
HIGHER-ORDER
LINEARISABILITY

Andrzej Murawski
University of Warwick

Nikos Tzevelekos
Queen Mary

University of London

Linearizability: A Correctness Condition for
Concurrent Objects
MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.1 [Software Engineering]: Requirements/Specifications; D.3.3 [Programming Lan-
guages]: Language Constructs--abstract data types, concurrent programming structures, data types
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation-parallelism;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs-pre- and post-conditions, specification techniques

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrrency, correctness, Larch, linearizability, multi-
processing, serializability, shared memory, specification

1. INTRODUCTION

1 .l Overview
Informally, a concurrent system consists of a collection of sequential processes
that communicate through shared typed objects. This model encompasses both
message-passing architectures in which the shared objects are message queues,

A preliminary version of this paper appeared in the Proceedings of the 14th ACM Symposium on
Principles of Programming Languages, January 1987 [21].
This research was sponsored by IBM and the Defense Advanced Research Projects Agents (DOD),
ARPA order 4976 (Amendment 20), under contract F33615-87-C-1499, monitored by the Avionics
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB. Additional spport
for J. M. Wing was provided in part by the National Science Foundation under grant CCR-8620027.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.
Authors’ address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213-3890.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0164-0925/90/0700-0463 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990, Pages 463-492.

(1, call nq(1)) (1, ret nq()) (2, call nq(2)) (2, ret nq()) (3, call deq()) (3, ret deq(1))

m : unit ! unit m : int ! int

4

LINEARISABILITY

• correctness criterion for concurrent libraries

• enables proofs of conformance to (sequential)
specifications

• based on restricted rearrangements of actions
in histories

QUEUES
Concurrent library behaviour

time

1

2

3

Consider a queue library L, invoked concurrently, with methods:

enqueue: int → void dequeue: void → int

A (correct) library behaviour is the following:

call dq() ret dq(1)

call nq(1) ret nq()

call nq(2) ret nq()

threads
 library L / client Knq : int ! unit deq : unit ! int

(1, call nq(1)) (1, ret nq()) (2, call nq(2)) (2, ret nq()) (3, call deq()) (3, ret deq(1))

m : unit ! unit m : int ! int

4

nq : int ! unit deq : unit ! int

(1, call nq(1)) (1, ret nq()) (2, call nq(2)) (2, ret nq()) (3, call dq()) (3, ret dq(1))

m : unit ! unit m : int ! int

(1, callm(m1,m2))O (2, callm(· · ·))O (2, callm1(· · ·))P (2, retm1(m3))O

Def. History h1 linearises to h2 if h2 can be obtained from h1 by
a series of /-transformations.

Def. A library L linearises to specification S if every history h1
of L linearises to some h2 from S.

4

nq : int ! unit dq : unit ! int

(1, call nq(1)) (1, ret nq()) (2, call nq(2)) (2, ret nq()) (3, call dq()) (3, ret dq(1))

m : unit ! unit m : int ! int

(1, callm(m1,m2))O (2, callm(· · ·))O (2, callm1(· · ·))P (2, retm1(m3))O

Def. History h1 linearises to h2 if h2 can be obtained from h1 by
a series of /-transformations.

Def. A library L linearises to specification S if every history h1
of L linearises to some h2 from S.

4

EXAMPLE

Concurrent library behaviour

time

1

2

3

Consider a queue library L, invoked concurrently, with methods:

enqueue: int → void dequeue: void → int

A (correct) library behaviour is the following:

call dq() ret dq(1)

call nq(1) ret nq()

call nq(2) ret nq()

threads
 library L / client K

Concurrent library behaviour

time

1

2

3

Consider a queue library L, invoked concurrently, with methods:

enqueue: int → void dequeue: void → int

A (correct) library behaviour is the following:

ret nq()

threads

call nq(1)

call nq(2) ret nq()

call dq() ret dq(1)

 library L / client K

NON-EXAMPLE

Concurrent library behaviour

time

1

2

3

Consider a queue library L, invoked concurrently, with methods:

enqueue: int → void dequeue: void → int

A (correct) library behaviour is the following:

call dq() ret dq(1)

call nq(1) ret nq()

call nq(2) ret nq()

threads
 library L / client K

Concurrent library behaviour

time

2

3

Consider a queue library L, invoked concurrently, with methods:

enqueue: int → void dequeue: void → int

A (correct) library behaviour is the following:

call nq(1) ret nq()

ret nq()

threads

1

call nq(2)

call dq() ret dq(1)

 library L / client K

FIRST-ORDER LINEARISABILITY

t 6= t

0

· · · (t, callm(v)) (t0, x0) · · · / · · · (t0, x0) (t, callm(v)) · · ·

· · · (t0, x0) (t, retm(v)) · · · / · · · (t, retm(v)) (t0, x0) · · ·

· · · (t, callm(v)) (t, retm(v))XY

1

INGREDIENTS

•histories

•sequential histories

•linearisability

•correctness

HIGHER-ORDER LIBRARIES

•higher-order routines (public methods),
e.g. HO queue

•higher-order parameters (abstract methods),
e.g. HO queue with parameter

HIGHER-ORDER LIBRARYHigher-order libraries
Parameter
library Library Client

Θ

Θ''

