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Abstract
Classical analysis of two-player quantitative games involves an adversary (modeling the environ-
ment of the system) which is purely antagonistic and asks for strict guarantees while Markov
decision processes model systems facing a purely randomized environment: the aim is then to op-
timize the expected payo�, with no guarantee on individual outcomes. We introduce the beyond
worst-case synthesis problem, which is to construct strategies that guarantee some quantitative
requirement in the worst-case while providing an higher expected value against a particular
stochastic model of the environment given as input. We consider both the mean-payo� value
problem and the shortest path problem. In both cases, we show how to decide the existence
of finite-memory strategies satisfying the problem and how to synthesize one if one exists. We
establish algorithms and we study complexity bounds and memory requirements.
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1 Introduction

Two-player zero-sum quantitative games [14, 28, 3] and Markov decision processes (MDPs) [24,
5] are two popular formalisms for modeling decision making in adversarial and uncertain
environments respectively. In the former, two players compete with opposite goals (zero-sum),
and we want strategies for player 1 (the system) that ensure a given minimal performance
against all possible strategies of player 2 (its environment). In the latter, the system
plays against a stochastic model of its environment, and we want strategies that ensure a
good expected overall performance. Those two models are well studied and simple optimal
memoryless strategies exist for classical objectives such as mean-payo� [22, 14, 15] or shortest
path [1, 12]. But both models have clear weaknesses: strategies that are good for the
worst-case may exhibit suboptimal behaviors in probable situations while strategies that are
good for the expectation may be terrible in some unlikely but possible situations.

In practice, we want strategies that both ensure (a) some worst-case threshold no matter
how the adversary behaves (i.e., against any arbitrary strategy) and (b) a good expectation
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Mix	MDP	and	Games
• Markov	decision	processes	=	env.	behaves	stochasEcally 
+	opBmal	strategies	  
-	outliners	

• Zero-sum	games	=	env.	is	the	adversary 
+	robustness	of	winning	strategies 
-	may	be	over	conservaBve	

• Can	we	have	the	best	of	both		?	

• “VariaEons	on	the	stochasEc	shortest	path	problem”	  
(see	VMCAI15	paper	for	details	and	other	pointers)	

• “Threshold	Constraints	with	Guarantees	for	Parity	ObjecEves	  
in	Markov	Decision	Processes”  
(see	ICALP17	paper	for	details	and	other	pointers)

Infinite-memory winning strategy
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1
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2

)
In this example, there is a strategy ensuring both constraints. It
needs infinite memory. We proceed by rounds made of an increasing
number of steps.
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Variations on the Stochastic
Shortest Path Problem⋆
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Abstract. In this invited contribution, we revisit the stochastic shortest
path problem, and show how recent results allow one to improve over the
classical solutions: we present algorithms to synthesize strategies with
multiple guarantees on the distribution of the length of paths reaching
a given target, rather than simply minimizing its expected value. The
concepts and algorithms that we propose here are applications of more
general results that have been obtained recently for Markov decision
processes and that are described in a series of recent papers.

1 Introduction

Markov decision processes (MDP) [18] are natural models for systems that ex-
hibit both non-deterministic and stochastic evolutions. An MDP is executed in
rounds. In each round, the MDP is in a give state and an action is chosen by a
controller (this is the resolution of non-determinism). Once this action has been
fixed then the next state is determined following a probability distribution asso-
ciated to the current state and the action that has been chosen by the controller.
A controller can thus be considered as a strategy (a.k.a. policy) that determines
which action to choose according to the history of the execution so far. MDPs
have been studied intensively and there are algorithms to synthesize strategies
that enforce a large variety of objectives like omega-regular objectives [9], PCTL
objectives [1], or quantitative objectives [18].

