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Mix MDP and Games

* Markov decision processes = env. behaves stochastically
+ optimal strategies

- outliners

» Zero-sum games = env. is the adversary
+ robustness of winning strategies ]
- may be over conservative

e Can we have the best of both ?

« “Variations on the stochastic shortest path problem”
(see VMCAI15 paper for details and other pointers)

* “Threshold Constraints with Guarantees for Parity Objectives
in Markov Decision Processes”
(see ICALP17 paper for details and other pointers)

2[ad]



MDP=nondeterm.+stoch.

MDP D=(S,sinit,A,5,w):

-S: finite set of states

nondeterm. T
a b c -Sinits initial state
-A : finite set of actions
-6 : SxA->Dist(S)
1/3 2/3
if |A|=1,
Stochastic choice Markov Chain

(purely stochastic)



MDP=nondeterm.+stoch.

N

Probabilistic b
c d

T
1N

a ‘\Controlled

w-regular - parity condition
p:S->{0,1,...,d}



MDP=nondeterm.+stoch.

Quantitative
: SXA>7Z
+ sum, mean-payoff, etc.




Strategies

MDP D=(S,sinit,A,5,w)
strategy o : (SxA)*.S—>Dist(A)

Sinit
h for each history h
=seq. of pairs of states and actions,
S o prescribes a possibly randomized
P TIRS choice of action to play
N 1/3 2/3
a b
Stochastic evolution
... can be represented as
S1 Sy S3 S4 a Stochastic Moore Machine

——
5(s,a)



Strategies

(General) Strategy:

o: (S.A)*. S=>Dist(A).

Finite-memory strategy:

or: (S.A)*.S->Dist(A)
but regular (finite Moore machine)
Js=set of finite memory strategies

Memoryless strategy:

Om:S—>Dist(A).
%1, m=set of memoryless strategies

Pure strategy:

op: (S.A)*. SA.
I,=set of pure strategies

+memoryless and pure



I\/IDP+Strategy=Markov Chain

MDP

rategy : 0 ﬂ\
Strategy : é/ 0 ’/’

Resulting Markov Chain : M®c /

Purely
stochastic

process




Prob. of event - Expected value

Event=measurable set of runs E of a MC,

Every event has a uniquely defined probability in a MC M.

> [P(M)(E)=probability that a run belongs to E
when starting from dinit, and M is executed for e=-many steps.

> [E(M)(f)=the expected value or expectation of f over initial runs
in M. Where f is a measurable function f : Runs(M) > Ru{ee}.



Outcome of a strategy
Game view

Given a MDP M and a strategy o, the outcomes of o in M,
noted Out(M,o), are all the (initial) infinite paths that can
occur under the strategy o, that is all the
So S1 ... Sh...

such that for all i = 0O:

8(si,0(s0S1...5i))(si+1)>0.



Plan

1. Variation on the Stochastic Shortest Path Problem

Given a No-weighted MDP M, a target set T, and two thresholds c; and ¢, decide if
there exists a strategy o such that:

A. All outcomes compatible with o reach T within time ¢
B. Under g, the expected time to reach T is less than c;
2. Variation on the w-regular verification problem

Given a MDP M and two w-regular objectives defined by parity functions p; and p», and
a threshold c€[0,1], decide if there exists a strategy o such that:

C. All outcomes compatible with o satisfy p1

D. Under g, the probability that p; is satisfied is larger than ¢
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The Stochastic Shortest
Path Problem

Weighted MDP with weight in Np



Running example

railway, 2
——

waiting
room

bike, 45

0.1

relax, 35 drive, 20 drive, 30 drive, 70
— — —



Expectation



Min. expected length to target

Problem (SSP-E): Given a single dimensional weighted
MDP D=(S,sinit,A,5,w), a set of target states TCS, and a

value v € N, decide if there exists a strategy o such that
E(D, o)(TST)sv ?



Back to the example

How to minimize the expected length ?



Back to the example

Take the car:
1+0.2x20 + 0.7x30 + 0.1x70 = 33 minutes



Min. expected length to target

Algorithms:
» value iteration

* reduction to LP



LP for min. expected length

» Remove states that cannotreach T
(their expectation is +oo)

 For all s€T, the expectation is 0

* for other states, let xs=expectation from state s be a
solution of the following LP:

Max Zses\T Xs
under the constraints

xsSw(a) + 68(s,a,s") xs for all s,s’eS\T, for all acA(s)



Min. expected length to target

Theorem: The SSP-E problem can be decided in polynomial
time. Optimal pure memoryless strategies always exist and
can be constructed in polynomial time.



“Angry? No I'm not angry
you took a job elsewhere."