L'

Θ'Θ

L

Θ'

Θ''

K

LLKK

M 1

1

M N

N

● Θ,Θ',Θ'' are sets of method names with their types

● types can be of higher order (i.e. general function types)

● M1 ,…, MN are terms/programs running in parallel

● write L : Θ → Θ'

Quarantining Weakness⋆

Compositional Reasoning under Relaxed Memory Models
(Extended Abstract)

Radha Jagadeesan1, Gustavo Petri2, Corin Pitcher1, and James Riely1

1 DePaul University
2 Purdue University

1 Introduction

In sequential computing, every method of an object can be described in isolation via
preconditions and postconditions. However, reasoning in a concurrent setting requires a
characterization of all possible interactions across method invocations. Herlihy and Wing
[1990]’s notion of linearizability simplifies such reasoning by intuitively ensuring that
each method invocation “takes effect” between its invocation and response events.

This approach had two basic shortcomings. Firstly, in Herlihy and Wing’s definition
of linearizability, the interfaces are not expressive enough to codify external calls ema-
nating from the component. Thus, objects are closed and passive.

Secondly, the definitions are for a memory model with a global total order on mem-
ory operations, thus satisfying sequential consistency (SC). SC is not realized by all ar-
chitectures or runtime systems [Adve and Gharachorloo 1996; Adve and Boehm 2010],
motivating models of relaxed memory in hardware, such as TSO [Sewell et al. 2010],
PSO [SPARC, Inc. 1994], Power [Sarkar et al. 2011], and runtime systems, such as
Java [Manson et al. 2005; Sevcík 2008] and C++ [Boehm and Adve 2008; Batty et al.
2011]. This has motivated recent definitions of linearizability specific to the TSO
[Burckhardt et al. 2012; Gotsman et al. 2012] and C11 [Batty et al. 2013] memory
models.

We propose new definitions to address both of these limitations. Our methodology
aims to keep the interfaces free of the intricacies of particular relaxed memory models.
Our approach has the following characteristics.

(1) We model calls to component functions process-algebraically. This allows us
to treat callbacks and to give a symmetric definition of composition between clients
and libraries. Thus, our definitions encompass active components (that can evolve au-
tonomously even without input from the environment) and open components (that
invoke methods on components provided by the environment) and environment assump-
tions (pre/postconditions and the permitted sequences of method calls to a component).

(2) Our definitions are not specific to a particular memory model. Rather, we iden-
tify the criteria that a relaxed memory model needs to satisfy in order to fit into our
framework: the examples that satisfy our criteria include SC, TSO, PSO and a variant
of the Java Memory Model (JMM).

⋆ Research supported by NSF 0916741.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 492–511, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013

ESOP’13

ICALP’14

Parameterised Linearisability

Andrea Cerone1, Alexey Gotsman1, and Hongseok Yang2

1 IMDEA Software Institute
2 University of Oxford

Abstract Many concurrent libraries are parameterised, meaning that they imple-
ment generic algorithms that take another library as a parameter. In such cases,
the standard way of stating the correctness of concurrent libraries via linearisab-
ility is inapplicable. We generalise linearisability to parameterised libraries and
investigate subtle trade-offs between the assumptions that such libraries can make
about their environment and the conditions that linearisability has to impose on
different types of interactions with it. We prove that the resulting parameterised
linearisability is closed under instantiating parameter libraries and composing
several non-interacting libraries, and furthermore implies observational refine-
ment. These results allow modularising the reasoning about concurrent programs
using parameterised libraries and confirm the appropriateness of the proposed
definitions. We illustrate the applicability of our results by proving the correct-
ness of a parameterised library implementing flat combining.

1 Introduction
Concurrent libraries encapsulate high-performance concurrent algorithms and data
structures behind a well-defined interface, providing a set of methods for clients to call.
Many such libraries [6,7,13] are parameterised, meaning that they implement generic
algorithms that take another library as a parameter and use it to implement more com-
plex functionality (we give a concrete example in §2). Reasoning about the correctness
of parameterised libraries is challenging, as it requires considering all possible libraries
that they can take as parameters.

Correctness of concurrent libraries is usually stated using linearisability [8], which
fixes a certain correspondence between the concrete library implementation and a (pos-
sibly simpler) abstract library, whose behaviour the concrete one is supposed to simu-
late. For example, a high-performance concurrent stack that allows multiple push and
pop operations to access the data structure at the same time may be specified by an
abstract library where each operation takes effect atomically. However, linearisability
considers only ground libraries, where all of the library implementation is given, and
is thus inapplicable to parameterised ones. In this paper we propose a notion of para-
meterised linearisability (§3 and §4) that lifts this limitation. The key idea is to take
into account not only interactions of a library with its client, but also with its parameter
library, with the two types of interactions being subject to different conditions.

