]I
T T
if x=1or x = n - 1 then do next WitnessLoop
repeat s - 1 times:
x - x® mod n
if x = 1 then return composite
if x = n - 1 then do next WitnessLoop
return composite
return probably prime

» Abstractions:

» Randomized algorithms;
» Probabilistic Turing machines.
» Labelled Markov chains.

Randomized Computation

Rajeev Motwani

RG

&.

Prabhakar Raghavan

b

ALGORITHMICS

Randomized Computation

FOUNDATIONS OF
CRYPTOGRAPHY

Violume I Basic Tools

i N L..i»;.r

FOUNDATIONS OF
EHYPTUEHHPH‘I’

CRYPTOGRAPHY

Randomized Computation

Copmelitid et
MONOGRAPHS IN COMPUTER SCIENCE

ABSTRACTION,
REFINEMENT AND
PROOF FOR
PROBABILISTIC
SYSTEMS

Annabelle Mclver
Carroll Morgan

PROGRAM
VERIFICATION

Higher-Order Computation

» Mainly useful in programming.

Higher-Order Computation

» Mainly useful in programming.
» Functions are first-class citizens:

» They can be passed as arguments;
» They can be obtained as results.

Higher-Order Computation

» Mainly useful in programming.
» Functions are first-class citizens:
» They can be passed as arguments;
» They can be obtained as results.
» Motivations:
» Modularity;
» Code reuse;
» Conciseness.

Higher-Order Computation

» Mainly useful in programming.
» Functions are first-class citizens:
» They can be passed as arguments;
» They can be obtained as results.
» Motivations:
» Modularity;
» Code reuse;
» Conciseness.
» Example:
foldr :: (a ->b ->b) -=>b -> [a] -> b
foldr £ acc [] = acc

foldr £ acc (x:xs) = £ x (foldr £ acc xs)

Higher-Order Computation

» Mainly useful in programming.
» Functions are first-class citizens:
» They can be passed as arguments;
» They can be obtained as results.
» Motivations:
» Modularity;
» Code reuse;
» Conciseness.
» Example:
foldr) —> b -> [a] -> b
foldr £ acc [] = acc

foldr £ acc (x:xs) = £ x (foldr £ acc xs)

Higher-Order Computation

» Mainly useful in programming.
» Functions are first-class citizens:
» They can be passed as arguments;
» They can be obtained as results.
» Motivations:
» Modularity;
» Code reuse;
» Conciseness.
» Example:
foldr ::fl(a -=> b -> b)j->b -> [a] -> b
foldr £ acc [] = acc
foldr £ acc (x:xs) = £ x (foldr £ acc xs)
» Models:

» A-calculus

Higher-Order Computation

Real-World

With examples in F4 and (4

Foarwone ot

| | TN

FUNCTIONAL
PROGRAMMING

Higher-Order Computation

Purely Functional
Data structures

| 4

Chris Dkasali 698

|

A
A
TNy

hh A
B B B B B B b B b |
|
hh
h|

h|
h|
hb|

FUNCTIONAL
DATA STRUCTURES

Higher-Order Computation

STUDIES IN LOGIC
AND

THEFOUNDATIONS OF MATHEMATICS

WOLLIME WY

B ARWISE ¢ D KAFL AN ¢ WU RETSLER ¢ F SUPPRS ¢ A% TROFLSTRA
EHTORS

The Lambda
Caleulus

Iix Syniar and Semanties

D BT

HP. BARENDREGT

A-CALCULUS

Higher-Order Probabilistic Computation

Does it Make Sense?

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory
Does it Have?

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory
Does it Have?

Applications?

[Saheb- DJ aromi| [J onesPlotkin]

—¢->1980—0->1990
— 20 — 20003

[DanosHarmer] [JungTix]

[Saheb- DJ aromi| [J onesPlotkin]

—0—»1980 —0—’1990
1720104_ QOOOD

..too many [DanosHarmer] [JungTix]

Outline

Part I Relational Reasoning
Part II Bayesian Functional Programming

Part III Termination

Part [

Relational Reasoning

Syntax and Operational Semantics of Ag

» Terms: M ==z | \a.M | MM | M & M;

Syntax and Operational Semantics of Ag

» Terms: M ==z | \a.M | MM | M & M;
» Values: V ::= \z. M,

Syntax and Operational Semantics of Ag

» Terms: M ==z | \e.M | MM | M & M;
» Values: V ::= \z. M,

» Value Distributions:

