HIGHER-ORDER

Andrzej Murawski Nikos Tzevelekos
University of Warwick



Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

m : unit — unit m :int —= Int



LINEARISABILITY




QUEUES
ng : int — unit dqg : unit — int

(1,call nq(1)) (1, ret nq()) (2, call nq(2)) (2,ret nq()) (3, calldq()) (3, ret dq(1))

T— library L / client K

call dq() retdq(l)

call nq(2) ret nq()

call nq(l) ret nq()




threads

EXAMPLE

library L / client K

call nq(1)

ret nq()

call dq() ret dq(1)

L - | ............... .l ................................. - -

library L / client K

olloocooooonooooo00000000000000000DOOO0N0OoNO0000D0OO000000DO00 .I ............... .I ................................. bo

call nq(2)

call dq() retdq(1)




NON-EXAMPLE

threads library L / client K

call dq() ret dq(1)
e I ............... .l ................................. = -

call nq(2) retnq()
olloooococoooooooooncncoocooonooacncoac I. .................. .| ...................................................... Lo

threads library L / client K

call dq() retdq(1)
O freeeraaeaneaen- PSR -

call nq(2) retnq()
sllonoocooooe .l ................. I ................................................................................. b




R LINEARISABILITY

FIRST-ORD

- (t,callm(w)) (¢, 2") -+ < -+ (', 2") (¢, call m(v)) ---

() (tretm(v) - q - (B ret m(v)) (#,2) - -




INGR

DIENTS

*histories
*sequential histories
linearisability

e cOorrectness



HIGHER-ORDER LIBRARIES

* higher-order routines (public methods),
e.g. HO queue

* higsher-order parameters (abstract methods),
e.g. HO queue with parameter



HIGH

-R-ORDE

Library

R LIB

RARY




-SOP' | 3

Quarantining Weakness*

Compositional Reasoning under Relaxed Memory Models
(Extended Abstract)

RadhaJ agadeesanl, Gustavo Petri%, Corin Pitcher!, and James Riely1

I' DePaul University
2 Purdue University



ICALP 14

Parameterised Linearisability

Andrea Cerone', Alexey Gotsman', and Hongseok Yang?

! IMDEA Software Institute
2 University of Oxford



HIGHER-ORD

R LIBRARIES

Libraries L = B |abstract m; L | public m; L Clients K == M || M
Blocks B :=e¢|m=Mx.M; B|r:=Xx.M; B|r:==1; B Values vz== ()|i|m]|{v,v)
Terms M == ()|i|tg|x|m| Mo M|(M,M)|m M |7y M |if M then M else M

| A2 M | oM |mM |letx=MinM|r:=M]|r



INTERACTION

Parameter
library Library Client




HIGH

R-O

%

Db

%

RAC

=S5

* (abstract) interactions of the library with its context

» design guided by game semantics (O-context, P-library)

* example history

(1,call m(my, ms))o

(2,callm(--+))o

(2,callmy(--+))p

(2, ret my(m3))o

sequential histories = alternating histories



TRACE SEMANTICS

[ 11
)

(INT) (E,M,R,P,AS) = (E,M',R",P,A,S"), given that (M,R,S) —; (M',R',S") and

dom(R’ N\ R) consists of names that do not occur in £, A.
(PQY) (£, E[mv], R, P, A, S) S nY (o . B &, - R, P A, S), given m ¢ Ay and (PC).
(0QY) (£,-,R,P, A, 5) 0

¢ (m = & M{v/z},R,P,A,S), given m € Py, R(m) =
Az. M and (OC).

(PAY) (m=&,v,R,P,A,S) ¢ (E,-, R, P A, S), given m € Py and (PC).
(OAY) (m:=E =€, - R, P, A 8§) =Y e Bl R, P, A, S), given m e Ay and (OC).

(PC) If v contains the names myq, ---, my, then v’ = v{m;/m; | 1 <i < k} with each m/ being a fresh
name. Moreover, R = Rw {m, —» Az.m;x | 1 <i<k}and P’ =P uy {mj,--,my}.
(OC) If v contains names my, -+, my then m; € (P, A), for each i, and A" = Auy {mq,---,my}.

ret m(v')py

Figure 6 Trace semantics rules. The rule (INT) is for embedding internal rules. In the rule (PQY), the library
(P) calls one of its abstract methods (either the original ones or those acquired via interaction), while in (PAY) it
returns from such a call. The rules (OQY) and (OAY) are dual and represent actions of the context. In all of the
rules, whenever we write m(v) or m(v"), we assume that the type of v matches the argument type of m.



HIGHER-OR

-R LIN

—ARISA

BILITY

Def. History hy linearises to hs if hy can be obtained from h; by
a series of <-transformations.

Def. A library L linearises to specification S if every history hy
of L linearises to some hs from S.



count :int — int, wupdate : (int x (int — int)) — int

1 public count, update;
> Lock lock;
3 F = \x.0;

s count = M. (\F)i
o update = \(i, g). aux(i,g,count i)

s aux = M\, g, j).
9 let y =1g jl in

10 lock . acquire ();

11 let f =1Fin

12 if (] —= (f l)) then {

13 F:= M. if (x ==1) theny
» else (f x) ;

5 lock . release ();

16 y

17 else {

18 lock . release ();

19 aux(i,g,f i) }

http://c-cube.github.io/ocaml-containers/0.21/CCMultiSet.S.html



Parameter

library

Ll

PSULAT

D CASE

[Cerone, Gotsman, Yang '14]




-NCA

Parameter
library

PSULAT

Library




INEARISABILITY
(ENCAPSULATED)

Def. History hy linearises to hsy if hy can be obtained from hy by
a series of < and o-transformations.



RELA

[ONAL LIN

—A

RISABIL

* linearisability under additional
assumptions about clients

* the extra constraints are expressed
as closure under a relation R

* correctness with respect to clients
whose behaviour (trace set) is R-
closed




COMBINING

run = X (f,x). (lock.acquire (); let result = f(x) in lock. release (); result)



)

J

0

el

10

11

12

13

14

15

16

17

-LAT COMBINING

public run; . . .;
Lock lock;
struct {fun, arg, wait, retv} requests [N];

run = X (f,x).
requests [tiq].fun ;= f;
requests [tiq].arg := x;
requests [tiq|.wait := 1;
while ( requests [tiq].wait)
if (lock. tryacquire ()) {
for (r=0; t<N; t++)
if (requests|[t]. wait) {
requests [t ]. retv =
requests [t ]. fun (requests|t].arg);
requests [t |. wait = 0;
}; lock . release () };
requests [tiq].retv;



SUMMARY




