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Component-based semantics

Aims

‣ encourage language developers to use formal semantics  

Means

‣ modularity 

‣ reusable components 

‣ tool support



Related work

‣ Action Semantics 

‣ ASM: Abstract State Machines 

‣ PLT Redex / Racket         

‣ 𝕂-framework 

‣   

‣ PLANCOMPS project, collaborators:

 Racket solve problems · make languages
docs packages download

Batteries included

Racket’s extensive standard library gets your projects off the ground quickly.

Web applications
Database
Math & statistics
full list →

Cross-platform

Racket runs on Linux, macOS, and Windows. Develop on one; deploy to all three.

Package system
GUI framework
Standalone binaries
Foreign interface

Powerful macros & languages

Racket’s crown jewel is its macro system, which lets you freely extend the language.

Intro to macros
Macros in depth
Racket syntax model
Making new languages

Mature, stable, open source

Racket is a mature LGPL project that’s actively developed and maintained.

Racket repositories
Main repository
The PLT Group
Racket mailing list

DrRacket IDE & tons of documentation

DrRacket is a graphical IDE that’s integrated with Racket’s vast documentation.

DrRacket tutorial
DrRacket guide
DrRacket tools
Scribble

The best of Scheme and Lisp

Racket started life as a Scheme implementation, but then grew into new areas.

Neil Sculthorpe Thomas van 
Binsbergen



Component-based semantics

Components are fundamental constructs (‘funcons’)

‣ defined operationally, e.g.:

scope(⇢ : envs, X : )T ) : )T

⇢1/⇢0 ` X ! X 0

⇢0 ` scope(⇢1, X) ! scope(⇢1, X 0)

scope(⇢1, V ) V



Component-based semantics

Translation of language constructs to funcons

‣ e.g. (Caml  Light) :

E : expr ::= · · · | value-defs in expr | · · ·
eval [[E:expr]] : )values

· · ·
eval [[VD in E]] = scope(decl [[VD ]], eval [[E]])

· · ·
VD : value-defs ::= · · ·
decl [[VD :value-defs]] : )envs

· · ·



Funcons: Characteristics

‣ correspond to fundamental programming concepts 

‣ language-independent  

‣ have fixed behaviour 

‣ new ones can be added



Funcons: Foundations

Modular SOS (MSOS)

‣ Proc. MFCS, 1999; J.LAP, 2004 

Implicitly-Modular SOS (I-MSOS)

‣ Proc. SOS, 2008 (with M.New) 

Value-computation specifications, bisimulation congruence format

‣ Proc. FoSSaCS, 2013 (with M.Churchill) 

Signatures with strictness annotations

‣ Trans. AOSD, 2015 (with M.Churchill, N.Sculthorpe, P.Torrini)



Structural operational semantics (SOS)

Funcons: Foundations

⇢0 ` hD,�i ! hD0,�0i
⇢0 ` hscope(D,X),�i ! hscope(D0, X),�0i

⇢1/⇢0 ` hX,�i ! hX 0,�0i
⇢0 ` hscope(⇢1, X),�i ! hscope(⇢1, X 0),�0i

⇢0 ` hscope(⇢1, V ),�i ! hV,�i



Implicitly-Modular SOS (I-MSOS)

Funcons: Foundations

D ! D0

scope(D,X) ! scope(D0, X)

⇢1/⇢0 ` X ! X 0

⇢0 ` scope(⇢1, X) ! scope(⇢1, X 0)

scope(⇢1, V ) ! V



Value-computation specifications, bisimulation congruence format

Funcons: Foundations

D ! D0

scope(D,X) ! scope(D0, X)

⇢1/⇢0 ` X ! X 0

⇢0 ` scope(⇢1, X) ! scope(⇢1, X 0)

scope(⇢1, V ) V



Signatures with strictness annotations

Funcons: Foundations

scope(⇢ : envs, X : )T ) : )T

⇢1/⇢0 ` X ! X 0

⇢0 ` scope(⇢1, X) ! scope(⇢1, X 0)

scope(⇢1, V ) V



Funcons: Values

Universe

‣ algebraic data types: booleans, lists, tuples, … 

‣ built-in types: numbers, sets, maps, types, … 

‣ none : no-value – represents the lack of an ordinary value 

Types

‣ Boolean algebra: union, intersection, complement, S <:T



Funcons: Computations

Control flow

‣ sequencing, interleaving, choosing, iterating, … 

Data flow

‣ giving, binding, storing, interacting, generating, … 

‣ throwing / handling, delimited continuations …



Funcons: Abstractions

Values encapsulating computations 

‣ thunks, functions, procedures, methods, patterns, … 

‣ open, closures 

‣ forcing, applying, composing, …



Funcon descriptions of 
programming concepts 

— Examples —



Examples of funcon descriptions 

Operand evaluation order

Funcon and(B1: booleans, B2: booleans) : booleans 

‣ interleaved: and(B1, B2) 

‣ sequential: and(left-to-right(B1, B2)) 

‣ explicit: give(B2, and(B1, given)) 

‣ conditional: if-then-else(B1, B2, false)



Examples of funcon descriptions 

Unbounded and bounded arithmetic

Funcon integer-add(N1: integers, N2: integers) : integers  
             integer-subtract(N1: integers, N2: integers) : integers  
             … 

Funcon short-integer(N: integers) : bounded-integers(…,…)  

‣ short-integer(integer-add(N1, N2))  
short-integer(integer-subtract(N1, N2))  
…