V- D(V) € Ry Yo=Y 1w <1
14

Syntax and Operational Semantics of Ag

» Terms: M ==z | \e.M | MM | M & M;
» Values: V ::= \z. M,

» Value Distributions:

V- D(V) € Ry Yo=Y 1w <1
14

» Semantics: [M] = supyp D;

Syntax and Operational Semantics of Ag

M D

N | €&

MU0 Viy{v} MaN

biD+ e

My {P[N/z] | & p}re.Pesr

Ax.PeSH

AV [U,lj\

» Semantics: [M] = supyp D;

Lo~ La
\%

Syntax and Operational Semantics of Ag

» Terms: M ==z | \e.M | MM | M & M;
» Values: V ::= \z. M,

» Value Distributions:

V- D(V) € Ry Yo=Y 1w <1
14

» Semantics: [M] = supyp D;

» Context Equivalence: M = N iff for every context C it
holds that > [C[M]] = > [CIN]].

Syntax and Operational Semantics of Ag

» Terms: M ==z | \e.M | MM | M & M;
» Values: V ::= \z. M,

» Value Distributions:

Cu=[]|)aC | oM | MC | coM | Mac|) =1

» Semantics: [M] = sup)\p D;

» Context Equivalence: = N iff for every context C' it

holds that > [C[M]] = > [CIN]].

Syntax and Operational Semantics of Ag

» Terms: M ==z | \e.M | MM | M & M;
» Values: V ::= \z. M,

» Value Distributions:

V- D(V) € Ry Yo=Y 1w <1
14

» Semantics: [M] = supyp D;

» Context Equivalence: M = N iff for every context C it
holds that > [C[M]] = > [C[N]].

» Context Distance:

09(M,N) = sup¢ | Z[CIM]] = S[CIN]I-

JRSRY VS. I

Examples

@

VS.

Examples

AA = (Az.zx)(Az.2zx)

]& VS. I

Exam Not Context Equivalent: C' = [-].
Context Distance? Consider C,, = (Az. z...z)[].
S——

n times

130 \ls. I

Examples

IR

I®0

VS.

VS.

Examples

Not Context Equivalent: C' = [].
Context Distance? Cannot Easily Amplify.

ISR S. Q

Examples

JRSRY VS. I
JRERY VS. Q)

(M. D) & (\x.Q) VS. Ax.l @)

Examples

JRSRY VS. I

Not Context Equivalent in CBV: C' = (A\zx.z(z1))[]
Apparently Context Equivalent in CBN.

(Ax.l) ® (Az.Q) \s. Ax.l @)

Examples

JRSRY VS.
JRERY VS.

(M. D) & (\x.Q) VS.

Examples

VS.

IR

YiM —* M(Y2M) ® M(Y3 M)

YaM —* M(Y; M) & M(Y;M)
YsM —* M(Y; M) & M(Y;M)

A Labelled Markov Chain for Ag

Terms

A Labelled Markov Chain for Ag

Terms Values

A Labelled Markov Chain for Ag

Terms Values

A Labelled Markov Chain for Ag

Terms Values

A Labelled Markov Chain for Ag

Terms Values

Ax. N

A Labelled Markov Chain for Ag

Terms Values

W, 1
N{W/x} Av.N

Probabilistic Applicative Bisimulation

Ae.M R Ax.N

Probabilistic Applicative Bisimulation

L

N

.M R \z.N MA{L/x}

Probabilistic Applicative Bisimulation

L
.M R \z.N M{L/x} N{L/x}

Probabilistic Applicative Bisimulation

L
.M R \z.N M{L/x} R N{L/x}

Probabilistic Applicative Bisimulation

L
.M R \z.N M{L/x} R N{L/x}

M R N

Probabilistic Applicative Bisimulation

L
SN
Ae.M R Ax.N M{L/x} R N{L/x}
L
eval [M]

M R N

Probabilistic Applicative Bisimulation

L
SN
Ae.M R Ax.N M{L/x} R N{L/x}
L
eval [M]

Probabilistic Applicative Bisimulation

TN

.M R \z.N M{L/x} R N{L/x}

Probabilistic Applicative Bisimulation

L
TN
\e.M R \z.N M{L/x} R N{L/z}
L
eval [[M]]—\
M R N [M](E) [N](E)

Probabilistic Applicative Bisimulation

L
SN
o.M R Az.N M{L/z} R N{L/x}
L
eval [[M]]—\
M R N [M](E)=[N](E)

Applicative Bisimilarity vs. Context Equivalence

v

Bisimilarity: the union ~ of all bisimulation relations.

v

Is it that ~ is included in =7 How to prove it?

v

Natural strategy: is ~ a congruence?
» If this is the case:

M~N = OM]~CIN] = S [0M]] = Y [CIV]
— M = N.