A challenge we have to deal with while generalising linearisability in this way is
that parameterised libraries are often correct only under some assumptions about the
context in which they are used. Thus, a parameterised library may assume that the lib-
rary it takes as a parameter is encapsulated, meaning that clients cannot call its methods
directly. A parameterised library may also accept as a parameter only libraries satisfying
certain properties. For this reason, we actually present three notions of parameterised

HIGHER-ORDER LIBRARIES

A. S. Murawski and N. Tzevelekos 30:9

Libraries L ∶∶= B � abstract m; L � public m; L Clients K ∶∶= M ���M
Blocks B ∶∶= ‘ �m = ⁄x.M ; B � r ∶= ⁄x.M ; B � r ∶= i; B Values v ∶∶= () � i �m � �v, v�
Terms M ∶∶= () � i � tid � x �m �M ⊕M � �M, M� � fi1 M � fi2 M � if M then M else M� ⁄x◊.M � xM �mM � let x =M in M � r ∶=M � !r
� �() ∶ unit � � i ∶ int � � tid ∶ int

�(x) = ◊

� � x ∶ ◊ m ∈Meths◊,◊′
� �m ∶ ◊ → ◊′

� �M ∶ int � �M0, M1 ∶ ◊
� � if M then M1 else M0 ∶ ◊

� �M ∶ ◊1 × ◊2
� � fii M ∶ ◊i (i = 1, 2) � �Mi ∶ ◊i (i = 1, 2)

� � �M1, M2� ∶ ◊1× ◊2

� �M1, M2 ∶ int
� �M1 ⊕M2 ∶ int

�, x ∶ ◊ �M ∶ ◊′
�� ⁄x◊.M ∶ ◊ → ◊′

�(x) = ◊ → ◊′ � �M ∶ ◊
� � xM ∶ ◊′ m ∈Meths◊,◊′ � �M ∶ ◊

� �mM ∶ ◊′ � �M ∶ ◊ �, x ∶ ◊ � N ∶ ◊′
� � let x =M in N ∶ ◊′

r ∈ Refsint � �M ∶ int
� � r ∶=M ∶ unit

r ∈ Refs◊,◊′ � �M ∶ ◊ → ◊′
� � r ∶=M ∶ unit

r ∈ Refsint
� � !r ∶ int

r ∈ Refs◊,◊′
� � !r ∶ ◊ → ◊′

�B ‘ ∶ � m ∈Meths◊,◊′ x ∶ ◊ �M ∶ ◊′ �B B ∶ ��B m = ⁄x.M ; B ∶ � � {m} r ∈ Refs◊,◊′ x ∶ ◊ �M ∶ ◊′ �B B ∶ ��B r ∶= ⁄x.M ; B ∶ �
r ∈ Refsint �B B ∶ ��B r ∶= i; B ∶ � �B B ∶ �

Meths(B) �L B ∶ �→ �

� � {m} �L L ∶ �′ → �

′′ m ∈ �

′′
� �L public m; L ∶ �′ → �

′′
� � {m} �L L ∶ �′ → �

′′ m ∉ �

′′
� �L abstract m; L ∶ �′ � {m}→ �

′′
�Mj ∶ unit (j = 1,�, N)
� �K M1���MN ∶ unit ∀j. Meths(Mj) ⊆ �

Figure 4 Library syntax, and typing rules for terms (�), blocks (�B), libraries (�L), clients (�K).

combiner of all registered requests. Note that the requests will be attended to one after another (thus
guaranteeing mutual exclusion) and only one lock acquisition will suffice to process one array of
requests. Using our framework, one can show that Lfc can beR-linearised to the specification given
by the library Lspec defined by

run = ⁄ (f,x). (lock . acquire (); let result = f (x) in lock . release (); result)

where each function call in Lspec is protected by a lock. Observe that we cannot hope for Lfc � Lspec,
because clients may call library methods with functional arguments that recognise thread identity.
Consequently, we can relate the two libraries only if context behaviour is guaranteed to be independent
of thread identifiers. This can be expressed through �R, where R ⊆ H�,�′ ×H�,�′ is a relation
capturing thread-blind client behaviour (see Appendix ?? for details).

3. Library syntax

We now look at the concrete syntax of libraries and clients. Libraries comprise collections of typed
methods whose argument and result types adhere to the grammar: ◊ ∶∶= unit � int � ◊ → ◊ � ◊ × ◊.

We shall use three disjoint enumerable sets of names, referred to as Vars, Meths and Refs, to
name respectively variables, methods and references. x, f (and their decorated variants) will be used
to range over Vars; m will range over Meths; and r over Refs. Methods and references are implicitly
typed, i.e. Meths = �◊,◊′ Meths◊,◊′ and Refs = Refsint � �◊,◊′ Refs◊,◊′ , where Meths◊,◊′ contains
names for methods of type ◊ → ◊′, Refsint contains names of integer references and Refs◊,◊′ contains
names for references to methods of type ◊ → ◊′. We write � for disjoint set union.