One Philosophy, Three Variants. The classical strategy synthesis setting
often considers a single objective to be optimized such as the reachability prob-
ability, or the expected cost to target. Such simple objectives are not always
sufficient to describe the properties required from an efficient controller. Indeed,
on the one hand, one often has several measures of performance, and several ob-
jectives to satisfy, so the desired strategies have to settle for trade-offs between
these. On the other hand, the strategies computed in the classical setting are
tailored for the precise probabilities given in the MDP, which often correspond
to the average behavior of the system in hand. This approach is not satisfactory
if one is also interested in giving some formal guarantees under several scenarios,
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Abstract
The beyond worst-case synthesis problem was introduced recently by Bruyère et al. [10]: it aims
at building system controllers that provide strict worst-case performance guarantees against an
antagonistic environment while ensuring higher expected performance against a stochastic model
of the environment. Our work extends the framework of [10] and follow-up papers, which focused
on quantitative objectives, by addressing the case of Ê-regular conditions encoded as parity
objectives, a natural way to represent functional requirements of systems.

We build strategies that satisfy a main parity objective on all plays, while ensuring a secondary
one with su�cient probability. This setting raises new challenges in comparison to quantitative
objectives, as one cannot easily mix di�erent strategies without endangering the functional prop-
erties of the system. We establish that, for all variants of this problem, deciding the existence
of a strategy lies in NP fl coNP, the same complexity class as classical parity games. Hence, our
framework provides additional modeling power while staying in the same complexity class.
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1 Introduction

Beyond worst-case synthesis. Two-player zero-sum games [18, 21] and Markov decision
processes (MDPs) [17, 4] are popular frameworks for decision making in adversarial and
uncertain environments respectively. In the former, a system controller (player 1) and its
environment (player 2) compete antagonistically, and synthesis aims at strategies that ensure
a specified behavior against all possible strategies of the environment. In the latter, the
system is faced with a given stochastic model of its environment, and the focus is on satisfying
a given level of expected performance, or a specified behavior with a su�cient probability.

The beyond worst-case synthesis framework [10] unites both views: we look for strategies
that provide both strict worst-case guarantees and a good level of performance against the

�
Full version is available on arXiv [5], http://arxiv.org/abs/1702.05472.

†
Work partially supported by the ERC Starting grant 279499 (inVEST) and the ARC project “Non-Zero

Sum Game Graphs: Applications to Reactive Synthesis and Beyond” (Fédération Wallonie-Bruxelles).

J.-F. Raskin is Professeur Francqui de Recherche, M. Randour is an F.R.S.-FNRS postdoctoral researcher.

EA
T
C
S

© Raphaël Berthon, Mickael Randour, and Jean-François Raskin;

licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).

Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;

Article No. 121; pp. 121:1–121:15

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



MDP=nondeterm.+stoch.
MDP	D=(S,sinit,A,δ,w):	

-S:	finite	set	of	states 
-sinit:	iniBal	state 
-A	:	finite	set	of	acBons 
-δ	:	S×A→Dist(S)  
 
if	|A|=1,	  
Markov	Chain	  
(purely	stochasBc)

a b c

1/3 2/3

Stochastic choice

nondeterm.



MDP=nondeterm.+stoch.

 
ω-regular	-	parity	condiBon  
p	:	S→{0,1,…,d}

Winning with probability greater than a threshold

What if P
1

is probabilistic?
! Stochastic model of the expected behavior of the
environment: Markov Decision Process (MDP)
! Not any more surely winning strategy, but strategy winning
with probability > k , k 2 Q\ [0, 1]
! Denoted s |=M P>k(p)

Here, c |=M P>1

(p), denoted "almost surely": c |=M AS(p)

2

1

1 3
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MDP=nondeterm.+stoch.
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

QuanBtaBve 
w	:	S×A→ℤ	  
+	sum,	mean-payoff,	etc.



Strategies
MDP	D=(S,sinit,A,δ,w)	

strategy	σ	:	(S×A)*.S→Dist(A)

sinit

a b

s1 s2 s3 s4

δ(s,a)

{
s

for	each	history	h	
=seq.	of	pairs	of	states	and	acBons,	
σ	prescribes	a	possibly	randomized	

choice	of	acBon	to	play

h

StochasBc	evoluBon

1/3 2/3

…	can	be	represented	as	
a	StochasEc	Moore	Machine



Player 1 -Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in gEGs.