» This is a necessary sanity check anyway.

v

The naive proof by induction fails, due to application:
from M ~ N, one cannot directly conclude that LM ~ LN.

Howe’s Technique

R is a
Congruence
whenever R is
an equivalence

Howe’s Technique

- ~~

~ -

- -
- -
e e —-——-—

Howe’s Technique

- -

-
- -
e rm e ="

. Key Lemma)

Our Neighborhood

» A, where we observe convergence

NQE

Il
IN
2

CBN
CBV

[Abramsky1990, Howe1993|

» Ag with nondeterministic semantics, where we observe
convergence, in its may or must flavors.

CBN X
CBV X

[Ong1993, Lassen1998|

The Probabilistic Case

» Ag with probabilistic semantics.

NgE

CBN

Il
X 11N
e

CBV

The Probabilistic Case

» Ag with probabilistic semantics.

NgE

Il
X 11N
e

CBN
CBV

» Counterexample for CBN: (Az.I) & (Az.Q) % A\z.l &
» Where these discrepancies come from?

The Probabilistic Case

» Ag with probabilistic semantics.

NgE

Il
X 11N
e

CBN
CBV

» Counterexample for CBN: (Az.I) & (Az.Q) % A\z.l &
» Where these discrepancies come from?

» From testing!

The Probabilistic Case

» Ag with probabilistic semantics.

NgE

Il
X 11N
e

CBN
CBV

» Counterexample for CBN: (Az.I) & (Az.Q) % A\z.l &
» Where these discrepancies come from?
» From testing!
» Bisimulation can be characterized by testing equivalence as
follows:
Calculus Testing
A T:=w | a-T
PAg Ti=w|a-T | (TT)

NAg T:=w ‘ a-T | Nier T; |

The Probabilistic Case

» Ag with probabilistic semantics.

JSc<

IA

PN

CBN

CBV

X | X [N

The Probabilistic Case
» Ag with probabilistic semantics.

JSc<

IA

X | X [N
PN

CBN
CBV

» Probabilistic simulation can be characterized by testing as
follows:

Ti=w|a-T|(TT) | TVT

The Probabilistic Case
» Ag with probabilistic semantics.

JSc<

IA

X | X [N
PN

CBN
CBV

» Probabilistic simulation can be characterized by testing as
follows:

Ti=w|a-T|(TT) | TVT

» Full abstraction can be recovered if endowing Ag with
parallel disjunction [CDLSV2015].

SC<|<

N

X 1N

CBN
CBV

Context Distance: the Affine Case [CDL2015]

> Let us consider a simple fragment of Ag), first.

Context Distance: the Affine Case [CDL2015]

> Let us consider a simple fragment of Ag), first.
> Preterms: M,N :=z | \e.M | MM | Mo M |

Context Distance: the Affine Case [CDL2015]

> Let us consider a simple fragment of Ag), first.
> Preterms: M,N :=z | \e.M | MM | Mo M |
» Terms: any preterm M such that I' - M.

Corfl =——— z, ' =M rEM AEN I'EM =N

Liabe Tz ILA-MN 'FMaoN

> Let us consider a simple fragma\t of Ag, first.
» Preterms: M, N =2 | A\e. M\| MM | Me M |
» Terms: any preterm M such that I' - M.

Context Distance: the Affine Case [CDL2015]

v

Let us consider a simple fragment of Ag), first.
Preterms: M,N ==z | \e.M | MM | Mo M | @,
Terms: any preterm M such that I' = M.

Behavioural Distance 4°.

v

v

v

» The metric analogue to bisimilarity.

Context Distance: the Affine Case [CDL2015]

v

Let us consider a simple fragment of Ag), first.
Preterms: M,N ==z | \e.M | MM | Mo M | @,
Terms: any preterm M such that I' = M.

Behavioural Distance 4°.

v

v

v

» The metric analogue to bisimilarity.
Trace Distance §°.

» The maximum distance induced by traces, i.e., sequences of
actions: 0*(M, N) = supt |Pr(M,T) — Pr(N,T)|.

v

Context Distance: the Affine Case [CDL2015]

v

Let us consider a simple fragment of Ag), first.
Preterms: M,N ==z | \e.M | MM | Mo M | @,
Terms: any preterm M such that I' = M.

Behavioural Distance 4°.

v

v

v

» The metric analogue to bisimilarity.
Trace Distance §°.