The syntax for libraries and clients is given in Figure 4. Each library L begins with a series of
method declarations (public or abstract) followed by a block B containing method implementations
(m = ⁄x.M) and reference initialisations (r ∶= i or r ∶= ⁄x.M). The typing rules ensure that each

CONCUR 2017

INTERACTIONHigher-order libraries
Parameter
library Library Client

Θ

Θ''

L'

Θ'Θ

L

Θ'

Θ''

K

LLKK

M 1

1

M N

N

● Θ,Θ',Θ'' are sets of method names with their types

● types can be of higher order (i.e. general function types)

● M1 ,…, MN are terms/programs running in parallel

● write L : Θ → Θ'

HIGHER-ORDER TRACES
• (abstract) interactions of the library with its context

• design guided by game semantics (O-context, P-library)

• example history

sequential histories = alternating histories

nq : int ! unit deq : unit ! int

(1, call nq(1)) (1, ret nq()) (2, call nq(2)) (2, ret nq()) (3, call deq()) (3, ret deq(1))

m : unit ! unit m : int ! int

(1, callm(m1,m2))O (2, callm(· · ·))O (2, callm1(· · ·))P (2, retm1(m3))O

4

TRACE SEMANTICS
A. S. Murawski and N. Tzevelekos 30:13

(INT) (E , M,R,P ,A, S) �→t (E , M ′,R′,P ,A, S′), given that (M,R, S) �→t (M ′,R′, S′) and
dom(R′ �R) consists of names that do not occur in E ,A.

(PQY) (E , E[mv],R,P,A, S) call m(v′)P Y�����→t (m ∶∶ E ∶∶ E ,−,R′,P ′,A, S), given m ∈ AY and (PC).

(OQY) (E ,−,R,P ,A, S) call m(v)OY������→t (m ∶∶ E , M{v�x},R,P ,A′, S), given m ∈ PY , R(m) =
⁄x.M and (OC).

(PAY) (m ∶∶ E , v,R,P ,A, S) ret m(v′)P Y������→t (E ,−,R′,P ′,A, S), given m ∈ PY and (PC).

(OAY) (m ∶∶ E ∶∶ E ,−,R,P ,A, S) ret m(v)OY������→t (E , E[v],R,P ,A′, S), given m ∈ AY and (OC).

(PC) If v contains the names m1,�, mk then v′ = v{m′i�mi � 1 ≤ i ≤ k} with each m′i being a fresh
name. Moreover,R′ =R � {m′i � ⁄x.mix � 1 ≤ i ≤ k} and P ′ = P ∪Y {m′1,�, m′k}.

(OC) If v contains names m1,�, mk then mi ∈ „(P ,A), for each i, and A′ = A ∪Y {m1,�, mk}.
Figure 6 Trace semantics rules. The rule (INT) is for embedding internal rules. In the rule (PQY), the library

(P) calls one of its abstract methods (either the original ones or those acquired via interaction), while in (PAY) it
returns from such a call. The rules (OQY) and (OAY) are dual and represent actions of the context. In all of the
rules, whenever we write m(v) or m(v′), we assume that the type of v matches the argument type of m.

added to the evaluation stack E and a P -configuration is obtained. From there on, the library will
compute internally using rule (INT), until: it either needs to evaluate an abstract method (i.e. some
m′ ∈ AY), and hence issues a call via rule (PQY); or it completes its computation and returns the call
(rule (PAY)). Calls to abstract methods, on the other hand, are met either by further calls to public
methods (via (OQY)), or by returns (via (OAY)).

Finally, we extend the trace semantics to a concurrent setting where a fixed number of N -many
threads run in parallel. Each thread has separate evaluation stack and term components, which we
write as C = (E , X) (where X is a term or “−”). Thus, a configuration now is of the following form:

N -configuration (C1���CN ,R,P ,A, S)
where, for each i, Ci = (Ei, Xi) and (Ei, Xi,R,P ,A, S) is a sequential configuration. We shall
abuse notation a little and write (Ci,R,P ,A, S) for (Ei, Xi,R,P ,A, S). Also, below we write �C
for C1���CN and �C[i� C′] = C1���Ci−1�C′�Ci+1���CN and, for economy, we useRPAS to range
over tuples (R,P ,A, S). The concurrent traces are produced by the following two rules

(Ci,RPAS)�→i (C′,RPAS′)(�C,RPAS)��⇒ (�C[i� C′],RPAS′) (PINT) (Ci,RPAS) xXY��→i (C′,RPAS′)
(�C,RPAS) (i,x)XY���⇒ (�C[i� C′],RPAS′) (PEXT)

with the proviso that the names freshly produced internally in (PINT) are fresh for the whole of �C.
We can now define the trace semantics of a library L. We call a configuration component Ci final

if it is in one of the following forms, for O- and P -configurations respectively: Ci = ([],−) or Ci =([], ()) . We call (�C,R,P ,A, S) final just if �C = C1���CN and each Ci is final.� Definition 18. For each L ∶ �→ �

′, we define the N -trace semantics of L to be:

JLKN = { s � (�C0,R0, (�, �

′), (�,�), S0) s��⇒∗fl ∧ fl final}
where �C0 = ([],−)���([],−) and (L)�→∗lib (‘,R0, S0).

For economy, in the sequel we might be dropping the index N from JLKN . We conclude the
presentation of the trace semantics by providing a semantics for library contexts.

Recall that in our setting (Figure 1) a library L ∶ �→ �

′ is deployed in a context consisting of a
parameter library L′ ∶ �→ �, �

′′ and a concurrent composition of client threads �

′, �

′′ �Mi ∶ unit
(i = 1,�, N). We shall write link L′;− in (M1���MN), or simply C, to refer to such contexts.