Proof. First, remember that (�k,≤) is well-quasi ordered.

Let λ1 be winning

... ...
... ... ...

...

L1

L2

On each branch

With L1≤L2

stop and play 
as from L1 !

Then λ’1 is winning
and finite memory

... ...
... ... ...

...
wqo+Koenig’s lemma

Friday 19 November 2010

Strategies
(General)	Strategy:	
σ:	(S.A)*.	S→Dist(A).	  

Finite-memory	strategy:	
σf:	(S.A)*.S→Dist(A)	  
but	regular		(finite	Moore	machine)  
Σf=set	of	finite	memory	strategies	

Memoryless	strategy:	
σm:S→Dist(A).	  
Σ1,m=set	of	memoryless	strategies	

 

Pure	strategy:	
σp:	(S.A)*.	S→A.	 
Σp=set	of	pure	strategies

Player 1 -Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in gEGs.

Proof. First, remember that (�k,≤) is well-quasi ordered.

Let λ1 be winning

... ...
... ... ...

...

L1

L2

On each branch

With L1≤L2

stop and play 
as from L1 !

Then λ’1 is winning
and finite memory

... ...
... ... ...

...
wqo+Koenig’s lemma

Friday 19 November 2010
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MDP+Strategy=Markov	Chain
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

Strategy	:	σ

MDP	
M

ResulBng	Markov	Chain		:	M⊗σ

(h,m0) (t,m0) (w,m0)

(wr,m0) (wr,m1) (h,m1) (w,m1)

0.9

0.1 0.9

0.1

2

2 3
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35

452

railway

railway

wait

wait

relax

go	back bike

Purely	
stochasBc	
process



Prob.	of	event	-	Expected	value

Event=measurable	set	of	runs	E	of	a	MC,	  

Every	event	has	a	uniquely	defined	probability	in	a	MC	M.		

➢	ℙ(M)(E)=probability	that	a	run	belongs	to	E	  
when	starBng	from	dinit,	and	M	is	executed	for	∞-many	steps.		

➢	𝔼(M)(f)=the	expected	value	or	expectaEon	of	f	over	iniBal	runs	
in	M.	Where	f	is	a	measurable	funcBon	f	:	Runs(M)	→	ℝ∪{∞}.



Outcome	of	a	strategy	
Game	view

Given	a	MDP	M	and	a	strategy	σ,	the	outcomes	of	σ	in	M,	
noted	Out(M,σ),	are	all	the	(iniBal)	infinite	paths	that	can	

occur	under	the	strategy	σ,	that	is	all	the 
 

s0	s1	…	sn…  
 

such	that	for	all	i	≥	0:	 
 

δ(si,σ(s0s1…si))(si+1)>0.



Plan
1. VariaEon	on	the	StochasEc	Shortest	Path	Problem 
 
Given	a	ℕ0-weighted	MDP	M,	a	target	set	T,	and	two	thresholds	c1	and	c2,	decide	if	
there	exists	a	strategy	σ	such	that:	

A. 	All	outcomes	compaBble	with	σ	reach	T	within	Bme	c1	

B. Under	σ,	the	expected	Bme	to	reach	T	is	less	than	c2	

2. VariaEon	on	the	ω-regular	verificaEon	problem  
 
Given	a	MDP	M	and	two	ω-regular	objecBves	defined	by	parity	funcBons	p1	and	p2,	and	
a	threshold	c∈[0,1],	decide	if	there	exists	a	strategy	σ	such	that:	

C. All	outcomes	compaBble	with	σ	saBsfy	p1	

D. Under	σ,	the	probability	that	p2	is	saBsfied	is	larger	than	c	
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Given	a	ℕ0-weighted	MDP	M,	a	target	set	T,	and	two	thresholds	c1	and	c2,	decide	if	
there	exists	a	strategy	σ	such	that:	

A. 	All	outcomes	compaBble	with	σ	reach	T	within	Bme	c1	
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The	StochasBc	Shortest	
Path	Problem

Weighted	MDP	with	weight	in	ℕ0



Running	example
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].