» The maximum distance induced by traces, i.e., sequences of
actions: 0*(M, N) = supt |Pr(M,T) — Pr(N,T)|.

Soundness and Completeness Results:
< aeae< S <5 o<t
X

v

v

Context Distance: the Affine Case [CDL2015]

> Let us consider a simple fragment of Ag), first.

> Preterms: M,N :=z | \e.M | MM | Mo M |
» Terms: any preterm M such that I' - M.

» Behavioural Distance §°.

» The metric analogue to bisimilarity.
» Trace Distance §'.

» The maximum distance induced by traces, i.e., sequences of

actions: 0*(M, N) = supt |Pr(M,T) — Pr(N,T)|.

» Soundness and Completeness Results:

50 < §¢

5¢ < §°

ot < §¢

§¢ < o

X

» Example: 5t(I,I€B D) =5681ToQ0) = %

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces
unsound metrics for Ag. ..

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces
unsound metrics for Ag. ..
> ...because it does not adequately model copying.

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces
unsound metrics for Ag. ..
> ...because it does not adequately model copying.
» A Tuple LMC.
» Preterms:
Mi=z | XaM | NaM | MM | MeM | 1M
» Terms: any preterm M such that I' - M.
» States: sequences of terms, rather than terms.
» Actions not only model parameter passing, but also
copying of terms.

Context

> T
u
> .

> A

Distance: the General Case [(CDI 20161
FM lz,

z, T’
T,z Fx Tilzkz Tk \z.M T F Nz M
r-M T,)J0FM AVOFN T+FM TFN
T HIM A0+ MN '-MeN

v

Preterms:
Miu=z | deM | NaoM | MM\ Mo M | \M

Terms: any preterm M such that I' = M.

States: sequences of terms, rather than terms.
Actions not only model parameter passing, but also
copying of terms.

v

v

v

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces

unsound metrics for Ag. ..

> ...because it does not adequately model copying.

» A Tuple LMC.

» Preterms:

Mi=z | XM | NaoM | MM | Mo M
» Terms: any preterm M such that I' - M.
» States: sequences of terms, rather than terms.

M

» Actions not only model parameter passing, but also

copying of terms.

» Soundness and Completeness Results:

ot < 6¢

5¢ < ot

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces
unsound metrics for Ag. ..

... because it does not adequately model copying.
A Tuple LMC.
» Preterms:
Mi=z | XaM | NaM | MM | MeM | 1M
» Terms: any preterm M such that I' - M.
» States: sequences of terms, rather than terms.
» Actions not only model parameter passing, but also
copying of terms.
Soundness and Completeness Results:

ot < ¢ 1 5C < ot

vy

v

v

Examples: §'(/(I®Q),1Q) =1 §((IaQ),!I)=1.

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces
unsound metrics for Ag. ..
> ...because it does not adequately model copying.
» A Tuple LMC.
» Preterms:
Mi=z | XaM | NaM | MM | MeM | 1M
» Terms: any preterm M such that I' - M.
» States: sequences of terms, rather than terms.
» Actions not only model parameter passing, but also
copying of terms.
» Soundness and Completeness Results:

ot < ¢ 1 5C < ot

» Examples: §'(/(I®Q),1Q) =1 §((IaQ),!I)=1.

» Trivialisation: the context distance collapses to an
equivalence in strongly normalising fragments or in presence
of parellel disjuction.

Context Distance: the General Case [CDL2016]

» The LMC we have have worked so far with induces
unsound metrics for Ag. ..
> ...because it does not adequately model copying.
» A Tuple LMC.
» Preterms:
Mi=z | XaM | NaM | MM | MeM | 1M
» Terms: any preterm M such that I' - M.
» States: sequences of terms, rather than terms.
» Actions not only model parameter passing, but also
copying of terms.

What would a sensible notion of
distance look like?

» Soundness and Complg

O <o—To <70

» Examples: §'(/(I & Q),1Q) =1 §((IHQ),!1) =1

» Trivialisation: the context distance collapses to an
equivalence in strongly normalising fragments or in presence
of parellel disjuction.