[ work |
—/

With car, the prob. of long runs (e.g. 71 minutes) is not
negligible (10%).

What if the employee is risk-averse ?



Forcing short paths with
high probability



Forcing short paths
with high probability

Problem (SSP-P): Given a single dimensional weighted
MDP D=(S,sinit,A,5,w), a set of target states TCS, and a
value veN, and probability threshold ae (0,1], decide if
there exists a strategy o such that P(D, o)(TSTsv)2a ?



Forcing short paths
with high probability

Problem (SSP-P): Given a single dimensional weighted
MDP D=(S,sinit,A,5,w), a set of target states TCS, and a
value veN, and probability threshold ae (0,1], decide if
there exists a strategy o such that P(D, o)(TSTsv)2a ?

Percentile constraint



Back to the example

Is it possible to reach work
within 40" with prob. 295% ?




Back to the example

Is it possible to reach work
within 40" with prob. 295% ?

Yes !

Solution: Take the train !




Back to the example

Take the train !

P(D, 0)(TST<40)20.9+0.1x0.9
=0.99




Memory is necessary

Reach u with TS{t} £ 10 with prob. 2 75% ?

Always “a”: after 10 times, the prob. to be in s is 2 0.34 > KO
Always “b”, can only be played one time: prob. to reach tis 0.7 > KO
Play 4 times “a” then 1 time “b”: tis reached with prob. > 81% > OK



Algorithm

Transform the MDP: explicit accumulated cost up
to upper bound v

Solve a reachability query: can we reach
Tv={(s,c) | s€ T A c<v}with probability > a ?

Such query can be solved a.o. using LP




Algorithm

Transform the MDP: explicit accumulated cost up
to upper bound v

Solve a reachability query: can we reach
Tv={(s,c) | s€ T A c<v}with probability > a ?

Such query can be solved a.o. using LP

Memory=accumulated cost




Back to the example

Tao={ (w,c) | c<40}

if o=take train then
P(D, 0)(<>T40)20.99

\

Classical
reachability

query
(LP or Value lter.)

Tao




Forcing short paths
with high probability

Theorem: The SSP-P problem can be decided in pseudo-
polynomial time and it is PSpace-Hard*. Optimal pure

strategies with pseudo-polynomial memory always exist
and can be constructed in pseudo-polynomial time.

*C. Haase and S. Kiefer. The odds of staying on budget. CoRR, abs/1409.8228, 2014.



Good expectation under
acceptable worst-case



What if you ought to be at work
within one hour ?

* Train option leaves a small
probability of not reaching
work within 1 hour (i.e. 1%)

* What if this is unacceptable ?
» Take your bike !
+ But can we do better ?

i.e. be sure to be at work

within one hour with a better
expectation than 45 min. ?




Worst-case guarantees
with good expectation

Problem (SSP-WE): Given a single-dimensional weighted MDP
D=(S,sinit,A,6,w), a set of target states TCS, and two values v1

and v; € N, decide if there exists a unique strategy o such that:
1. [Worst-case] for all peOut(D,0):TST(p)<v1
2. [Expectation] [E(D, o)(TST)<v2

It is a natural problem: avoid unacceptable outliers at all cost!



Two views

« A game + an expected behavior of the env./adversary
given as a stochastic Moore machine: you want a
winning strategy (worst-case) that behaves well/better
against the expected behavior of the env./adversary

« A MDP (expectation) + you want to avoid outliers at all
cost (worst-case)



Back to the example

« Wait for the train
* After three delays, goes back home and bike

[Worst-case] safe: at work within 58 minutes
| with certainty

[Expectation] = 37, 34... minutes (<45 —Bike)

ailway, car, 1
then ~
0.1 0.9 0.2 0.1
0.7
waiting
room

0.1 0.9

3 relax, 35 e drive, 20 drive, 30 drive, 70
wait, 3 J //

bike, 45

()




Algorithm

* Explicit accumulated cost up to v+1

» Solve a reachability game: removes actions and states that
cannot avoid cost v+1 before reaching T

« then remove actions that leads to states where no action
can be played (unsafe states)... up to a fixed point.

* We obtain a MDP in which all strategies are safe
(reach T within v)

* Optimize on the resulting MDP the expected lengthto T



Worst-case guarantees
with good expectation

Theorem (SSP-WE): The SSP-WE problem can be decided in
pseudo-polynomial time and is PP-Hard* (and so NP-Hard).
Pseudo-polynomial memory is always sufficient and in
general necessary, and satisfying strategies can be
constructed in pseudo-polynomial time.