Examples of funcon descriptions  

Partial arithmetic operations

Funcon integer-divide(N1: integers, N2: integers) :  
                                                                     integers|no-value 

Funcon definitely(V: T|no-value) : ⇒T 
Rule definitely(V: values) ↝ V 
Rule definitely(none) ↝ fail 

‣ integer-add(1, definitely(integer-divide(N1, N2)))



Examples of funcon descriptions 

Declarations compute environments

Type envs ↝ maps(ids, values|no-value) 

Funcon bind(I: ids, V: values) : envs  
             bound(I: ids) : ⇒values 
             scope(ρ: envs, X: ⇒T) : ⇒T 

‣ local declaration: scope(bind(I, E), …bound(I)…)



Examples of funcon descriptions 

Recursive and forward declarations

Funcon recursively-bind(I: ids, E: ⇒values) : ⇒environments 

‣ bind I to a fresh link 

‣ in the scope of that binding: 

- bind I to the value of E 

- set the link to refer to the value of E



Examples of funcon descriptions 

Abstractions with static or dynamic binding

Funcon abstraction(X: ⇒T) : abstractions(T)  
             close(A: abstractions(T)) : ⇒abstractions(T) 

‣ dynamic bindings: bind(I, abstraction(X)) 

‣ static bindings: bind(I, close(abstraction(X))) 

Funcon closure(X: ⇒T) : ⇒abstractions(T)  
             ↝ close(abstraction(X))



Examples of funcon descriptions 

Abstractions with a call-by-value or -name argument

Funcon force(A: abstractions(T)) : ⇒T 

‣ call-by-value: …bind(I, closure(…given…))…  
                       …apply(bound(I), E)… 

‣ call-by-name: …bind(I, closure(…force(given)…))…  
                       …apply(bound(I), closure(E)))…



Examples of funcon descriptions 

Further programming concepts

‣ patterns 

‣ variables 

‣ input/output 

‣ handling abrupt termination 

‣ delimited continuations



Tool support

Prototype, implemented in Spoofax and Haskell

‣ editing and parsing 

‣ checking translation and transition rules 

‣ navigating and browsing 

‣ generating parsers and interpreters 

‣ running test programs



Preliminary tool support for CBS 
[Van Binsbergen et al: Modularity 2016]

Figure 1. Editing and testing the CBS definition of IMP

Sect. 3). Shell commands allow entire test suites to be translated and
executed automatically.

The implementation of the CBS editor in SPOOFAX involved
writing an SDF3 grammar for the CBS language, some small files
specifying the various editor services (highlighting, name resolution,
menus, folding), and STRATEGO code to generate SDF3 grammars
and STRATEGO rules from the ASTs of CBS specifications. The
generated SDF3 grammars provide the syntax for the semantic
functions and metavariables that occur in the generated STRATEGO

rules, as well as the abstract syntax of the programming language.
The screenshot in Fig. 2 shows part of the current collection of
funcons; the CBS file for the funcons library provides hyperlinks to
all funcons, which allows browsing them without navigating down
through the ECLIPSE directory structure shown on the left. The
screenshot also shows generation of SDF3 and STRATEGO code for
all sections of the CBS for IMP, which includes generation of SDF3
for the required funcons.

When a programming language evolves, the syntax and/or
semantics of its constructs can change, new constructs may be added,
and existing constructs may be removed. This is achieved by editing
the CBS files that define the abstract syntax and its translation to
funcons, and regenerating the code for the changed files. If new
funcons are needed, they are added to the collection in separate
CBS files. Existing funcon definitions never change, so they do not
need version control. However, we use SUBVERSION (SVN) both
to track changes to language definitions and to check the lack of
changes to the funcon definitions. Moreover, SVN external links
facilitate sharing the entire collection of funcons between definitions
of different languages.

3. Executing Funcon Terms

We execute funcon terms using a HASKELL library where funcons
are specified in a style similar to I-MSOS (Mosses and New 2009),
the modular variant of SOS supported by CBS. The interpreter for
funcon terms can be invoked from ECLIPSE, with output printed to
ECLIPSE’s console.

The defining feature of I-MSOS is the implicit propagation of
auxiliary entities, and this is achieved in HASKELL by using a
monad in the implementation of the small-step evaluation relation.
The resulting code is as modular as I-MSOS rules: adding a new
funcon or auxiliary entity requires no modification to the code for
the existing funcons. The HASKELL code defining the individual
funcons can either be written manually, or generated by compil-
ing CBS funcon specifications to HASKELL code using our CBS
compiler (also written in HASKELL).

The CBS language includes a fixed universe of value types, and
a set of built-in operations on those types; these are supported by
binding them to HASKELL’s data types and library functions. For
nearly all cases, direct counterparts of the CBS value types and
operations are available in the HASKELL standard library. Further
value operations are defined as funcons by I-MSOS rules.

Dynamic errors are handled gracefully by the interpreter, which
reports the immediate cause of the error along with the current
contents of the auxiliary entities and the funcon term remaining to
be executed. The interpreter also includes a parser and pretty printer
for funcon terms, and an optional refocusing-based optimisation
(Danvy and Nielsen 2004) that provides a more efficient evaluation
strategy.
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Current and future work

‣ modular static semantics for funcons 

- modular type soundness proofs? 

‣ improved tool support 

‣ adding funcons for threads and concurrency 

‣ completing a major case study: C#



Funcons

‣ correspond to fundamental programming concepts 

‣ language-independent  

‣ have fixed behaviour 

‣ new funcons can be added