Part 11

Bayesian Functional Programming

normalize(

let x = sample(bern (i)) in

let r = if = then 10 else 3 in
observe 4 from poisson(r);

return(z))

normalize(

let x = sample(bern (i)) in

let r = if = then 10 else 3 in
observe 4 from poisson(r);

return(z))

normalize(

5
let x = sample(bern <7>) in

let r = if x then 10 else 3 in
observe 4 from poisson(r);

return(z))

xr = true

ot

NN

x = false

normalize(

let x = sample(bern (i)) in

let r = if x then 10 else 3 in

observe 4 from poisson(r);

return(z))
xr = true
xr = true
5 T = 10
7
2
z x = false

r = false— r—3

normalize(

let x = sample(bern <?>) in

let r = if & then 10 else 3 in

observe 4 from poisson(r);

return(z))

T = true T = true
5 r =10
7 poisson(10)(4) ~ 0.016
2 poisson(3)(4) ~ 0.168
7

7 — false——— L = false
r=3

1. normalize(

2. let x = sample(bern (i)) in

3. let r = if = then 10 else 3 in
observe 4 from poisson(r);
5. return(zx))

xr = true
xr = true

720.22 r=10

~0.78

r = false——* false
r=3

Bayesian Functional Programming

3

eoe < m = probprog.github.io ¢ 3 |

HOME EXAMPLES LANGUAGE INFERENCE LITERATURNGER

ANGLICAN - A PROBABILISTIC PROGRAMMING SYSTEM

Anglican is a probabilistic programming language integrated with Clojure and ClojureScript.

While Anglican incorporates a sophisticated theoretical background that you are invited to explore, its
value proposition is to allow intuitive modeling in a stochastic environment. It is not an academic exercise,
but a practical everyday machine learning tool that makes probabilistic reasoning effective for you.

Do you interact with users or remote systems? Then you often make the unfortunate experience that they
act unpredictably. Mathematically speaking you observe undeterministic or stochastic behaviour. Anglican
allows you to express random variables capturing all this stochasticity for you and helps you to learn from
data to execute informed decisions in your Clojure programs.

Contact
Join us on slack if you have any questions or suggestions. We are happy to learn about your experience!
GETTING STARTED
Add the following dependency to your project (e.g. with Leiningen):
clojars [anglican *1.0.0"]
You can also clone the examples repository and run lein gorilla to geta quick setup.

Atypical hello world example in statistics is a coin flip model. Our coin has two sides, head and tail,
Intuitively given a set of observed values of a coin you would now like to know how fair it is.
Mathematically speaking we want to know the probability of head turning up. Let's encode a model for

ANGLICAN

Bayesian Functional Programming

ene < M

Hakaru introduction +

Quick Start: A Mixture
Model Example

Modeling a Bernoulli
Experiment

Creating a Mixture
Model

Conditioning a Hakaru
Program

hakaru-dev.github.io v Ju] a

Workflow and Examples ~ Language Guide ~ Transformations ~ Internals ~

QSearch €Previous Nextd QGitHub

Quick Start: A Mixture Model Example

Let's start with a simple model of a coin toss experiment so that you can become familiar with
some of Hakaru's data types and functionality. We will assume that a single coin flip can be
represented using a Bernoulli distribution. After we have created the Bernoulli model, we will
use it to create a mixture model and condition the model to estimate what the original coin toss
experiment looked like based on the resulting mixture model samples.

Modeling a Bernoulli Experiment

We will use the categorical Hakaru Random Primitive to write a Bernoulli distribution’ for our
model. The categorical primitive requires an array representing the probability of achieving
each category in the experiement. Let's start with a fair experiment and state that each side of
the coin has an equal chance of being picked. The result of the coin toss is stored in the variable
b using Hakaru's notation for bind:

b <~ categorical([0.5, 0.51)

For data type simplicity, we will map Heads to true and Tails to false . By putting the values of
trueand false into an array, we can use the value in b to select which of them to return as
the result of the coin toss:

return [true, false][b]

A characteristic of the Bernoulli distribution is that it assumes that only one experiment is
conduirted To collert samnles we need to rin this exneriment multinle fimes To aid in this task

HAKARU

normalize(
let z = sample(gauss (0,1)) in
observe d from exp(1/f(x));

return(zx))

normalize(

1.

sample(gauss (0,1)) in
observe d from exp(1/f(z));

return(x))

let

2.

Bayesian Programming: Semantics

» Giving semantics to programming languages like Anglican
or Hakaru is nontrivial:
» Real numbers;
» Sampling from continuous distributions;
» Conditioning.

Bayesian Programming: Semantics

» Giving semantics to programming languages like Anglican
or Hakaru is nontrivial:
» Real numbers;
» Sampling from continuous distributions;
» Conditioning.
» Key ingredients:
» In M |} 9, we need 2 to be a measure, because the set of
term is not countable anymore.

Bayesian Programming: Semantics

» Giving semantics to programming languages like Anglican
or Hakaru is nontrivial:
» Real numbers;
» Sampling from continuous distributions;
» Conditioning.
» Key ingredients:
» In M |} 9, we need 2 to be a measure, because the set of
term is not countable anymore.

