Synthesis in MDP with strong guarantees

Jean-François Raskin (ULB)

IFIP Working group 2.2

Bordeaux
September 2017

Mix MDP and Games

- · Markov decision processes = env. behaves stochastically
 - + optimal strategies
 - outliners
- Zero-sum games = env. is the adversary
 - + robustness of winning strategies
 - may be over conservative
- Can we have the best of both ?
 - "Variations on the stochastic shortest path problem" (see VMCAl15 paper for details and other pointers)
 - "Threshold Constraints with Guarantees for Parity Objectives in Markov Decision Processes" (see ICALP17 paper for details and other pointers)

MDP=nondeterm.+stoch.

-Sinit: initial state

-A: finite set of actions

MDP D=(S,s_{init},A, δ ,w):

-S: finite set of states

 $-\delta: S \times A \rightarrow Dist(S)$

if |A|=1, **Markov Chain** (purely stochastic)

MDP=nondeterm.+stoch.

ω-regular - parity condition p : S→{0,1,...,d}

MDP=nondeterm.+stoch.

Strategies

MDP D=(S, s_{init} ,A, δ ,w) **strategy** σ : (S×A)*.S \rightarrow **Dist**(A)

for each history h
=seq. of pairs of states and actions,
σ prescribes a possibly randomized
choice of action to play

... can be represented as a **Stochastic Moore Machine**

Strategies

(General) Strategy:

Finite-memory strategy:

 σ_f : (S.A)*.S \rightarrow Dist(A) but regular (finite Moore machine) Σ_f =set of finite memory strategies

Memoryless strategy:

 $\sigma_m:S \rightarrow Dist(A)$. $\Sigma_{1,m}$ =set of memoryless strategies

Pure strategy:

 $σ_p$: (S.A)*. S \rightarrow A. $Σ_p$ =set of pure strategies

+memoryless and pure

MDP+Strategy=Markov Chain

 $\textbf{Strategy}: \sigma$

Resulting Markov Chain: $M \otimes \sigma$

Purely stochastic process

Prob. of event - Expected value

Event=measurable set of runs E of a MC,

Every event has a **uniquely defined probability** in a MC M.

- $ightharpoonup \mathbb{P}(M)(E)$ =probability that a run belongs to E when starting from dinit, and M is executed for ∞ -many steps.
- $\succ \mathbb{E}(M)(f)$ =the expected value or expectation of f over initial runs in M. Where f is a measurable function f : Runs(M) $\rightarrow \mathbb{R} \cup \{\infty\}$.

Outcome of a strategy Game view

Given a MDP M and a strategy σ , the outcomes of σ in M, noted **Out(M,\sigma)**, are all the (initial) infinite paths that can occur under the strategy σ , that is all the

$$S_0 S_1 \dots S_n \dots$$

such that for all $i \ge 0$:

$$\delta(s_i, \sigma(s_0s_1...s_i))(s_{i+1})>0.$$

Plan

1. Variation on the Stochastic Shortest Path Problem

Given a \mathbb{N}_0 -weighted MDP M, a target set T, and two thresholds c_1 and c_2 , decide if there exists a strategy σ such that:

- A. All outcomes compatible with σ reach T within time c_1
- B. Under σ , the expected time to reach T is less than c_2

2. Variation on the ω -regular verification problem

Given a MDP M and two ω -regular objectives defined by parity functions p_1 and p_2 , and a threshold $c \in [0,1]$, decide if there exists a strategy σ such that:

- C. All outcomes compatible with σ satisfy p_{1}
- D. Under $\sigma,$ the probability that p_2 is satisfied is larger than c

Plan

1. Variation on the Stochastic Shortest Path Problem

Given a N_0 -weighted MDP M, a target set T, and two thresholds c_1 and c_2 , decide if there exists a strategy σ such that:

- A. All outcomes compatible with σ reach T within time c_1
- B. Under σ , the expected time to reach T is less than c_2

2. Variation on the ω -regular verification problem

Given a MDP M and two ω -regular objectives defined by parity functions p_1 and p_2 , and a threshold $c \in [0,1]$, decide if there exists a strategy σ such that:

- C. All outcomes compatible with σ satisfy p_1
- D. Under σ , the probability that p_2 is satisfied is larger than c

The Stochastic Shortest Path Problem

Weighted MDP with weight in \mathbb{N}_0

Running example

Expectation

Min. expected length to target

Problem (SSP-E): Given a single dimensional weighted MDP D=(S,sinit,A, δ ,w), a set of target states T \subseteq S, and a value $v \in \mathbb{N}$, decide if there exists a strategy σ such that $\mathbb{E}(D, \sigma)(TS^T) \le v$?