ExpectaBon



Min.	expected	length	to	target

Problem	(SSP-E):	Given	a	single	dimensional	weighted	
MDP	D=(S,sinit,A,δ,w),	a	set	of	target	states	T⊆S,	and	a	
value	v	∈	ℕ,	decide	if	there	exists	a	strategy	σ	such	that	
𝔼(D,	σ)(TST)≤v	?



Back	to	the	example
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

How	to	minimize	the	expected	length	?



Back	to	the	example

Take	the	car: 
	1	+	0.2x20	+	0.7x30	+	0.1x70	=	33	minutes
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].



Min.	expected	length	to	target
Algorithms:		

• value	iteraBon	

• reducBon	to	LP



LP	for	min.	expected	length
• Remove	states	that	cannot	reach	T	 
(their	expectaBon	is	+∞)	

• For	all	s∈T,	the	expectaBon	is	0		

• for	other	states,	let	xs=expectaBon	from	state	s	be	a	
soluBon	of	the	following	LP:	

Max	Σs∈S\T	xs	  
under	the	constraints 

xs	≤	w(a)	+	 ︎	δ(s,a,s’ʹ)·	xs’		for	all	s,s’∈S\T,	for	all	a∈A(s)

T 
𝔼=0

¬∃♢T 
𝔼=+∞



Min.	expected	length	to	target

Theorem:	The	SSP-E	problem	can	be	decided	in	polynomial	
Bme.	OpBmal	pure	memoryless	strategies	always	exist	and	
can	be	constructed	in	polynomial	Bme.



Outliers

With	car,	the	prob.	of	long	runs	(e.g.	71	minutes)	is	not	
negligible	(10%).		

What	if	the	employee	is	risk-averse	?
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].



Forcing	short	paths	with	
high	probability



Forcing	short	paths		
with	high	probability

Problem	(SSP-P):	Given	a	single	dimensional	weighted	
MDP	D=(S,sinit,A,δ,w),	a	set	of	target	states	T⊆S,	and	a	
value	v∈ℕ,	and	probability	threshold	α∈	(0,1],	decide	if	
there	exists	a	strategy	σ	such	that	ℙ(D,	σ)(TST≤v)≥α	?	
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Problem	(SSP-P):	Given	a	single	dimensional	weighted	
MDP	D=(S,sinit,A,δ,w),	a	set	of	target	states	T⊆S,	and	a	
value	v∈ℕ,	and	probability	threshold	α∈	(0,1],	decide	if	
there	exists	a	strategy	σ	such	that	ℙ(D,	σ)(TST≤v)≥α	?	

PercenBle	constraint
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

Is	it	possible	to	reach	work	
within	40’	with	prob.	≥	95%		?
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
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this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

Yes	!	

SoluBon:	Take	the	train	!
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
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this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

Take	the	train	!

h t w

wr

0.9

0.1 0.9

2

2 3

35

railway

railway wait

relax

0.1 3 wait

ℙ(D,	σ)(TST≤40)≥0.9+0.1x0.9  
=0.99



Memory	is	necessary

Reach	u	with	TS{t}	≤	10	with	prob.	≥	75%	?  
 

Always	“a”:	a�er	10	Bmes,	the	prob.	to	be	in	s	is	≥	0.34	➢	KO  
Always	“b”,	can	only	be	played	one	Bme:	prob.	to	reach	t	is	0.7	➢	KO  
Play	4	Bmes	“a”	then	1	Bme	“b”:		t	is	reached	with	prob.	≥	81%	➢	OK	

S t

0.1

0.9

a

1

1

0.3

0.7
b 6

6



Algorithm

• Transform	the	MDP:	explicit	accumulated	cost	up	
to	upper	bound	v	

• Solve	a	reachability	query:	can	we	reach	 
Tv={	(s,c)	|	s	∈	T	∧	c	≤	v	}	with	probability	≥	α	?	