» Terms must thus be equipped with the structure of a
measurable space.

Bayesian Programming: Semantics

» Giving semantics to programming languages like Anglican
or Hakaru is nontrivial:
» Real numbers;
» Sampling from continuous distributions;
» Conditioning.
» Key ingredients:
» In M |} 9, we need 2 to be a measure, because the set of
term is not countable anymore.

» Terms must thus be equipped with the structure of a
measurable space.

» From
My {PIN/z] |} & p}re.Pesx
MNJY > H(\x.P)-ép
Ax.PeSH
we go to

M {P[N/a] | Eptra.pesr
MN |} [&p - dA (Ax.P)

Bayesian Programming: Semantics

» Giving semantics to programming languages like Anglican
or Hakaru is nontrivial:
» Real numbers;
» Sampling from continuous distributions;
» Conditioning.

» Key ingrediants:. -
> In M » This Lebesgue integral

use the set of

term is does not necessarily exist.
> Tq » We must ensure that | ucture of a
e gives rise to a stochastic
> From kernel.

st
» In presence of conditioning, [,

we need even more.

we go to

M| K M[N/x] [} C’gap})\x.PGS‘)g
MN | [&p - dt (Ax.P)

Part 111

Termination

The Landscape: Type Theory

Simple Types

To=1 | T =T

The Landscape: Type Theory

Simple Types

To=1 T =T

» Sound for termination, in absence
of recursion.

» Poor expressive power.

» Intuitionistic Logic.

The Landscape: Type Theory

Simple Types

To=1 | T =T

Polymorphic
Types

T = ‘ o | Yoa.1

The Landscape: Type Theory

» Second-order Logic.

» Still poor, intensionally.

> Very expressive, extensionally.

)

Polymorphic
Types

T x:---‘ o |Var

ypes
T— T

The Landscape: Type Theory

Simple Types

Tu=1 | T—=T

Polymorphic Intersection
Types Types

T = ‘a|Va.T T = .- ‘T/\T

The Landscape: Type Theory

» Motivated by Semantics.

» Complete for termination.

» Type inference is undecidable.

.

Polymorphic Intersection
Types Types

T = ‘a|Va.T T = |T/\T

The Landscape: Type Theory

Simple Types

Tu=1 | T—=T

Polymorphic Intersection _
Types Types Sized Types

T | L[€]

T = ‘a|Va.T T = .- ‘T/\T

The Landscape: Type Theory

> Reasonably expressive,
1 intensionally.

» Type inference remains decidable

TR\

Polymorphic Intersection

Types Types Sized Types

T = | L[€]

T = ‘a|Va.T T = .- ‘T/\T

The Landscape: Recursion Theory

Determinism

Ms —* N,

The Landscape: Recursion Theory

Determinism Probabilism

Ms —* N [M3] = Dy

The Landscape: Recursion Theory

> D, can be smaller than 1.

Determinism Probabilism

M3 —* N, [M3] = Dy

The Landscape: Recursion Theory

Determinism Probabilism
Ms —* N [M3] = Dy

Termination dN, € NF

The Landscape: Recursion Theory

Undecidable;
0
>i-complete. sm Probabilism
N, [M5] = D,

Termination dN, € NF

The Landscape: Recursion Theory

Determinism Probabilism
Ms —* N [M3] = Dy

Termination IN; € NF > D=1

The Landscape: Recursion Theory

Almost-Sure Termination
D I19-complete.

Ms —* N [=D,

Termination IN; € NF > D=1

The Landscape: Recursion Theory

Determinism Probabilism

Ms —* N, [M3] = D,
Termination IN; € NF > D=1
Uniform Vs.3N, € NF

Termination

The Landscape: Recursion Theory

Dot i Probabilism
I19-complete.
—* Ny [M3] = Dy
Termination N, QNF > D=1
Uniform Vs.IN, € NF

Termination

The Landscape: Recursion Theory

Determinism Probabilism

Ms —* N, [M3] = D,
Termination IN; € NF > D=1
Uniform Vs.3N, € NF Vs.> Dy=1

Termination

The Landscape: Recursion Theory

Termination

Uniform
Termination

D) Lolil:

Determir:

I19-complete.

Ms —* N,
dN, € NF

Vs.dN, € NF

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
redudjbility.
» But us{\ess as a programming language.

» For every type 7, define a set of
reducible terms Red.,.

» Prove that all reducible terms are
normalizing. . .

» ...and that all typable terms are
reducible.

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?