How to minimize the **expected length**?

Take the car:

1 + 0.2x20 + 0.7x30 + 0.1x70 = 33 minutes

Min. expected length to target

Algorithms:

- value iteration
- reduction to LP

LP for min. expected length

- Remove states that cannot reach T (their expectation is +∞)
- For all s∈T, the expectation is 0

 for other states, let x_s=expectation from state s be a solution of the following LP:

Max $\Sigma_{s \in S \setminus T} X_s$ under the constraints

 $x_s \le w(a) + \delta(s,a,s') \cdot x_{s'}$ for all $s,s' \in S \setminus T$, for all $a \in A(s)$

Min. expected length to target

Theorem: The SSP-E problem can be decided in **polynomial** time. Optimal **pure memoryless** strategies always exist and can be constructed in polynomial time.

Outliers

With car, the prob. of **long** runs (e.g. 71 minutes) is not negligible (10%).

What if the employee is risk-averse?

high probability

Forcing short paths with

Forcing short paths with high probability

Problem (SSP-P): Given a single dimensional weighted MDP D=(S,sinit,A, δ ,w), a set of target states T \subseteq S, and a value $v\in\mathbb{N}$, and probability threshold $\alpha\in(0,1]$, decide if there exists a strategy σ such that $\mathbb{P}(\mathbf{D}, \sigma)(\mathsf{TS}^\mathsf{T}\leq v)\geq \alpha$?

Forcing short paths with high probability

Problem (SSP-P): Given a single dimensional weighted MDP D=(S,sinit,A, δ ,w), a set of target states T \subseteq S, and a value $v\in\mathbb{N}$, and probability threshold $\alpha\in(0,1]$, decide if there exists a strategy σ such that $\mathbb{P}(\mathbf{D}, \sigma)(\mathsf{TS}^{\mathsf{T}}\leq v)\geq\alpha$?

Percentile constraint

Is it possible to reach work within 40' with prob. ≥ 95%?

Is it possible to reach work within 40' with prob. ≥ 95%?

Yes!

Solution: Take the train!

Take the **train**!

 \mathbb{P} (D, σ)(TS^T≤40)≥0.9+0.1x0.9 =0.99

Memory is necessary

Reach u with $TS{t} ≤ 10$ with prob. ≥ 75%?

Always "a": after 10 times, the prob. to be in s is $\geq 0.34 > KO$ Always "b", can only be played one time: prob. to reach t is 0.7 > KOPlay 4 times "a" then 1 time "b": t is reached with prob. $\geq 81\% > OK$

Algorithm

 Transform the MDP: explicit accumulated cost up to upper bound v

Solve a reachability query: can we reach
 T_v={ (s,c) | s ∈ T ∧ c ≤ v } with probability ≥ α ?

Such query can be solved a.o. using LP

Algorithm

 Transform the MDP: explicit accumulated cost up to upper bound v

Solve a reachability query: can we reach
 T_v={ (s,c) | s ∈ T ∧ c ≤ v } with probability ≥ α ?

Such query can be solved a.o. using LP

Memory=accumulated cost

Forcing short paths with high probability

Theorem: The SSP-P problem can be decided in **pseudo-polynomial** time and it is **PSpace-Hard***. Optimal pure strategies with pseudo-polynomial **memory** always exist and can be constructed in **pseudo-polynomial time**.

To the best of my knowledge, the exact complexity of the decision problem is open.

*C. Haase and S. Kiefer. The odds of staying on budget. CoRR, abs/1409.8228, 2014.

acceptable worst-case

Good expectation under

What if you **ought** to be at work within one hour?