• Such	query	can	be	solved	a.o.	using	LP

T

s

(s,c) 
c≤v (s,c’) 

c’≤v

Tv



Algorithm

• Transform	the	MDP:	explicit	accumulated	cost	up	
to	upper	bound	v	

• Solve	a	reachability	query:	can	we	reach	 
Tv={	(s,c)	|	s	∈	T	∧	c	≤	v	}	with	probability	≥	α	?	

• Such	query	can	be	solved	a.o.	using	LP

T

s

(s,c) 
c≤v (s,c’) 

c’≤v

Tv

Memory=accumulated	cost



Back	to	the	example

(h,0)

(t,2) (w,37)

(wr,2)

0.9

0.1

0.9

2

2

3

35

railway

wait

relax

0.1 3

T40={	(w,c)	|	c	≤	40	}	

if	σ=take	train	then	 
ℙ(D,	σ)(♢T40)≥0.99

(wr,5)

(t,5) (w,40)
relax

35

1

1

car

bike

…

…

T40

Classical		
reachability	

query	
(LP	or	Value	Iter.)



Forcing	short	paths		
with	high	probability

Theorem:	The	SSP-P	problem	can	be	decided	in	pseudo-
polynomial	Bme	and	it	is	PSpace-Hard*.	OpBmal	pure	
strategies	with	pseudo-polynomial	memory	always	exist	
and	can	be	constructed	in	pseudo-polynomial	Eme.	

	 *C.	Haase	and	S.	Kiefer.	The	odds	of	staying	on	budget.	CoRR,	abs/1409.8228,	2014.	  

To the best of my knowledge, the exact complexity of  
the decision problem is open.



Good	expectaBon	under	
acceptable	worst-case



What	if	you	ought	to	be	at	work	
within	one	hour	?

• Train	opBon	leaves	a	small	
probability	of	not	reaching	
work	within	1	hour	(i.e.	1%)	

• What	if	this	is	unacceptable	?	

• Take	your	bike	!	

• But	can	we	do	beler	?	  
i.e.	be	sure	to	be	at	work	
within	one	hour	with	a	be�er	
expectaBon	than	45	min.	?

home

waiting
room

train
light
tra�c

medium
tra�c

heavy
tra�c

work

railway, 2

car, 1

wait, 3

relax, 35

go back, 2

bike, 45

drive, 20 drive, 30 drive, 70

0.1 0.9
0.2

0.7
0.1

0.1 0.9

Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].



Worst-case	guarantees	
with	good	expectaBon

Problem	(SSP-WE):	Given	a	single-dimensional	weighted	MDP	
D=(S,sinit,A,δ,w),	a	set	of	target	states	T⊆S,	and	two	values	v1	
and	v2	∈	ℕ,	decide	if	there	exists	a	unique	strategy	σ	such	that:	

1.	[Worst-case]	for	all	ρ∈Out(D,σ):TST(ρ)≤v1	

2.	[ExpectaEon]	𝔼(D,	σ)(TST)≤v2	

It	is	a	natural	problem:	avoid	unacceptable	outliers	at	all	cost!



Two	views

• A	game	+	an	expected	behavior	of	the	env./adversary	
given	as	a	stochasBc	Moore	machine:	you	want	a	
winning	strategy	(worst-case)	that	behaves	well/beler	
against	the	expected	behavior	of	the	env./adversary	

• A	MDP	(expectaBon)	+	you	want	to	avoid	outliers	at	all	
cost	(worst-case)



• Wait	for	the	train	

• A�er	three	delays,	goes	back	home	and	bike		

[Worst-case]	safe:	at	work		within	58	minutes	
with	certainty	

[ExpectaEon]	≈	37,	34…	minutes	(<45	—Bike)	home
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Fig. 1. An everyday life application of stochastic shortest path problems: choosing a
mean of transport to go from home to work. Actions (black dots) are labeled with
durations in minutes, and stochastic transitions are labeled with their probability.