CONCUR 2017

HIGHER-ORDER LINEARISABILITY

t 6= t

0

· · · (t, x)O (t0, x0) · · · / · · · (t0, x0) (t, x)O · · ·

· · · (t0, x0) (t, x)P · · · / · · · (t, x)P (t0, x0) · · ·

2

nq : int ! unit deq : unit ! int

(1, call nq(1)) (1, ret nq()) (2, call nq(2)) (2, ret nq()) (3, call deq()) (3, ret deq(1))

m : unit ! unit m : int ! int

(1, callm(m1,m2))O (2, callm(· · ·))O (2, callm1(· · ·))P (2, retm1(m3))O

Def. History h1 linearises to h2 if h2 can be obtained from h1 by
a series of /-transformations.

Def. A library L linearises to specification S if every history h1
of L linearises to some h2 from S.

4

A. S. Murawski and N. Tzevelekos 30:3

1 public count, update;
2 Lock lock;
3 F := ⁄x.0;
4

5 count = ⁄i. (!F)i
6 update = ⁄(i, g). aux(i ,g,count i)
7

8 aux = ⁄(i, g, j).
9 let y = | g j | in

10 lock . acquire ();
11 let f = !F in

12 if (j == (f i)) then {
13 F := ⁄x. if (x == i) then y
14 else (f x) ;
15 lock . release ();
16 y }
17 else {
18 lock . release ();
19 aux(i ,g , f i) }

Figure 2 Multiset library Lmset with public methods count ∶ int→ int and update ∶ int × (int→ int)→ int.

� Example 1 (Multiset). Consider the concurrent multiset library Lmset in Figure 2. It uses a private
reference for storing the multiset’s characteristic function and reads optimistically, without locking
(cf. [10, 19]). The update method in particular reads the current multiplicity of the given element i

(via count) and computes its new multiplicity without acquiring a lock on the characteristic function.
It only acquires a lock when it is ready to write the new value (line 10) in the hope that the value at i

will still be the same and the update can proceed; if not, another attempt to update the value is made.
Let us look at some example executions of the library via their resulting histories, i.e. sequences

of method calls and returns between the library and a client. In the topmost block (a) of history
diagrams of Figure 2, we see three such executions. Note that we do not record internal calls to count
or aux, and use m and variants for method identifiers (names). We use the abbreviation cnt for count,
and upd for update, and initially ignore the circled events for cnt. Each execution involves 2 threads.

In the first execution, the client calls update(i, m) in the second thread, and subsequently calls
count(i) in the first thread. The code for update stipulates that first count(i) be called internally,
returning some multiplicity j for i, and then m(j) should be called. As soon m returns a value j′,
update sets the multiplicity of i to j′ and itself returns j′. The last event in this history is a return
of count in the first thread with the old value j. According to our proposed definition, this history
will be linearisable to another, intuitively correct one: the last return can be moved to the circled
position. At this point the notion of linearisability is used informally, but it will be made precise in
the following sections. In the second execution, the last return of count in the first thread returns the
updated value. In this case, we will be able to move call cnt(i) to the circled position to obtain a
linearisation, which is obviously correct. Finally, in the third execution we have a history that will
turn out non-linearisable to an intuitively correct history. Indeed, we should not be able to return the
updated value in the first thread before m has returned it in the second one.

The two histories in block (b) in the same figure demonstrate the mechanism for updates. The
first history will be linearisable to the second one. In the second history we see that both threads
try to update the same element i, but the first one succeeds in it first and returns k on update. Then,
the second thread realises that the value of i has been updated to k and calls m again, this time with
argument k. An important feature of the second history is that it is sequential: each client event (call
or return) is immediately followed by a library event.

CONCUR 2017

A. S. Murawski and N. Tzevelekos 30:15

Acknowledgements. We thank the authors of [3] for bringing the higher-order linearisability prob-
lem to our attention. We would also like to thank Kasper Svendsen and Radha Jagadeesan for
constructive comments, and Christine Tzevelekou for help with Figure 1.

References

1 http://c-cube.github.io/ocaml-containers/0.21/CCMultiSet.S.html.
2 S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and U. Berger, editors,

Logic and Computation. Springer-Verlag, 1998. Proceedings of the 1997 Marktoberdorf Summer
School.

3 A. Cerone, A. Gotsman, and H. Yang. Parameterised linearisability. In Proceedings of ICALP’14,
volume 8573 of Lecture Notes in Computer Science, pages 98–109. Springer, 2014.

4 J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for lineariz-
ability. ACM Trans. Program. Lang. Syst., 33(1):4, 2011.

5 B. Dongol and J. Derrick. Verifying linearisability: A comparative survey. ACM Comput. Surv.,
48(2):19, 2015.

6 I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. Theor.
Comput. Sci., 411(51-52):4379–4398, 2010.

7 D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained concurrency. In Proceedings of
FOSSACS, volume 2987 of Lecture Notes in Computer Science, pages 211–225. Springer-Verlag,
2004.

8 D. R. Ghica and N. Tzevelekos. A system-level game semantics. Electr. Notes Theor. Comput. Sci.,
286:191–211, 2012.

9 A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In Proceedings of ICALP,
volume 6756 of Lecture Notes in Computer Science, pages 453–465. Springer-Verlag, 2011.