- Train option leaves a small probability of not reaching work within 1 hour (i.e. 1%)
- What if this is unacceptable?
- Take your **bike**!
- But can we do better?
 i.e. be sure to be at work
 within one hour with a better
 expectation than 45 min.?

Worst-case guarantees with good expectation

Problem (SSP-WE): Given a single-dimensional weighted MDP D=(S, s_{init} ,A, δ ,w), a set of target states T \subseteq S, and two values v_1 and $v_2 \in \mathbb{N}$, decide if there exists a **unique strategy** σ such that:

- 1. [Worst-case] for all ρ∈Out(D,σ):TS^T(ρ)≤v₁
- 2. [Expectation] $\mathbb{E}(D, \sigma)(TS^{T}) \leq v_2$

It is a natural problem: avoid unacceptable outliers at all cost!

Two views

- A game + an expected behavior of the env./adversary given as a stochastic Moore machine: you want a winning strategy (worst-case) that behaves well/better against the expected behavior of the env./adversary
- A MDP (expectation) + you want to avoid outliers at all cost (worst-case)

Back to the example

Algorithm

- Explicit accumulated cost up to v+1
- Solve a reachability game: removes actions and states that cannot avoid cost v+1 before reaching T
 - then remove actions that leads to states where no action can be played (unsafe states)... up to a fixed point.
 - We obtain a MDP in which all strategies are safe (reach T within v)
- Optimize on the resulting MDP the expected length to T

Worst-case guarantees with good expectation

Theorem (SSP-WE): The SSP-WE problem can be decided in pseudo-polynomial time and is **PP-Hard*** (and so NP-Hard). Pseudo-polynomial **memory** is always sufficient and in general necessary, and satisfying strategies can be constructed in pseudo-polynomial time.

Plan

1. Variation on the Stochastic Shortest Path Problem

Given a N_0 -weighted MDP M, a target set T, and two thresholds c_1 and c_2 , decide if there exists a strategy σ such that:

- A. All outcomes compatible with σ reach T within time c_1
- B. Under σ , the expected time to reach T is less than c_2

2. Variation on the ω -regular verification problem

Given a MDP M and two ω -regular objectives defined by parity functions p_1 and p_2 , and a threshold $c \in [0,1]$, decide if there exists a strategy σ such that:

- C. All outcomes compatible with σ satisfy p_1
- D. Under σ , the probability that p_2 is satisfied is larger than c

two parity objectives

MDPs with

What if we have two parity objectives, p_1 and p_2 , an initial state s, and want a strategy λ ensuring:

- $1: \mathtt{Out}_{\lambda,s} \subseteq \llbracket p_1 \rrbracket$
- $2: \mathbb{P}_{\lambda,s}(p_2) \geqslant 1$

Here $c \models_{\mathcal{M}} S(p_1) \land AS(p_2)$

What if we have two parity objectives, p_1 and p_2 , an initial state s, and want a strategy λ ensuring:

play (c,b) for i rounds

$$1: \mathtt{Out}_{\lambda,s} \subseteq \llbracket p_1 \rrbracket$$

$$2: \mathbb{P}_{\lambda,s}(p_2) \geqslant 1$$

Here $c \models_{\mathfrak{M}} S(p_1) \wedge AS(p_2)$

What if we have two parity objectives, p_1 and p_2 , an initial state s, and want a strategy λ ensuring:

$$1: \mathtt{Out}_{\lambda,s} \subseteq \llbracket p_1
rbracket$$

$$2: \mathbb{P}_{\lambda,s}(p_2) \geqslant 1$$

Here $c \models_{\mathcal{M}} S(p_1) \land AS(p_2)$

play (c,b) for i rounds

if a is not reached,

What if we have two parity objectives, p_1 and p_2 , an initial state s, and want a strategy λ ensuring:

$$\begin{array}{c} 1: \mathtt{Out}_{\lambda,s} \subseteq \llbracket p_1 \rrbracket \\ 2: \mathbb{P}_{\lambda,s}(p_2) \geqslant 1 \\ \text{Here } c \models_{\mathfrak{M}} S(p_1) \wedge AS(p_2) \end{array} \qquad \text{play (c,b) for i rounds} \\ b \stackrel{1}{1,0} \qquad \qquad \text{if a is not reached,} \\ play (c,d) \\ \stackrel{1}{\underbrace{\qquad \qquad }} \\ i:=i+1 \end{array}$$

What if we have two parity objectives, p_1 and p_2 , an initial state s, and want a strategy λ ensuring:

(c,d) is taken ∞ many times with Proba 0.