this case, we need to solve a SSP-P problem. First, observe that taking the train
ensures to reach work within 40 minutes in 99% of the runs. Indeed, if the train
is not delayed, we reach work with 37 minutes, and this happens with probabil-
ity 9/10. Now, if the train is late and the employee decides to wait, the train
arrives in the next 3 minutes with probability 9/10: in that case, the employee
arrives at work within 40 minutes. So, the strategy consisting in going to the
railway station and waiting for the train (as long as needed) gives us a proba-
bility 99/100 to reach work within 40 minutes, fulfilling our objective. Second,
it is easy to see that both bicycle and car are excluded in order to satisfy the
SPP-P problem. With bicycle we reach work in 45 minutes with probability one,
and with the car we reach work in 71 minutes with probability 1/10, hence we
miss the constraint of 40 minutes too often.

Related work. The SSP-P problem was studied in MDPs with either all non-
negative or all non-positive weights in [17,22]. The related notion of quantile
queries was studied in [23]: such queries are essentially equivalent to minimiz-
ing the value ` inside the constraint of an SSP-P problem such that there still
exists a satisfying strategy for some fixed ↵. It has been recently extended to
cost problems [15], which can handle arbitrary Boolean combinations of inequal-
ities over the truncated sum instead of only TST (⇢)  `. All those works only
study single-dimensional MDPs. For the SPP-E problem, extensions to multi-
dimensional MDPs have been considered in [14].

Back	to	the	example

3x

then



Algorithm
• Explicit	accumulated	cost	up	to	v+1	

• Solve	a	reachability	game:	removes	acBons	and	states	that	
cannot	avoid	cost	v+1	before	reaching	T	

• then	remove	acBons	that	leads	to	states	where	no	acBon	
can	be	played	(unsafe	states)…	up	to	a	fixed	point.	

• We	obtain	a	MDP	in	which	all	strategies	are	safe	
(reach	T	within	v)	

• OpBmize	on	the	resulBng	MDP	the	expected	length	to	T



Worst-case	guarantees	
with	good	expectaBon

Theorem	(SSP-WE):	The	SSP-WE	problem	can	be	decided	in	
pseudo-polynomial	Bme	and	is	PP-Hard*	(and	so	NP-Hard).	
Pseudo-polynomial	memory	is	always	sufficient	and	in	
general	necessary,	and	saBsfying	strategies	can	be	
constructed	in	pseudo-polynomial	Bme.

*by	a	reducBon	to	Kth	largest	subset	problem	which	was	shown	PP-complete	recently.	C.	Haase	and	S.	Kiefer.	



Plan
1. VariaEon	on	the	StochasEc	Shortest	Path	Problem 
 
Given	a	ℕ0-weighted	MDP	M,	a	target	set	T,	and	two	thresholds	c1	and	c2,	decide	if	
there	exists	a	strategy	σ	such	that:	

A. 	All	outcomes	compaBble	with	σ	reach	T	within	Bme	c1	

B. Under	σ,	the	expected	Bme	to	reach	T	is	less	than	c2	

2. VariaEon	on	the	ω-regular	verificaEon	problem  
 
Given	a	MDP	M	and	two	ω-regular	objecBves	defined	by	parity	funcBons	p1	and	p2,	and	
a	threshold	c∈[0,1],	decide	if	there	exists	a	strategy	σ	such	that:	

C. All	outcomes	compaBble	with	σ	saBsfy	p1	

D. Under	σ,	the	probability	that	p2	is	saBsfied	is	larger	than	c	



MDPs	with		
two	parity	objecBves
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play (c,b) for i rounds

if a is not reached, 
play (c,d)

i:=i+1

(c,d) is taken ∞ many times with Proba 0.