*by a reduction to Kth largest subset problem which was shown PP-complete recently. C. Haase and S. Kiefer.
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Given a No-weighted MDP M, a target set T, and two thresholds c; and ¢, decide if
there exists a strategy o such that:

A. All outcomes compatible with o reach T within time ¢
B. Under g, the expected time to reach T is less than c;
2. Variation on the w-regular verification problem

Given a MDP M and two w-regular objectives defined by parity functions p1 and p,, and
a threshold c€[0,1], decide if there exists a strategy o such that:

C. All outcomes compatible with o satisfy p1

D. Under o, the probability that p; is satisfied is larger than c



MDPs with
two parity objectives



threshold with guarantees

What if we have two parity objectives, p; and p2, an initial state s,
and want a strategy A ensuring:

1: OUtA,s - [[pl]]
2:Prs(p2) 21
Here ¢ Faq S(p1) A\ AS(p2)




threshold with guarantees

What if we have two parity objectives, p; and p2, an initial state s,
and want a strategy A ensuring:

1:0uty,s C [p1]

2:Prslp2) > 11 play (c,b) for i rounds
Here ¢ Faq S(p1) A\ AS(p2)




threshold with guarantees

What if we have two parity objectives, p; and p2, an initial state s,
and want a strategy A ensuring:

1: OUtA,s - [[pl]]
2:Prs(p2) 21
Here ¢ Faq S(p1) A\ AS(p2)

play (c,b) for i rounds

if a is not reached,
play (c,d)
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threshold with guarantees

What if we have two parity objectives, p; and p2, an initial state s,
and want a strategy A ensuring:

1: OUtA,s - [[pl]]
2:Prs(p2) 21
Here ¢ Faq S(p1) A\ AS(p2)

play (c,b) for i rounds

if a is not reached,
play (c,d)

=i+1

(c,d) is taken e many times with Proba O.



Winning each condition is not sufficient

Having a strategy A1 for ¢ = S(p1) and a strategy A, for
¢ Ent P>1(p2) is not sufficient to have a strategy ensuring
c Bt S(p1) APz1(p2).

The following example has no winning strategy.
Problem: 2 does not cancel 3.




Ingredients of a solution:

Safe reachability
+

(Ultra Good) End-Components



Safe reachability

Definition
A set of states T can be reached safely from a state s with respect
to a parity condition p if s = S(p) ANAS(OT).

This problem can be decided in NPN co-NP [1].
On this example, a can be reached safely from ¢ with respect to p.
We alternate between the two possible actions:




End-component

Definition

A subgraph C is an end-component if:
e C is strongly connected
e Post(C) C C

For all strategy A, P(inf(A) = EC) =1 [3].




Condition for sure and almost-sure

An end-component C is ultra-good (UGEC) if we have:
e from all state, a strategy A; reaching safely the maximum of
p1 with respect to py
e from all state, a strategy A, having probability 1 of satisfying
both p; and p»

The following holds: Vs € UGEC : s | S(p1) N\ AS(p2)




Strategy for sure and almost-sure

Strategy at round i:
e Play 7 times A».
e If the current maximum of the round is odd, play A; until
reaching the maximum of p;.
e begin the next round i +1

The following holds: Vs € UGEC : s =y S(p1) AN AS(p2)




General result

Theorem

Given an MDP M, a state sy € S, and two priority functions p1, pa,
it can be decided in NP N coNP if so = S(p1) AP-—k(p2) for
~e{>,>}and k e Qn[0,1].

If the answer is Yes, then there exists an infinite-memory witness
strategy, and infinite memory is in general necessary. This decision
problem is at least as hard as solving parity games.

— Proof of this result relies on the notion of UGEC and safe
reachability.



More results

Variations on the stochastic shortest path problem (VMCAI'15).
MDP with two parity conditions: p; surely and p; above some threshold (ICALP’17).

MDP with mean-payoff objective(s): ensure minimal performance and good expectation (STACS’14 and
LICS'15).

MDP with multi-objective percentile constraints (CAV’15).

MDP with several environments (FSTTCS’15).

POMDP with discounted sum objectives: ensure minimal performance and good expectation (IAAA’17)
... and by others:

MDP with mean-payoff (expectation) and parity (surely) - by Kupferman et al. (CONCUR’16).

MDP with mean-payoff (expectation) and energy (surely) - by Bradzil et al. (ATVA’16).



Conclusion

e Zero-sum games = env. is the adversary
+ robustness of winning strategies
- solutions may be over conservative

* Markov decision processes = env. behaves
stochastically
+ allow for optimal strategies
- not robust against outliners

* We have algorithms to analyse a mix of MDP and games
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Thanks |
Questions ?