10 S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and N. Shavit. A lazy concurrent
list-based set algorithm. In Proceedings of OPODIS, volume 3974 of Lecture Notes in Computer
Science, pages 3–16, Springer-Verlag, 2006.

11 D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-parallelism
tradeoff. In Proceedings of SPAA, pages 355–364, ACM, 2010.

12 M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

13 R. Jagadeesan, G. Petri, C. Pitcher, and J. Riely. Quarantining weakness - compositional reason-
ing under relaxed memory models (extended abstract). In Proceedings of ESOP, volume 7792 of
Lecture Notes in Computer Science, pages 492–511, Springer-Verlag, 2013.

14 A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects. Theor.
Comput. Sci., 338(1-3):17–63, 2005.

15 J. Laird. A game semantics of Idealized CSP. In Proceedings of MFPS’01, pages 1–26. Elsevier,
2001. ENTCS, Vol. 45.

16 J. Laird. A fully abstract trace semantics for general references. In Proceedings of ICALP, volume
4596 of Lecture Notes in Computer Science, pages 667–679. Springer, 2007.

17 H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization points.
In Proceedings of PLDI, pages 459–470, ACM, 2013.

18 M. Moir and N. Shavit. Concurrent data structures. In Handbook of Data Structures and Applica-
tions. Chapman and Hall/CRC, 2004.

19 P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying linearizability with
hindsight. In Proceedings of PODC, pages 85–94, ACM, 2010.

20 I. Sergey, A. Nanevski, and A. Banerjee. Specifying and verifying concurrent algorithms with
histories and subjectivity. In Proceedings of ESOP, volume 9032 of Lecture Notes in Computer
Science, pages 333–358, Springer, 2015.

CONCUR 2017

30:2 Higher-Order Linearisability

Figure 1 A library L ∶ � → �′ in en-
vironment comprising a parameter library
L

′ ∶ � → �, �′′ and a client K of the
form �′, �′′ �M1���MN .

and L′, they exchange functions between each other. Consequently, in addition to K making calls to
public methods of L and L making calls to its abstract methods, K and L′ may also issue calls to
functions that were passed to them as arguments during higher-order interactions. Analogously, L

may call functions that were communicated to it via library calls.
Our framework is operational in flavour and draws upon concurrent [15, 7] and operational game

semantics [14, 16, 8]. We shall model library use as a game between two participants: Player (P),
corresponding to the library L, and Opponent (O), representing the environment (L′, K) in which
the library was deployed. Each call will be of the form call m(v) with the corresponding return of
the shape ret m(v), where v is a value. As we work in a higher-order framework, v may contain
functions, which can participate in subsequent calls and returns. Histories will be sequences of moves,
which are calls and returns paired with thread identifiers. A history is sequential just if every move
produced by O is immediately followed by a move by P in the same thread. In other words, the
library immediately responds to each call or return delivered by the environment. In contrast to classic
linearisability, the move by O and its response by P need not be a call/return pair, as the higher-order
setting provides more possibilities (in particular, the P response may well be a call). Accordingly,
linearisable higher-order histories can be seen as sequences of atomic segments (linearisation points),
starting at environment moves and ending with corresponding library moves.

In the spirit of [3], we are going to consider two scenarios: one in which K and L′ share an
explicit communication channel (the general case) as well as a situation in which they can only
communicate through the library (the encapsulated case). Further, we also handle the case in which
extra closure assumptions can be made about the parameter library (the relational case), which can be
useful for dealing with a variety of assumptions on the use of parameter libraries that may arise in
practice. In each case, we present a candidate definition of linearisability and illustrate it with tailored
examples. The suitability of each kind of linearisability is demonstrated by showing that it implies
the relevant form of contextual approximation (refinement). We also examine compositionality of
the proposed concepts. One of our examples will discuss the implementation of the flat-combining
approach [11, 3], adapted to higher-order types.

Example: a higher-order multiset library

Higher-order libraries are common in languages like ML, Java, Python, etc. As an illustrative example,
we consider a library written in ML-like syntax which implements a multiset data structure with
integer elements. For simplicity, we assume that its signature contains just two methods:

count ∶ int→ int, update ∶ (int × (int→ int))→ int .

The former method returns for each integer its multiplicity in the multiset – this is 0 if the integer
is not a member of the multiset. On the other hand, update takes as an argument an integer i and a
function f , and updates the multiplicity of i in the multiset to �f(i)� (we use the absolute value of f(i)
in order to meet the multiset requirement that element multiplicities not be negative; alternatively,
we could have used exceptions to quarantine such client method behaviour). Methods with the same
functionalities can be found e.g. in the multiset module of the ocaml-containers library [1]. While our
example is simple, the same kind of analysis as below can be applied to more intricate examples such
as map methods for integer-valued arrays, maps or multisets.