Winning each condition is not sufficient

Remark
Having a strategy �

1

for c |=M S(p
1

) and a strategy �
2

for
c |=M P>1

(p
2

) is not sufficient to have a strategy ensuring
c 2M S(p

1

)^ P>1

(p
2

).

The following example has no winning strategy.
Problem: 2 does not cancel 3.
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Ingredients	of	a	soluBon:	

Safe	reachability	
+	

(Ultra	Good)	End-Components



Safe reachability

Definition
A set of states T can be reached safely from a state s with respect
to a parity condition p if s |= S(p)^AS(⌃T ).

This problem can be decided in NP\ co-NP [1].
On this example, a can be reached safely from c with respect to p.
We alternate between the two possible actions:

4

1

1 2

a

b
c d

1

2

1

2

14 / 18 R. Berthon, M. Randour, and J.-F. Raskin Threshold with guarantees



End-component

Definition
A subgraph C is an end-component if:

• C is strongly connected
• Post⇤(C ) ✓ C

a

b
c d

Theorem
For all strategy �, P(inf(�) = EC) = 1 [3].

13 / 18 R. Berthon, M. Randour, and J.-F. Raskin Threshold with guarantees



Condition for sure and almost-sure

An end-component C is ultra-good (UGEC) if we have:
• from all state, a strategy �

1

reaching safely the maximum of
p
1

with respect to p
1

• from all state, a strategy �
2

having probability 1 of satisfying
both p

1

and p
2

4, 0

1, 0

1, 0 2, 1

a

b
c d

1

2

1

2

Lemma

The following holds: 8s 2 UGEC : s |=M S(p
1

)^AS(p
2

)
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Strategy for sure and almost-sure

Strategy at round i :
• Play i times �

2

.
• If the current maximum of the round is odd, play �

1

until
reaching the maximum of p

1

.
• begin the next round i + 1

4, 0

1, 0

1, 0 2, 1

a

b
c d

1

2

1

2

Lemma

The following holds: 8s 2 UGEC : s |=M S(p
1

)^AS(p
2

)

16 / 18 R. Berthon, M. Randour, and J.-F. Raskin Threshold with guarantees



General result

Theorem

Given an MDP M, a state s
0

2 S , and two priority functions p
1

, p
2

,

it can be decided in NP\ coNP if s
0

|= S(p
1

)^ P⇠k(p2

) for

⇠2 {>,>} and k 2 Q\ [0, 1].
If the answer is Yes, then there exists an infinite-memory witness

strategy, and infinite memory is in general necessary. This decision

problem is at least as hard as solving parity games.

! Proof of this result relies on the notion of UGEC and safe
reachability.
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More	results
• VariaBons	on	the	stochasEc	shortest	path	problem	(VMCAI’15).	

• MDP	with	two	parity	condiEons:	p1	surely	and	p2	above	some	threshold	(ICALP’17).	

• MDP	with	mean-payoff	objecEve(s):	ensure	minimal	performance	and	good	expectaBon	(STACS’14	and	
LICS’15).	

• MDP	with	mulE-objecEve	percenEle	constraints	(CAV’15).	

• MDP	with	several	environments	(FSTTCS’15).	

• POMDP	with	discounted	sum	objecEves:	ensure	minimal	performance	and	good	expectaBon	(IAAA’17)	 
 
…	and	by	others:	

• MDP	with	mean-payoff	(expectaBon)	and	parity	(surely)	-	by	Kupferman	et	al.	(CONCUR’16).	

• MDP	with	mean-payoff	(expectaBon)	and	energy	(surely)	-	by	Brádzil	et	al.	(ATVA’16).	

• …



Conclusion
• Zero-sum	games	=	env.	is	the	adversary 
+	robustness	of	winning	strategies 
-	soluBons	may	be	over	conservaBve	

• Markov	decision	processes	=	env.	behaves	
stochasEcally 
+	allow	for	opBmal	strategies	  
-	not	robust	against	outliners	

• We	have	algorithms	to	analyse	a	mix	of	MDP	and	games



Thanks	!	
QuesBons	?