(fix x. M)V — M{fix x.M/x}V

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?
» All the termination properties are lost, for very good
reasons.

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?
» All the termination properties are lost, for very good
reasons.
» [s everything lost?

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.

» This can be proved in many ways, including by

reducibility.

» But useless as a programming language.
What if we endow it with full recursion as a fix binder?
All the termination properties are lost, for very good
reasons.
Is everything lost?
» NO!

v Yy

v

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.

» This can be proved in many ways, including by

reducibility.

» But useless as a programming language.
What if we endow it with full recursion as a fix binder?
All the termination properties are lost, for very good
reasons.
Is everything lost?
» NO!

v Yy

v

fi}‘c f

AT 1L

BAD!

f(x — 1) f(xz) f(z) f(xz+1)

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
What if we endow it with full recursion as a fix binder?

v Yy

All the termination properties are lost, for very good
reasons.

v

Is everything lost?
» NO!

fi}‘c f fix f

AT 1L AT : L

BAD! GOOD!

f(x — 1) f(xz) f(z) f(xz+1) f(x —1) f(x — 2) f(x — 3)

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§+1; T:::L[£]|T—>7'.

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§+1; T:::L[£]|T—>7'.

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§+1; T:::L[£]|T—>T.

» Typing Fixpoints.
Too:va)l 7 M:fa+1] =7
M'Ffixa M :uf§] =7

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§—|—1; T:::L[£]|T—>T.

» Typing Fixpoints.
Too:va)l 7 M:fa+1] =7
DEfixa. M] — 1

» Quite Powerful.
» Can type many forms of structural recursion.

Deterministic Sized Types, Technically
» Types.
g:::a\w\g+1; T:::L[§]|T—>T.

» Typing Fixpoints.
Too:va)l 7 M:fa+1] =7
DEfixa. M] — 1

» Quite Powerful.

» Can type many forms of structural recursion.
» Termination.

» Proved by Reducibility.

» ...but of an indexed form.

Deterministic Sized Types, Technically
» Types.
g:::a\w\g+1; T:::L[§]|T—>T.

» Typing Fixpoints.

» Reducibility sets are of the form Red?.

» 0 is an environment for index variables.

. Q » Proof of reducibility for fix x.M is
rather delicate.

IOy o TOTIIT :
» Termination. !!
» Proved by Reducibility.

» ...but of an indexed form.

Deterministic Sized Types, Technically

» Types.
g:::a\w\g+1; T:::L[§]|T—>T.
» Typing Fixpoints.

Too:va)l 7 M:fa+1] =7
DEfixa. M] — 1

v

Quite Powerful.

» Can type many forms of structural recursion.
» Termination.

» Proved by Reducibility.

» ...but of an indexed form.
Type Inference.

» It is indeed decidable.

» But nontrivial.

v

Probabilistic Termination

» Examples:

fix fAx.if x > 0 then if FuirCoin then f(xz — 1) else f(x + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.J¥.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);

| Unbiased Random Walk f the® fl@+1) else .

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.J¥.if © > 0 then if BiasedCoin then f(z — 1) else f(z + 1);

[Unbiased Random Wajw then f(x +1) else .
| Biased Randomn Walk |

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCoin then f(z — 1) else (f(z +1); f(z +1));
fix f.\z.if BiasedCoin then f(z + 1) else f(z — 1);

Probabilistic Termination

» Examples:

fix fAx.if x > 0 then if FuirCoin then f(xz — 1) else f(x + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCpin then f(z — 1) else (f(z +1); f(z +1));
fix fAx.if BiasACom then f(z + 1) else f(xz — 1);

Unbiased Random Walk, with two upward calls.

Probabilistic Termination

» Examples:

fix fAx.if x > 0 then if FuirCoin then f(xz — 1) else f(x + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:
fix f.Ax.if FairCpin then f(z — 1) else (f(z +1); f(z +1));

fix fAx.if BiasACom then f(z + 1) else f(z — 1);
Unbiased Random Walk, WitH\two upward calls. |
Biased Random Walk, the “wrong” way.

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCoin then f(z — 1) else (f(z +1); f(z +1));
fix f.\z.if BiasedCoin then f(z + 1) else f(z — 1);

» Probabilistic termination is thus:

» Sensitive to the actual distribution from which we sample.
» Sensitive to how many recursive calls we perform.

One-Counter Blind Markov Chains

» They are automata of the form (Q,d) where
» () is a finite set of states.
» §:Q — Dist(Q x {—1,0,1}).
» They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].

» The model is fully probabilistic, there is no nondeterminism.
» The counter value is ignored.