ENCAPSULATED CASE
Encapsulation

Parameter
library Library Client

Θ

Θ''

L'

Θ'Θ

L

Θ'

Θ''

K

LLKK

M 1

1

M N

N

● Θ,Θ' are sets of method names with their types (L : Θ → Θ')

● types can be of higher order (i.e. general function types)

● M1 ,…, MN are terms/programs running in parallel

[Cerone, Gotsman, Yang '14]

ENCAPSULATED CASE
Encapsulation: Splitting the Opponent

● Θ,Θ' are sets of method names with their types (L : Θ → Θ')

● types can be of higher order (i.e. general function types)

● M1 ,…, MN are terms/programs running in parallel

● Separate Opponent into OK and OL (dually for Proponent)

● O is more constrained + more transpositions are legal

Parameter
library Library Client

Θ

L'

Θ'Θ

L

Θ'

K

M 1

M N

P

OL

L P

O

K

K

LINEARISABILITY
(ENCAPSULATED)

t 6= t

0

· · · (t, x)K (t0, x0)L · · · ⇧ · · · (t0, x0)L (t, x)K · · ·

· · · (t0, x0)L (t, x)K · · · ⇧ · · · (t, x)K (t0, x0)L · · ·

Def. History h1 linearises to h2 if h2 can be obtained from h1 by
a series of /- and ⇧-transformations.

5

t 6= t

0

· · · (t, x)K (t0, x0)L · · · ⇧ · · · (t0, x0)L (t, x)K · · ·

· · · (t0, x0)L (t, x)K · · · ⇧ · · · (t, x)K (t0, x0)L · · ·

Def. History h1 linearises to h2 if h2 can be obtained from h1 by
a series of /- and ⇧-transformations.

5

RELATIONAL LINEARISABILITY

• linearisability under additional
assumptions about clients

• the extra constraints are expressed
as closure under a relation R

• correctness with respect to clients
whose behaviour (trace set) is R-
closed

COMBINING

A. S. Murawski and N. Tzevelekos 30:9

Libraries L ∶∶= B � abstract m; L � public m; L Clients K ∶∶= M ���M
Blocks B ∶∶= ‘ �m = ⁄x.M ; B � r ∶= ⁄x.M ; B � r ∶= i; B Values v ∶∶= () � i �m � �v, v�
Terms M ∶∶= () � i � tid � x �m �M ⊕M � �M, M� � fi1 M � fi2 M � if M then M else M� ⁄x◊.M � xM �mM � let x =M in M � r ∶=M � !r
� �() ∶ unit � � i ∶ int � � tid ∶ int

�(x) = ◊

� � x ∶ ◊ m ∈Meths◊,◊′
� �m ∶ ◊ → ◊′

� �M ∶ int � �M0, M1 ∶ ◊
� � if M then M1 else M0 ∶ ◊

� �M ∶ ◊1 × ◊2
� � fii M ∶ ◊i (i = 1, 2) � �Mi ∶ ◊i (i = 1, 2)

� � �M1, M2� ∶ ◊1× ◊2

� �M1, M2 ∶ int
� �M1 ⊕M2 ∶ int

�, x ∶ ◊ �M ∶ ◊′
�� ⁄x◊.M ∶ ◊ → ◊′

�(x) = ◊ → ◊′ � �M ∶ ◊
� � xM ∶ ◊′ m ∈Meths◊,◊′ � �M ∶ ◊

� �mM ∶ ◊′ � �M ∶ ◊ �, x ∶ ◊ � N ∶ ◊′
� � let x =M in N ∶ ◊′

r ∈ Refsint � �M ∶ int
� � r ∶=M ∶ unit

r ∈ Refs◊,◊′ � �M ∶ ◊ → ◊′
� � r ∶=M ∶ unit

r ∈ Refsint
� � !r ∶ int

r ∈ Refs◊,◊′
� � !r ∶ ◊ → ◊′

�B ‘ ∶ � m ∈Meths◊,◊′ x ∶ ◊ �M ∶ ◊′ �B B ∶ ��B m = ⁄x.M ; B ∶ � � {m} r ∈ Refs◊,◊′ x ∶ ◊ �M ∶ ◊′ �B B ∶ ��B r ∶= ⁄x.M ; B ∶ �
r ∈ Refsint �B B ∶ ��B r ∶= i; B ∶ � �B B ∶ �

Meths(B) �L B ∶ �→ �

� � {m} �L L ∶ �′ → �

′′ m ∈ �

′′
� �L public m; L ∶ �′ → �

′′
� � {m} �L L ∶ �′ → �

′′ m ∉ �

′′
� �L abstract m; L ∶ �′ � {m}→ �

′′
�Mj ∶ unit (j = 1,�, N)
� �K M1���MN ∶ unit ∀j. Meths(Mj) ⊆ �

Figure 4 Library syntax, and typing rules for terms (�), blocks (�B), libraries (�L), clients (�K).

combiner of all registered requests. Note that the requests will be attended to one after another (thus
guaranteeing mutual exclusion) and only one lock acquisition will suffice to process one array of
requests. Using our framework, one can show that Lfc can beR-linearised to the specification given
by the library Lspec defined by

run = ⁄ (f,x). (lock . acquire (); let result = f (x) in lock . release (); result)

where each function call in Lspec is protected by a lock. Observe that we cannot hope for Lfc � Lspec,
because clients may call library methods with functional arguments that recognise thread identity.
Consequently, we can relate the two libraries only if context behaviour is guaranteed to be independent
of thread identifiers. This can be expressed through �R, where R ⊆ H�,�′ ×H�,�′ is a relation
capturing thread-blind client behaviour (see Appendix ?? for details).