Winning each condition is not sufficient

Remark

Having a strategy λ_1 for $c \models_{\mathcal{M}} S(p_1)$ and a strategy λ_2 for $c \models_{\mathcal{M}} P_{\geqslant 1}(p_2)$ is not sufficient to have a strategy ensuring $c \nvDash_{\mathcal{M}} S(p_1) \wedge P_{\geqslant 1}(p_2)$.

The following example has no winning strategy. Problem: 2 does not cancel 3.

Ingredients of a solution:

Safe reachability

(Ultra Good) End-Components

Safe reachability

Definition

A set of states T can be reached safely from a state s with respect to a parity condition p if $s \models S(p) \land AS(\lozenge T)$.

This problem can be decided in $NP \cap co-NP$ [1].

On this example, a can be reached safely from c with respect to p.

We alternate between the two possible actions:

End-component

Definition

A subgraph C is an end-component if:

- C is strongly connected
- $\mathsf{Post}_{\square}(\mathit{C}) \subseteq \mathit{C}$

Theorem

For all strategy λ , $\mathbb{P}(\inf(\lambda) = \mathsf{EC}) = 1$ [3].

Condition for sure and almost-sure

An end-component C is ultra-good (UGEC) if we have:

- ullet from all state, a strategy λ_1 reaching safely the maximum of p_1 with respect to p_1
- ullet from all state, a strategy λ_2 having probability 1 of satisfying both p_1 and p_2

Lemma

The following holds: $\forall s \in UGEC : s \models_{\mathcal{M}} S(p_1) \land AS(p_2)$

Strategy for sure and almost-sure

Strategy at round i:

- Play *i* times λ_2 .
- If the current maximum of the round is odd, play λ_1 until reaching the maximum of p_1 .
- begin the next round i + 1

Lemma

The following holds: $\forall s \in UGEC : s \models_{\mathcal{M}} S(p_1) \land AS(p_2)$

General result

Theorem

Given an MDP \mathfrak{M} , a state $s_0 \in S$, and two priority functions p_1, p_2 , it can be decided in NP \cap coNP if $s_0 \models S(p_1) \land P_{\sim k}(p_2)$ for

 $\sim \in \{>, \geqslant\}$ and $k \in \mathbb{Q} \cap [0, 1]$.

If the answer is Yes, then there exists an infinite-memory witness strategy, and infinite memory is in general necessary. This decision problem is at least as hard as solving parity games.

 \rightarrow Proof of this result relies on the notion of UGEC and safe reachability.

More results

- · Variations on the stochastic shortest path problem (VMCAI'15).
- MDP with **two parity conditions**: p₁ surely and p₂ above some threshold (ICALP'17).
- MDP with mean-payoff objective(s): ensure minimal performance and good expectation (STACS'14 and LICS'15).
- MDP with multi-objective percentile constraints (CAV'15).
- MDP with several environments (FSTTCS'15).
- · POMDP with discounted sum objectives: ensure minimal performance and good expectation (IAAA'17)
 - ... and by others:
- MDP with mean-payoff (expectation) and parity (surely) by Kupferman et al. (CONCUR'16).
- MDP with mean-payoff (expectation) and energy (surely) by Brádzil et al. (ATVA'16).
- ..

Conclusion

- Zero-sum games = env. is the adversary
 - + robustness of winning strategies
 - solutions may be over conservative
- Markov decision processes = env. behaves stochastically
 - + allow for optimal strategies
 - not robust against outliners
- We have algorithms to analyse a mix of MDP and games

Thanks! Questions?