One-Counter Blind Markov Chains

» They are automata of the form (Q,d) where
» () is a finite set of states.
» §:Q — Dist(Q x {—1,0,1}).
» They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].
» The model is fully probabilistic, there is no nondeterminism.
» The counter value is ignored.
» The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.

FAAI—M:/L

Every higher-order variable occurs at most once.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Typing Fixpoints.

Plz:obFV:ia+1 —7 OCBMC(0) terminates.
Plx:ob V] —T

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Typing Fixpoints.
Pla:obViatl] =7 OCBMC(c) terminates.

F|x:0/\V:L[§]—>T

This is sufficient for typing:

» Unbiased random walks;

» Biased random walks.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Typing Fixpoints.

Plz:obFV:ia+1 —7 OCBMC(0) terminates.
Plx:ob V] —T

» Typing Probabilistic Choice
T'|AFM:7 T|QFN:p
FiA+1QFMaeN:ir+1p

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

v

Judgments.
F'NAFM:p

v

Typing Fixpoints.
Plz:obFV:ia+1 —7 OCBMC(0) terminates.
Plx:ob V] —T

v

Typing Probabilistic Choice
T'|AFM:7 T|QFN:p
FiA+1QFMaeN:ir+1p

Termination.

v

» By a quantitative nontrivial refinement of reducibility.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Tvpineg Fixpoints

» Reducibility sets are now on the form Red?? |, ..
» p stands for the probability of being reducible.

» Reducibility sets are continuous:

Red?? = |_J Red?"
q<p

» Termination.
» By a quantitative nontrivial refinement of réducibility.

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which canoot be
typed:
A = \r.ax A(Ax.x).

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which canoot be
typed:
A = \r.ax A(Ax.x).

» Types
Tu=% | A— B Av={r,..., T}

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which canoot be
typed:
A = \r.ax A(Ax.x).

» Types
T =% | A— B Av={r,..., T}

» Typing Rules: Examples
{T'EM:7}i<i<n '-M:{A—-B} THFN:A
'EM:{r,...,m} I'HMN:B

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?

» Very simple examples of normalizing terms which canoot be
typed:
A = \r.ax A(Ax.x).
» Types
T:::*|A%B Av={r,..., T}

» Typing Rules: Examples

{T'EM:7}i<i<n '-M:{A—-B} THFN:A

'EM:{r,...,m} I'HMN:B
» Termination

» Again by reducibility.

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which canoot be
typed:
A = \r.ax A(Ax.x).

» Types
T =% | A— B Av={r,..., T}

» Typing Rules: Examples
{T'EM:7}i<i<n '-M:{A—-B} THFN:A
'EM:{r,...,m} I'HMN:B

» Termination
» Again by reducibility.
» Completeness
» By subject expansion, the dual of subject reduction.

Oracle Intersection Types |BreuvartDL2017]

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

Oracle Intersection Types |BreuvartDL2017]

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

Oracle Intersection Types |BreuvartDL2017]

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

» Typing Rules: Examples

TEM:s-A '-M:r-{A—s-B} TFN:q-A
'-M&N:0s-A ' MN :(rgs)-B

Oracle Intersection Types |BreuvartDL2017]

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

» Typing Rules: Examples

TEM:s-A '-M:r-{A—s-B} TFN:q-A
'-M&N:0s-A ' MN :(rgs)-B

» Termination and Completeness

» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch

Oracle Intersection Types |BreuvartDL2017]

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types
Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"
P(M |) = Z 9lsl
> Tyl FM:s-x
TEM:s-A N r-{A—-s-B} TFN:q-A
'-M&N:0s-A ' MN :(rgs)-B

» Termination and Completieness
» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch

Oracle Intersection Types |BreuvartDL2017]

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

POM)= Y 2

> Tyl FM:s-x

This is unavoidable, due to recursion theory. [~ N -4
I mFMPBIVIUS-A ll‘lVllVZU"qS)’B

» Termination and Completieness

» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch

Intersection Types and Computations

Intersection Types and Computations

M

)

Intersection Types

[*V]

Intersection Types and Computations

Intersection Types and Computations

M M

X

Oracle Intersection Types

174 ¢ » ¢ »

Intersection Types and Computations

v N/ 7NN

Intersection Types and Computations

Monadic Intersection Types [BDL2017]

» They are a combination of oracle and
sized types.

» Intersections are needed for preciseness.

» Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

d More...

These Slides, an

These Slides, and More...

Questions?

	Relational Reasoning
	Bayesian Functional Programming
	Termination