3. Library syntax

We now look at the concrete syntax of libraries and clients. Libraries comprise collections of typed
methods whose argument and result types adhere to the grammar: ◊ ∶∶= unit � int � ◊ → ◊ � ◊ × ◊.

We shall use three disjoint enumerable sets of names, referred to as Vars, Meths and Refs, to
name respectively variables, methods and references. x, f (and their decorated variants) will be used
to range over Vars; m will range over Meths; and r over Refs. Methods and references are implicitly
typed, i.e. Meths = �◊,◊′ Meths◊,◊′ and Refs = Refsint � �◊,◊′ Refs◊,◊′ , where Meths◊,◊′ contains
names for methods of type ◊ → ◊′, Refsint contains names of integer references and Refs◊,◊′ contains
names for references to methods of type ◊ → ◊′. We write � for disjoint set union.

The syntax for libraries and clients is given in Figure 4. Each library L begins with a series of
method declarations (public or abstract) followed by a block B containing method implementations
(m = ⁄x.M) and reference initialisations (r ∶= i or r ∶= ⁄x.M). The typing rules ensure that each

CONCUR 2017

FLAT COMBINING30:8 Higher-Order Linearisability

1 public count, update, reset;
2 abstract default;
3 Lock lock;
4 F := ⁄x.0;
5 ...

20 reset = ⁄i.
21 lock . acquire ();
22 let y = | default i | in

23 let f = !F in

24 F := ⁄x. if (x == i) then y
25 else (f x);
26 lock . release ();
27 y

1 public run; . . . ;
2 Lock lock;
3 struct {fun , arg , wait , retv } requests [N];
4

5 run = ⁄ (f,x).
6 requests [tid].fun := f ;
7 requests [tid].arg := x;
8 requests [tid].wait := 1;
9 while (requests [tid].wait)

10 if (lock . tryacquire ()) {
11 for (t=0; t<N; t++)
12 if (requests [t]. wait) {
13 requests [t]. retv :=
14 requests [t]. fun (requests [t]. arg);
15 requests [t]. wait := 0;
16 }; lock . release () };
17 requests [tid].retv;

Figure 3 Left: Parameterised multiset library Lmset2 (lines 5-19 as in Fig. 2) with public methods count , reset :
int→ int, update∶ int×(int→ int)→ int; abstract method default ∶ int→ int. Right: Flat combination library Lfc.

other hand, if the library is encapsulated then the latter scenario is not possible. In such a case, Lmset2
linearises to the specification Amset2, defined next. Let Amset2 = {fi1(s) � s ∈ A○mset2} where:

A○mset2 = { s ∈H○�,�′ � fi1(s) ∈Hseq�,�′ ∧ ∀t. s � t ∈ S ∧ ∀s′(_ , I)P (_ , J)O �pre s. I = J }
and the set S is now given by the grammar of Example 5 extended with the rule:

S → (t, call reset(i), I)OK (t, call default(i), I)PL (t, ret default(j), I)OL (t, ret reset(�j�), I ′)PK S
with I ′ = I[i� �j�]. Our framework makes it possible to confirm that Lmset2 enc-linearises to Amset2.

We finally extend general linearisability to cater for situations where the client and the parameter
library adhere to closure constraints expressed by relationsR on histories. Let �, �

′ be sets of abstract
and public methods respectively. The closure relations we consider are closed under permutations of
methods outside �∪�

′: if hRh′ and fi is a (type-preserving) permutation on Meths� (�∪�

′) then
fi(h)Rfi(h′). The requirement represents the fact that, apart from the method names from a library
interface, the other method names are arbitrary and can be freely permuted without any observable
effect. Thus,R should not be distinguishing between such names.� Definition 12 (Relational linearisability). LetR ⊆H�,�′ ×H�,�′ be closed under permutations
of names in Meths�(�∪�

′). Given h1, h2 ∈H�,�′ , we say that h1 isR-linearised by h2, and write
h1 �R h2, if h1(◁P O ∪R)∗h2 and h2 is sequential. A library L ∶ �→ �

′ can beR-linearised to
A, written L �R A, if A ⊆Hseq

�,�′ and for any h ∈ JLK there exists h′ ∈ A such that h �R h′. We write
L �R L′ if L �R JL′K ∩Hseq

�,�′ .� Example 13. We consider a higher-order variant of an example from [3] that motivates relational
linearisability. Flat combining [11] is a synchronisation paradigm that advocates the use of a single
thread holding a global lock to process requests of all other threads. To facilitate this, threads share an
array to which they write the details of their requests and wait either until they acquire a lock or their
request has been processed by another thread. Once a thread acquires a lock, it executes all requests
stored in the array and the outcomes are written to the array for access by the requesting threads.

Let �

′ = {run ∈Meths(◊→◊′)×◊,◊′}. The library Lfc ∶ �→ �

′ (Figure 3, right) is built following
the flat combining approach and, on acquisition of the global lock, the winning thread acts as a

SUMMARY
• new framework for higher-order

linearisability in various cases (general,
encapsulated, relational)

• soundness and compositionality

• case studies

• main target for future work:

proof techniques for higher-order linearisability

